Part Number Description		
1A, 60 Vdc short-circuit protected solid-state relay for through-hole mount		
ELECTRICAL SPECIFICATIONS $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified)		
INPUT (CONTROL) SPECIFICATIONS		
Min	Max	Units
Input Voltage Range (See Note 1)	5.5	Vdc
Input Current @ 5 Vdc (See Figure 2)	15	mA
Must Turn-On Voltage 3.8		Vdc
Must Turn-Off Voltage	1.5	Vdc
Must Turn-Off Current	50	uAdc
Reserve Polarity -10		Vdc
OUTPUT (LOAD) SPECIFICATIONS		
Min	Max	Units
Load Voltage Range	60	Vdc
Output Current Rating (See Figure 4)	1.0	Adc
Leakage Current at Rated Voltage	100	μ Adc
Transient Blocking Voltage	80	Vdc
Output Capacitance @ $25 \mathrm{Vdc}\left(25^{\circ} \mathrm{C}\right)$	600	pF
Output Voltage Drop	0.32	Vdc
On Resistance	0.32	Ohm
Turn-On Time	3.0	ms
Turn-Off Time	0.3	ms
Trip Overload (See Figure 6)	6	Adc

MECHANICAL SPECIFICATION

Figure 1 - FR75-1 mechanical specification; dimensions in inches (mm)

FEATURES/BENEFITS

- Short-circuit protected: Prevents damage to system components, assemblies and system wiring
- Optical isolation: Isolates control circuits from load transients and eliminates ground loops and signal ground noise
- Low off-state leakage: For high off-state impedance
- Switches high currents: To 1.0 Adc
- High noise immunity: Control signals isolated from switching noise
- High dielectric strength: For safety and for protection of control and signal level circuits

DESCRIPTION

The FR75-1 solid-state relay utilizes a power FET switch that is protected against short circuits and overload currents. The short-circuit protection feature provides protection when a short or overload occurs while the relay is on as well as when the relay is switched into a short. In either case, the relay will sense the short-circuit condition and then block it indefinitely until the short is removed and the unit is reset by cycling the input control. Using the FR75-1 to switch power sources and loads prevents damage to system assemblies and system wiring. The power FET output offers low "ON" resistance and can switch loads in either the high or the low side of the power line. The FR75-1 is packaged in a low-profile miniDIP package.

A Unit of Teledyne Electronic Technologies

GENERAL SPECIFICATIONS $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified)				
ENVIRONMENTAL SPECIFICATION				
		Min	Max	Units
Operating Temp	rature	-40	+85	${ }^{\circ} \mathrm{C}$
Storage Temper		-55	+125	${ }^{\circ} \mathrm{C}$
Junction Temperature @ 1A			+125	${ }^{\circ} \mathrm{C}$
Thermal Resistance $\theta_{\text {JA }}$			125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Shock		1500		g
Vibration		100		g
Dielectric Strength		500		Vac
Insulation Resistance (@500 Vdc)		10^{9}		Ohm
Input to Output Capacitance			5	pF
Altitude		55,000		ft .
Resistance to				
Soldering Heat	MIL S	202, me	210	
Solderability	MIL	202, me	208	
Thermal Shock	MIL	202, me	107	

INPUT CURRENT VS. INPUT VOLTAGE

Figure 2 - FR75-1 input current vs. input voltage

Resistance to
Soldering Heat MIL STD 202, method 210
Solderability MIL STD 202, method 208
Thermal Shock MIL STD 202, method 107

FUNCTIONAL BLOCK DIAGRAM

Figure 3 - FR75-1 functional block diagram

LOAD CURRENT VS. AMBIENT TEMPERATURE

TYPICAL WIRING DIAGRAM

Figure 5 - FR75-1 typical wiring diagram

Figure 4 - FR75-1 load current vs. ambient temperature

Figure 6 - FR75-1 overload trip current vs. time

NOTES:

1. For input voltages greater than 6 volts, use an external resistor in series with the relay input. Select resistor value with the following equation: Rext. = (Vin-6Vdc)/15mA
2. Unless otherwise specified: conformance testing is at room temperature; the input voltage is 5 Vdc or zero volts as required; the output load is $48 \mathrm{Vdc}, 1 \mathrm{amp}$.
3. With a shorted load condition, system inductance shall be limited to $50 \mu \mathrm{H}$.
4. Relay input voltage transitions should be less than 1.0 millisecond.
5. Maximum load current ratings are with the relay in free air and soldered to a printed circuit board.
6. Loads may be attached to either the positive or negative output terminal.
7. Timing is measured from the input voltage transition to the 10% or 90% point on the output voltage off-to-on or on-to-off transition. Rise and fall times are measured from the 10 to 90% points on the output voltage transition.
8. Hermeticity is not a requirement.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by Teledyne manufacturer:
Other Similar products are found below :
M86F-2W M90F-2W G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST G3CN-202PL-3-US DC12 G3CN-203P DC3-28 G3RDX02SNUSDC12 PLA134S DMP6202A DS11-1005 AQ3A2-ZT432VDC AQV212J AQV214SD02 AQV252GAJ AQW414EA AQY212SXT AQY221N2SJ AQY221R2SJ EFR1200480A150 LCA220 LCB110S 1618400-5 SR75-1ST AQV212AJ AQV238AD01 AQW414TS AQY210SXT AQY212ST AQY214SXT AQY221N2V1YJ AQY275AXJ G2-1A02-ST G2-1A02-TT G2-1A03-ST G2-1A03TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT G3M-203PL-UTU-1 DC24 CPC2330N 3-1617776-2 CTA2425

