

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET[®]TRANSISTORS THRU-HOLE -TO-204AE (TO-3) R

Product Summary

Part Number	Bvdss	RDS(on)	lD
IRF9130	-100V	0.30 Ω	-11A

The HEXFET[®]technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low onstate resistance combined with high transconductance; superior reverse energy and diode recovery dv/dt capability.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of parelleling and temperature stability of the electrical parameters.

They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.

IRF9130 D JANTX2N6804 JANTXV2N6804 REF:MIL-PRF-19500/562 100V, P-CHANNNEL

PD-90549D

Features:

- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Hermetically Sealed
- Simple Drive Requirements
- Ease of Paralleling
- ESD Rating: Class 1C per MIL-STD-750, Method 1020

	Parameter		Units	
$I_D @ V_{GS} = 0V, T_C = 25^{\circ}C$	Continuous Drain Current	-11		
ID @ VGS = 0V, TC = 100°C	Continuous Drain Current	-7.0	A	
IDM	Pulsed Drain Current ①	-44]	
P _D @ T _C = 25°C	Max. Power Dissipation	75	W	
	Linear Derating Factor	0.60	W/°C	
VGS	Gate-to-Source Voltage	± 20	V	
EAS	Single Pulse Avalanche Energy ②	207	mJ	
IAR	Avalanche Current ①	-11	A	
EAR	Repetitive Avalanche Energy ①	7.5	mJ	
dv/dt	Peak Diode Recovery dv/dt 3	-5.5	V/ns	
Тј	Operating Junction	-55 to 150		
TSTG Storage Temperature Range			°C	
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)		
	Weight	11.5 (typical)	g	

Absolute Maximum Ratings

For footnotes refer to the last page

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	-100	-	_	V	$V_{GS} = 0V, I_{D} = -1.0mA$
$\Delta BV_{DSS}/\Delta T_J$	Temperature Coefficient of Breakdown Voltage	_	-0.087	·	V/°C	Reference to 25°C, ID = -1.0mA
RDS(on)	Static Drain-to-Source On-State		—	0.30	Ω	V _{GS} = -10V, I _D = -7.0A④
	Resistance	—	-	0.35	52	VGS = -10V, ID = -11A ④
VGS(th)	Gate Threshold Voltage	-2.0	—	-4.0	V	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$
9fs	Forward Transconductance	3.0	—	—	S	$V_{DS} = -15V, I_{DS} = -7.0A@$
IDSS	Zero Gate Voltage Drain Current	—	_	-25		$V_{DS} = -80V, V_{GS} = 0V$
		—	-	-250	μA	$V_{DS} = -80V$
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	—	-100	nA	V _{GS} = -20V
IGSS	Gate-to-Source Leakage Reverse	—	_	100		$V_{GS} = 20V$
Qg	Total Gate Charge	_	—	29		V _{GS} = -10V, I _D = -11A
Qgs	Gate-to-Source Charge	—	—	7.1	nC	$V_{DS} = -50V$
Q _{gd}	Gate-to-Drain ('Miller') Charge	—	_	21		
^t d(on)	Turn-On Delay Time	—	—	60		V _{DD} = -50V, I _D = -11A,
tr	Rise Time	—	—	140	ns	$V_{GS} = -10V, R_{G} = 7.5\Omega$
^t d(off)	Turn-Off Delay Time	_		140	115	
tf	Fall Time	—	—	140		
L _{S +} L _D	Total Inductance		6.1		nH	Measured from the center of drain pad to center of source pad
Ciss	Input Capacitance	—	860			VGS = 0V, VDS = -25V
C _{OSS}	Output Capacitance	—	350		pF	f = 1.0MHz
C _{ISS}	Reverse Transfer Capacitance	—	125	—		

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Die	ode) —	_	-11	Α	
ISM	Pulse Source Current (Body Diode)) —	-	-44		
VSD	Diode Forward Voltage	—	_	-4.7	V	$T_j = 25^{\circ}C$, $I_S = -11A$, $V_{GS} = 0V$
t _{rr}	Reverse Recovery Time	—	—	250	ns	Tj = 25°C, IF =-11A, di/dt \leq -100A/ μ s
QRR	Reverse Recovery Charge	-	—	3.0	μC	$V_{DD} \leq -50V $ (4)
ton	Forward Turn-On Time Intrinsic tu	orward Turn-On Time Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.				

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction to Case	—	-	1.67	°C/W	
R _{th} JA	Junction-to-Ambient	—	—	30		soldered to a 2" square copper-clad board

Note: Corresponding Spice and Saber models are available on International Rectifier Website.

For footnotes refer to the last page

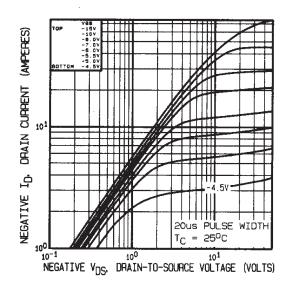


Fig 1. Typical Output Characteristics

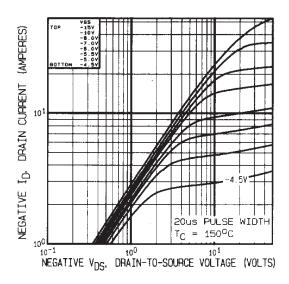


Fig 2. Typical Output Characteristics

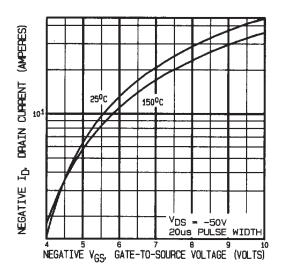


Fig 3. Typical Transfer Characteristics

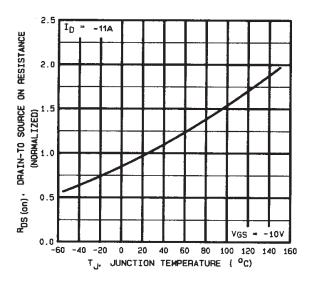
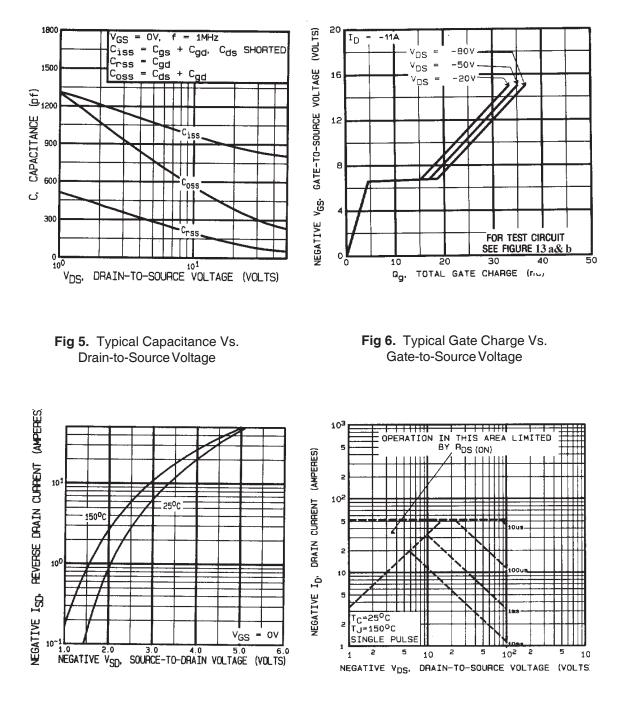
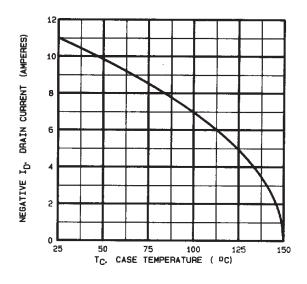
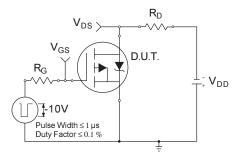
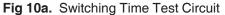


Fig 4. Normalized On-Resistance Vs. Temperature


Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area

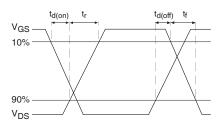


Fig 10b. Switching Time Waveforms

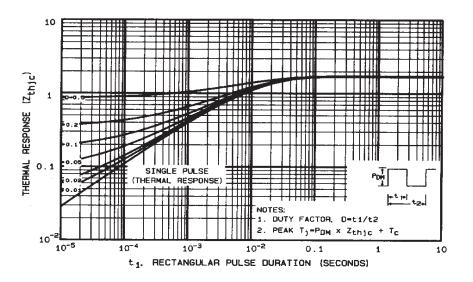


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

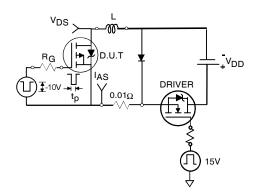


Fig 12a. Unclamped Inductive Test Circuit

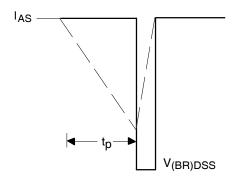


Fig 12b. Unclamped Inductive Waveforms

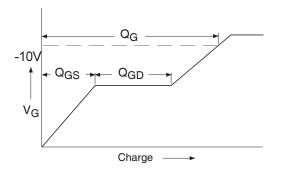


Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

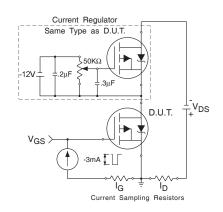
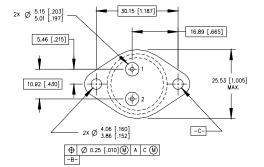


Fig 13b. Gate Charge Test Circuit



Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- O V_{DD} = -25V, starting T_J = 25°C, Peak I_L = -11A, V_{GS} = -10V, L = 3.4mH
- $\$ I_{SD} \leq -11A, di/dt \leq -140A/µs, V_{DD} \leq -100V, T_J \leq 150°C Suggested R_G =7.5 Ω
- ④ Pulse width \leq 300 μ s; Duty Cycle \leq 2%

Case Outline and Dimensions -TO-204AE (TO-3)

PIN ASSIGNMENTS

HEXFET	SCHOTTKY	IGBT
1 – SOURCE	1 – ANODE 1	1 – GATE
2 – GATE	2 – ANODE 2	2 – EMITTER
3 – DRAIN (CASE)	3 – COMMON CATHODE (CASE)	3 – COLLECTOR (CASE)

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION : INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-204-AA.

International

AN INFINEON TECHNOLOGIES COMPANY

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 09/2015

www.irf.com

IRF9130

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)