

Absolute Maximum Ratings(Note 1)

Supply Voltage	7V	
Input Voltage	7 V	
Voltage Applied to Disabled Output	5.5 V	Note 1: The "Absolute Maximum Ratings" are those values beyond which
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	the safety of the device cannot be guaranteed. The device should not be
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings.
Typical $\theta_{\text {JA }}$		The "Recommended Operating Conditions" table will define the conditions
N Package	$56.0^{\circ} \mathrm{C} / \mathrm{W}$	for actual device operation.
M Package	$75.0^{\circ} \mathrm{C} / \mathrm{W}$	

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.5	5	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-2.6	mA
I_{OL}	LOW Level Output Current			24	mA
t_{W}	Width of Enable Pulse, HIGH	10			ns
t_{SU}	Data Setup Time (Note 2)	$10 \downarrow$			ns
t_{H}	Data Hold Time (Note 2)	$7 \downarrow$			$\mathrm{~ns}^{\circ}$
T_{A}	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Note 2: The (\downarrow) arrow indicates the negative edge of the enable is used for reference.

Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{IK}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \mathrm{Max} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$	2.4	3.2		V
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-2$			V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{HH}}=2 \mathrm{~V} \end{aligned}$	$\mathrm{IOL}^{\text {a }}$ = 12 mA		0.25	0.4	V
			$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.35	0.5	V
\bar{I}	Input Current @ Maximum Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=7 \mathrm{~V}$				0.1	mA
${ }_{1 \mathrm{IH}}$	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IL	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$				-0.1	mA
Io	Output Drive Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.25 \mathrm{~V}$		-30		-112	mA
$\mathrm{I}_{\text {OZH }}$	OFF-State Output Current HIGH Level Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \end{aligned}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	OFF-State Output Current LOW Level Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$				-20	$\mu \mathrm{A}$
I_{CC}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { Outputs OPEN } \end{aligned}$	Outputs HIGH		10	17	mA
			Outputs LOW		15	24	mA
			Outputs Disabled		15.5	27	mA

Switching Characteristics

Symbol	Parameter	Conditions	From	To	Min	Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	Data	Any Q	2	14	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output		Data	Any Q	2	14	ns
$t_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output		Enable	Any Q	6	20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output		Enable	Any Q	6	19	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to HIGH Level Output		Output Control	Any Q	3	18	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to LOW Level Output		Output Control	Any Q	4	18	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from HIGH Level Output		Output Control	Any Q	1	10	ns
$t_{\text {PLZ }}$	Output Disable Time from LOW Level Output		Output Control	Any Q	1	15	ns

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Latches category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
M38510/75403BSA 634674X 634752C ML4875CS-5 54FCT573ATDB 401639B 027063C 029314R 54FCT573CTLB NLV14043BDR2G 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 5962-8863901RA 5962-88639012A 2.PM30.006-30 MIC59P50YV NLV14042BDR2G 4.401.001 NLV14044BDR2G 2.L18.001-21 2.PM18.002-18 2.PM18.006-18 2.T18.001-

21 2.T18.002-18 2.T18.006-18 CQ/AA-KEY CQ/A-M22X1,5-45-28 CQ/A-M22X1,5-45-32 M22-2-D5-2-21-01-P CY74FCT2373CTSOC 421283 74ALVCH16260PAG 74FCT373CTQG MM74HC373WM MM74HC573MTCX MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 KLT9.001-02 Z-0233-827-15 74AHCT573D.112 74FCT16373CTPVG8 74FCT573ATQG 74LCX16373MTDX

