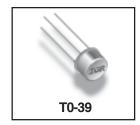
International

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET[®]TRANSISTORS THRU-HOLE (TO-205AF)

Product Summary


Part Number	BVDSS	RDS(on)	ld
IRFF220	200V	0.80Ω	3.5A

The HEXFET[®] technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance.

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of parelleling and temperature stability of the electrical parameters.

They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits. PD - 90427D

IRFF220 JANTX2N6790 JANTXV2N6790 REF:MIL-PRF-19500/555 200V, N-CHANNEL

Features:

- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Hermetically Sealed
- Simple Drive Requirements
- Ease of Paralleling

	Parameter		Units
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	3.5	
ID @ VGS = 10V, TC = 100°C	Continuous Drain Current	2.25	A
IDM	Pulsed Drain Current ①	14	
P _D @ T _C = 25°C	Max. Power Dissipation	20	W
	Linear Derating Factor	0.16	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	0.242	mJ
IAR	Avalanche Current ①	2.2	A
EAR	Repetitive Avalanche Energy ①	2.0	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
TJ	Operating Junction	-55 to 150	
TSTG Storage Temperature Range			°C
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)	
	Weight	0.98(typical)	g

Absolute Maximum Ratings

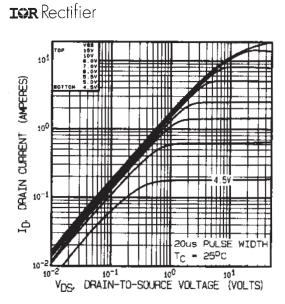
For footnotes refer to the last page

International **tor** Rectifier

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	200	—	_	V	$V_{GS} = 0V, I_{D} = 1.0mA$
∆BV _{DSS} /∆TJ	Temperature Coefficient of Breakdown Voltage	—	0.25	_	V/°C	Reference to 25°C, $I_D = 1.0$ mA
RDS(on)	Static Drain-to-Source On-State	_	—	0.80	0	VGS = 10V, ID = 2.25A ④
	Resistance	—	—	0.85	Ω	VGS =10V, ID =3.5A ④
VGS(th)	Gate Threshold Voltage	2.0	—	4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
9fs	Forward Transconductance	1.5	—	_	S	VDS > 15V, IDS = 2.25A ④
IDSS	Zero Gate Voltage Drain Current	_	—	25		V _{DS} = 160V, V _{GS} =0V
		_	—	250	μA	VDS = 160V
						$V_{GS} = 0V, T_{J} = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward		—	100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse		—	-100		$V_{GS} = -20V$
Qg	Total Gate Charge	8.0	—	14.3		VGS =10V, ID =3.5A
Qgs	Gate-to-Source Charge	0.9	—	3.0	nC	V _{DS} = 100V
Qgd	Gate-to-Drain ('Miller') Charge	2.3	—	9.0		
td(on)	Turn-On Delay Time	—	—	40		$V_{DD} = 74V, I_D = 3.5A,$
tr	Rise Time	—	—	50		$V_{GS} = 10V, R_{G} = 7.5\Omega$
^t d(off)	Turn-Off Delay Time		—	50	ns	
tf	Fall Time	_	—	50		
L _{S +} L _D	Total Inductance		7.0		nH	Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package)
Ciss	Input Capacitance	_	260			$V_{GS} = 0V, V_{DS} = 25V$
C _{OSS}	Output Capacitance	_	100	_	pF	f = 1.0MHz
Crss	Reverse Transfer Capacitance	—	30	_		

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics


	Parameter		Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current	(Body Diode)	_	_	3.5	Α	
ISM	Pulse Source Current (Body	Diode) ①	—	—	14		
VSD	Diode Forward Voltage		—	_	1.5	V	Tj = 25°C, IS = 3.5A, VGS = 0V ④
t _{rr}	Reverse Recovery Time		—	—	400	ns	Tj = 25°C, IF = 3.5A, di/dt \leq 100A/ μ s
QRR	Reverse Recovery Charge		—	—	4.3	μC	$V_{DD} \le 50V $ (4)
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance

	Parameter	Min	Тур	Мах	Units	Test Conditions
R _{thJC}	Junction-to-Case	_	_	6.25	°C/W	
RthJA	Junction-to-Ambient	—	—	175	0/11	Typical socket mount.

Note: Corresponding Spice and Saber models are available on International Rectifier Website.

For footnotes refer to the last page

International

Fig 1. Typical Output Characteristics

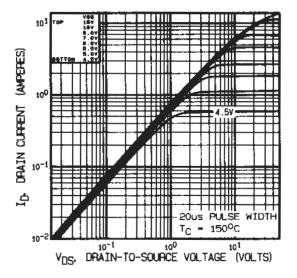
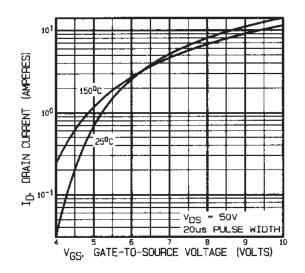
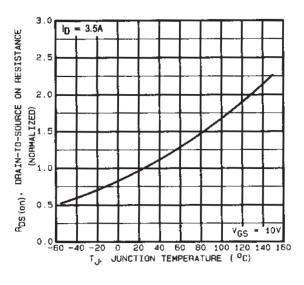
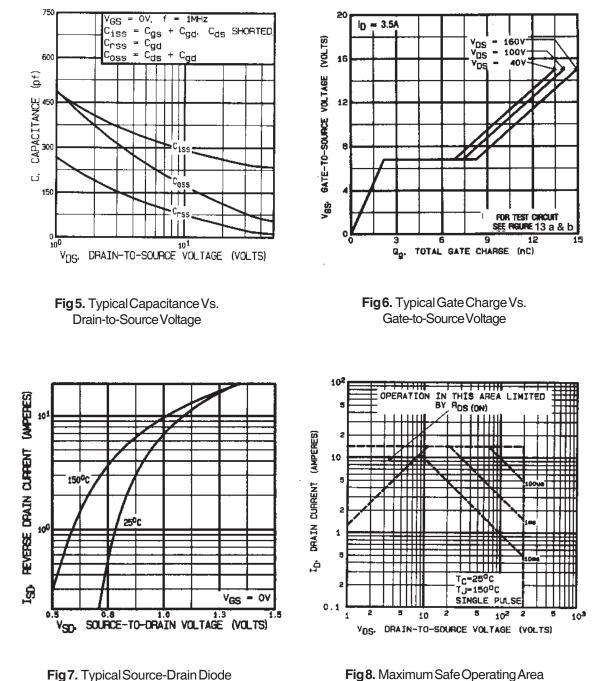
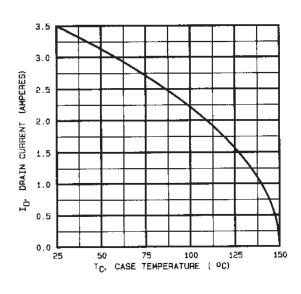
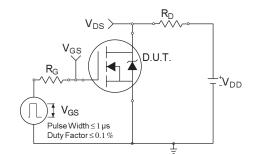
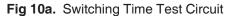




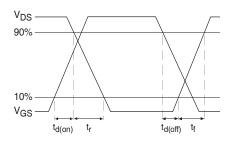

Fig 2. Typical Output Characteristics

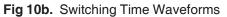
www.irf.com

International


Fig7. Typical Source-Drain Diode Forward Voltage


International



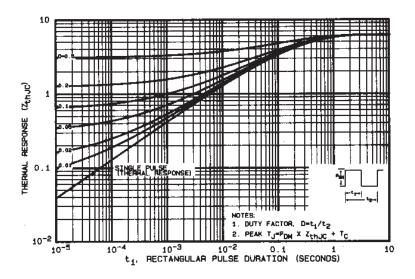
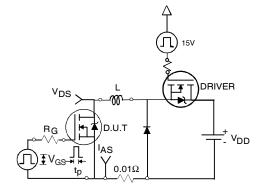
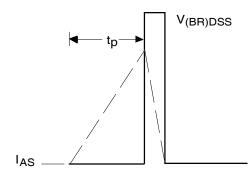
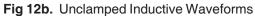
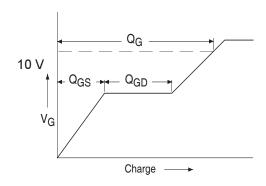
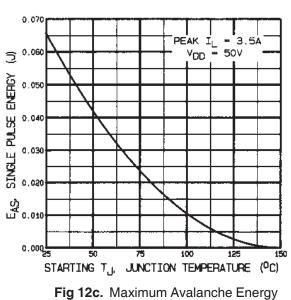
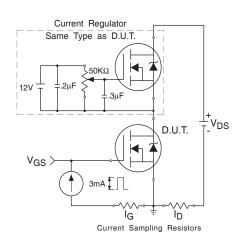


Fig11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

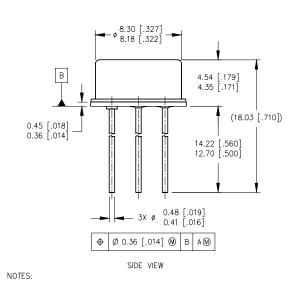
International


Fig 12a. Unclamped Inductive Test Circuit



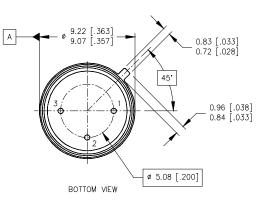
Vs. Drain Current



International

Foot Notes:

- ③ Repetitive Rating; Pulse width limited by maximum junction temperature.
 ③ V_{DD} = 50V, starting T_J = 25°C, Peak I_L = 2.2A, L = 100μH
- \$\$ ISD ≤ 3.5A, di/dt ≤ 95A/μs, VDD≤ 200V, TJ ≤ 150°C Suggested RG =7.5 Ω
 \$\$ Pulse width ≤ 300 μs; Duty Cycle ≤ 2%


1. DIMENSIONING AND TOLERANCING PER ASME 14.5M-1994.

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

4. CONFORMS TO JEDEC OUTLINE TO-205AF (TO-39).

3. CONTROLLING DIMENSION: INCH.

Case Outline and Dimensions —TO-205AF

LEGEND 1- SOURCE 2- GATE 3- DRAIN

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 08/2007

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Infineon manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)