

NTE384 Silicon NPN Transistor High Voltage Power Amp/Switch

Description:

The NTE384 is a multiple epitaxial silicon NPN power transistor in a TO66 type package utilizing a multiple–emitter site structure. Multiple–epitaxial construction maximizes the volt–ampere characteristic of the device and provides fast switching speeds. Multiple–emitter design ensures uniform current flow throughout the structure, which produces a high I_{S/b} and a large safe–operation–area.

The NTE384 is characterized for use in inverters operating directly from a rectified 110V power line. The leakage current is specified at 450V; therefore the device can also be used in a series bridge configuration on a 220V line. The V_{EBO} rating of 9V eases requirements on the drive transformer in inverter applications.

Features:

- Maximum Safe–Area–of–Operation
- Low Saturation Voltages
- High Voltage Rating: V_{CER(sus)} = 375V
- High Dissipation Rating: P_T = 45W

Absolute Maximum Ratings:

Collector–Base Voltage, V _{CBO}
Collector–Emitter Sustaining Voltage
With Base Open, V _{CEO(sus)}
With Reverse Bias (V_{RE}) of $-1.5V$, $V_{CEX(SUS)}$
With External Base–Emitter Resistance $(R_{BE}) \le 50\Omega$, $V_{CER(sus)}$
Emitter–Base Voltage, V _{EBO}
Collector Current, I _C
Continuous
Peak 10A
Continuous Base Current, I _B
Transistor Dissipation ($T_C \le +25^{\circ}C$, $V_{CE} \le 40V$), P_T
Operating Junction Temperature Range, T _{opr} –65° to +200°C
Storage Temperature Range, T _{stg} –65° to +200°C
Lead Temperature (During Soldering, 1/32 in. (0.8mm) from case, 10sec max), T _L +230°C
Thermal Resistance, Junction to Case (V_{CE} = 20V, I_{C} = 2.25A), $R_{\Theta JC}$ 3.9°C/W

<u>Electrical Characteristics:</u> $(T_C = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector–Cutoff Current	I _{CEV}	$V_{CE} = 450V, V_{BE} = -1.5V$	_	_	0.5	mA
		$V_{CE} = 450V, V_{BE} = -1.5V, T_{C} = +125^{\circ}C$	_	_	5.0	mA
Emitter–Cutoff Current	I _{EBO}	$V_{BE} = -9V, I_{C} = 0$	_	_	1.0	mA
Collector–Emitter Sustaining Voltage	V _{CEO(sus)}	I _C = 200mA, Note 1, Note 2	350	_	_	V
	V _{CER(sus)}	I_C = 200mA, R_{BE} = 50 Ω , Note 1, Note 2	375	_	_	V
Emitter-Base Voltage	V_{EBO}	$I_C = 0$	9	_	_	V
DC Forward Current	h _{FE}	V _{CE} = 1V, I _C = 1.2A, Note 1	12	28	50	
Base–Emitter Saturation Voltage	V _{BE(sat)}	I _C = 1.2A, I _B = 200mA, Note 1	_	1.0	1.6	V
		I _C = 4A, I _B = 800mA, Note 1	_	1.3	2.0	V
Collector–Emitter Saturation Voltage	V _{CE(sat)}	I _C = 1.2A, I _B = 200mA, Note 1	_	0.15	0.5	V
		I _C = 4A, I _B = 800mA, Note 1	_	0.5	3.0	V
Output Capacitance	C _{obo}	V _{CB} = 10V, f = 1MHz	_	_	150	pF
Small–Signal Forward Current Transfer Ratio	h _{fe}	$V_{CE} = 10V, I_{C} = 200 \text{mA}, f = 1 \text{MHz}$	1	7	_	
Second Breakdown Collector Current	I _{S/b}	V _{CE} = 50V, with Base forward biased, Pulse duration (non-repetitive) = 1sec	0.9	_	_	Α
Second Breakdown Energy	E _{S/b}	V_{BE} = -4V, I_{C} = 3A, with Base reverse biased, R_{B} = 50 Ω , L = 100 μ H	0.45	_	_	mj
Delay Time	t _d	$V_{CC} = 250V,$ $I_{B1} = I_{B2} = 200\text{mA},$ $I_{C} = 1.2\text{A}$	_	0.02	_	μs
Rise Time	t _r		_	0.3	0.75	μs
Storage Time	t _s		_	2.8	5.0	μs
Fall Time	t _f		-	0.3	0.75	μs

Note 1. Pulsed: Pulse Duration $\leq 350\mu s$, Duty Factor = 2%.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by NTE manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B