

A Unit of Teledyne Electronics and Communications

Part Number	Description	
LPD60a	250mA, 28Vdc dual solid-state relay	

MECHANICAL SPECIFICATION

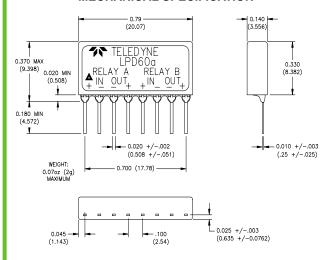
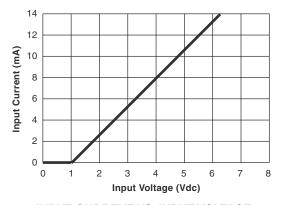



Figure 1 – LPD60a relay; dimensions in inches (mm) Tolerances are +/- .005 inch (.127) unless otherwise specified

INPUT (CONTROL) SPECIFICATIONS (-40 to 85°C)

	Min	Max	Units
Control Voltage Range (See Note 1)	4.0	7.0	Vdc
Input Current @ 5 Vdc (See Fig 2)		12	mA
Must Turn-On Voltage	4		Vdc
Must Turn-Off Voltage		0.8	Vdc
Must Turn-Off Current		50	μA
Reverse Voltage	-7		Vdc

INPUT CURRENT VS. INPUT VOLTAGE
Figure 2

FEATURES/BENEFITS

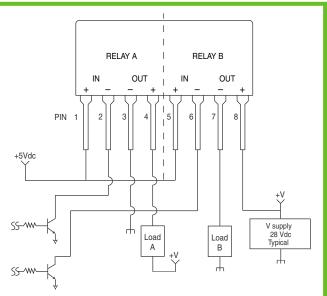
- Current limiting output
- Thermal protection
- · Automatic recovery
- · Overload protection
- · Dual output: Two relays in one package
- Low voltage drop

DESCRIPTION

The LPD60a is a dual-output 28Vdc plastic relay with internal thermal protection. The relay utilizes optical isolation to provide excellent input-to-output isolation. The LPD60a offers a current limiting output to protect itself and associated load circuits from transient current overloads. During an overcurrent condition, the LPD60a clamps the current to a safe operating value. The LPD60a also offers thermal protection. The thermal protection is activated by junction temperature. In case of an overload or shorted load condition, the thermal protection limits the junction temperature. The LPD60a returns to normal operation automatically once the overload is removed.

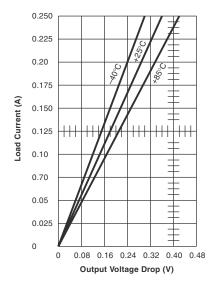
Dual Relay

A Unit of Teledyne Electronics and Communications


OUTPUT (LOAD) SPECIFICATIONS			
Min	Max	Units	
Load Voltage Rating	33	Vdc	
Load Current (See Fig 6)	0.25	Α	
Transient Voltage	80	Vdc	
Transient Supply Voltage			
with Load shorted (5 sec max)	46	Vdc	
Output Capacitance @ 25Vdc	200	pF	
On-State Voltage Drop (See Fig 4)	0.5	Vdc	
On Resistance	2.0	Ohm	
Off-State Leakage Current (33Vdc)	10	μΑ	
Turn-On Time	2.5	ms	
Turn-Off Time	1	ms	
Overload Current Limit (See Fig 5)	0.9	Α	

OVERLOAD/THERMAL PROTECTION SPECIFICATIONS (NOTE 8)

Min	Typical	Max	Units
Output Load Voltage		33	Vdc
Junction Activation Temperature	150		°C
Output Current (after 120 sec)	60		mArms
Activation Time (See Fig. 7, Not	te7) 70		ms


ENVIRONMENTAL SPECIFICATIONS

		Min	Max	Units
Operating Temperature		-40	+85	°C
Storage Temperature		-55	+100	°C
Junction Temperature			100	°C
Thermal Resistance (Junction to Ambient) each relay			120	°C/W
Shock			1500	g
Vibration			100	g
Dielectric Strength		500		Vac
Insulation Resistar (@500 Vdc)	ice	10 ⁹		Ohm
Isolation			5	pF
Resistance to Solder Dip, 10 seconds at +260°C MIL STD 202, method 210				0°C
Solderability	olderability MIL STD 202, method 208			
Thermal Shock	k MIL STD 202, method 107			
HAST	ST JEDEC Test Method A110 130°C 85% RH, no power applied, 50 hours			

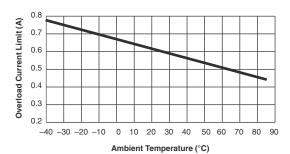
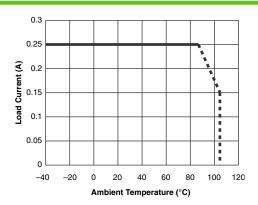

TYPICAL WIRING DIAGRAM

Figure 3

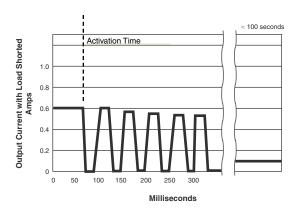
LOAD CURRENT VS. OUTPUT VOLTAGE DROP **OVER TEMPERATURE**

Figure 4



TYPICAL OVERLOAD CURRENT VS. TEMPERATURE

Figure 5

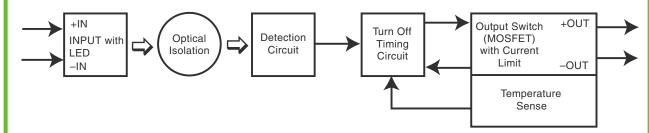

250mA, 28Vdc Optically Isolated Dual Relay

A Unit of Teledyne Electronics and Communications

LOAD CURRENT VS. AMBIENT TEMPERATURE

Figure 6

TYPICAL OVERLOAD CURRENT VS. TIME


Figure 7

THEORY OF OPERATION

LPD60a relays operate with 0.25 amp loads from -40° to +85°C. Overloads are current-limited to about 0.6 amps. A temperature sense circuit in intimate contact with the output power switch opens the switch at elevated junction temperatures. This thermal shutdown results in a periodic cycling of the output switch, with the overload current decaying over time. Once the overload is removed, the relay returns to normal operation. The LPD60a relay survives overloads, including shorted loads, at load voltages up to 33Vdc.

NOTES

- For input voltages greater than 7 volts, use an external resistor in series with the relay input. R_{ext} = (V_{in}-7 Vdc)/0.012 Amps
- Relay input voltage transitions should be less than 1.0 millisecond.
- 3. Above approximately 0.6 Amps load (overload), the relay becomes current limited. In this mode of operation, the voltage across the relay contacts is: $V_{contact} \cong V_{supply} [(0.6 \text{ Amp}) (R_{load})]$
 - The relay will limit current in an overload condition until the overload is removed.
- 4. Maximum load current ratings are with the relay in free air and soldered to a printed circuit board.
- Loads may be attached to either the positive or negative output terminal.
- 6. Timing is measured from the input voltage transition to the 10% or 90% points on the output voltage transition.
- 7. Activation time is the time for the thermal protection circuit to take effect.
- The LPD60a relay withstands shorted Loads at 33 Vdc Max supply voltage indefinitely, and survives shorted load conditions at 46 Vdc Max Supply Voltage for 5 seconds Max.

FUNCTIONAL BLOCK DIAGRAM

Figure 8

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Solid State Relays - PCB Mount category:

Click to view products by Teledyne manufacturer:

Other Similar products are found below:

M86F-2W M90F-2W G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST G3CN-202PL-3-US DC12 G3CN-203P DC3-28

G3RDX02SNUSDC12 PLA134S DMP6202A DS11-1005 AQ3A2-ZT432VDC AQV212J AQV214SD02 AQV252GAJ AQW414EA

AQY212SXT AQY221N2SJ AQY221R2SJ EFR1200480A150 LCA220 LCB110S 1618400-5 SR75-1ST AQV212AJ AQV238AD01

AQW414TS AQY210SXT AQY212ST AQY214SXT AQY221N2V1YJ AQY275AXJ G2-1A02-ST G2-1A02-TT G2-1A03-ST G2-1A03
TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT G3M
203PL-UTU-1 DC24 CPC2330N 3-1617776-2 CTA2425