2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Internal Synchronous Rectification in TQFN Package

General Description

The MAX1843 constant-off-time, pulse-width modulated (PWM) step-down DC-DC converter is ideal for use in 5V and 3.3 V to low-voltage conversion necessary in notebook and subnotebook computers. This device features an internal PMOS power switch and internal synchronous rectification for high efficiency and reduced component count. An external Schottky diode is not required. The internal $90 \mathrm{~m} \Omega$ power switch and $70 \mathrm{~m} \Omega \mathrm{nMOS}$ synchro-nous-rectifier switch easily deliver continuous load currents up to 2.7A. The MAX1843 produces a preset +2.5 V , +1.8 V , or +1.5 V output voltage or an adjustable output from +1.1 V to VIN . It achieves efficiencies as high as 95\%.
The MAX1843 uses a unique current-mode, constant-offtime, PWM control scheme, which includes Idle Mode ${ }^{\text {TM }}$ to maintain high efficiency during light-load operation. The programmable constant-off-time architecture sets switching frequencies up to 1 MHz , allowing the user to optimize performance trade-offs between efficiency, output switching noise, component size, and cost. The MAX1843 features an adjustable soft-start to limit surge currents during startup, a 100% duty-cycle mode for low dropout operation, and a low-power shutdown mode that disconnects the input from the output and reduces supply current below $1 \mu \mathrm{~A}$. The MAX1843 is available in a $28-$ pin TQFN package with an exposed backside pad.

Applications

5 V or 3.3 V to Low-Voltage Conversion
CPU I/O Ring
Chipset Supplies
Notebook and Subnotebook Computers
Typical Configuration

Idle Mode is a trademark of Maxim Integrated Products, Inc.

- $\pm 1 \%$ Output Accuracy
- Up to 1 MHz Switching Frequency
- 95\% Efficiency
- Internal pMOS/nMOS Switches $90 \mathrm{~m} \Omega / 70 \mathrm{~m} \Omega$ On-Resistance at $\mathrm{V}_{\mathrm{IN}}=+4.5 \mathrm{~V}$
$110 \mathrm{~m} \Omega / 80 \mathrm{~m} \Omega$ On-Resistance at $\mathrm{VIN}=+3 \mathrm{~V}$
- Output Voltage
$+2.5 \mathrm{~V},+1.8 \mathrm{~V}$, or +1.5 V Pin Selectable +1.1 V to Vin Adjustable
- +3 V to +5.5 V Input Voltage Range
- 350 A A Operating Supply Current
- $<1 \mu \mathrm{~A}$ Shutdown Supply Current
- Programmable Constant-Off-Time Operation
- Idle Mode Operation at Light Loads
- Thermal Shutdown
- Adjustable Soft-Start Inrush Current Limiting
- 100\% Duty Cycle During Low-Dropout Operation
- Output Short-Circuit Protection
- 28-Pin TQFN Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX1843ETI +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TQFN	T2855-6

+Denotes lead-free package.
Pin Configuration

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
28-Pin TQFN (derate $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$, part mounted on $1 \mathrm{in}^{2}$ of 1 oz copper)
.1.6W
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range
\qquad Junction Temperature
\qquad $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note 1: LX has internal clamp diodes to PGND and IN. Applications that forward bias these diodes should take care not to exceed the IC's package power dissipation limits.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{FBSEL}=\mathrm{GND}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{FBSEL}=\mathrm{GND}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Idle-Mode Current Threshold			0.3	0.6	0.9	A
Switching Frequency	f	(Note 2)			1	MHz
No-Load Supply Current	IIN + ICC	$\mathrm{V}_{\mathrm{FB}}=1.2 \mathrm{~V}$		350	600	$\mu \mathrm{A}$
Shutdown Supply Current	IIN + ICC	$\overline{\text { SHDN }}=$ GND, includes pMOS leakage		<1	15	$\mu \mathrm{A}$
Thermal Shutdown Threshold	TSHDN	Hysteresis $=15^{\circ} \mathrm{C}$		160		${ }^{\circ} \mathrm{C}$
Undervoltage Lockout	VUVLO	VIN falling, hysteresis $=90 \mathrm{mV}$	2.5	2.6	2.7	V
FB Input Bias Current		$\mathrm{V}_{\mathrm{FB}}=1.2 \mathrm{~V}$	0	60	250	nA
Off-Time	toFF	RTOFF $=110 \mathrm{k} \Omega$	0.9	1.00	1.1	$\mu \mathrm{s}$
		RTOFF $=30.1 \mathrm{k} \Omega$	0.24	0.30	0.37	
		RTOFF $=499 \mathrm{k} \Omega$	3.8	4.5	5.2	
Off-Time Startup Period		FB = GND	4 toff			$\mu \mathrm{s}$
On-Time	ton	(Note 2)	0.4			$\mu \mathrm{s}$
SS Source Current	Iss		4	5	6	$\mu \mathrm{A}$
SS Sink Current	ISS	$\mathrm{V}_{S S}=1 \mathrm{~V}$	100			$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Input Current	ISHDN	VSHDN $=0$ to $\mathrm{V}_{\text {CC }}$	-1		1	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Logic Input Low Voltage	VIL			0.8		V
$\overline{\text { SHDN }}$ Logic Input High Voltage	VIH		2.0			V
FBSEL Input Current	IFB	$V_{\text {FBSEL }}=0$ to $\mathrm{V}_{\text {CC }}$	-4		4	$\mu \mathrm{A}$
FBSEL Logic Thresholds		FBSEL = GND			0.2	V
		FBSEL = REF	0.9		1.3	
		FBSEL = unconnected	$\begin{array}{\|c} \hline 0.7 \mathrm{~V}_{\mathrm{CC}} \\ -0.2 \end{array}$		$\begin{gathered} 0.7 \mathrm{~V}_{\mathrm{CC}} \\ +0.2 \end{gathered}$	
		FBSEL $=\mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & \text { VCC } \\ & -0.2 \end{aligned}$			
Maximum Output RMS Current					3.1	ARMS

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS		MIN	MAX	UNITS
Input Voltage	VIN, VCC			3.0	5.5	V
Preset Output Voltage	Vout	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=+3 \mathrm{~V} \text { to }+5.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{LOAD}}=0 \text { to } 2.5 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\text {OUT }} \end{aligned}$	FBSEL = $\mathrm{V}_{\text {CC }}$	2.475	2.576	V
			FBSEL = unconnected	1.485	1.545	
			FBSEL = REF	1.782	1.854	
			FBSEL = GND	1.078	1.122	
Adjustable Output Voltage Range		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{FBSEL}=\mathrm{GND}$		VREF	VIN	V
Reference Voltage	VREF			1.078	1.122	V
pMOS Switch On-Resistance	Ron, P	$\mathrm{I} \mathrm{LX}=0.5 \mathrm{~A}$	$\mathrm{V}_{\text {IN }}=+4.5 \mathrm{~V}$		200	$\mathrm{m} \Omega$
			$\mathrm{V}_{\text {IN }}=+3 \mathrm{~V}$		250	

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{FBSEL}=\mathrm{GND}, \mathbf{T}_{\mathbf{A}}=-\mathbf{4 0 ^ { \circ }} \mathbf{C}\right.$ to $+\mathbf{8 5} 5^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 3$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	MAX	UNITS
nMOS Switch On-Resistance	Ron,N	l LX $=0.5 \mathrm{~A}$	$\mathrm{V}_{\text {IN }}=+4.5 \mathrm{~V}$		150	$\mathrm{m} \Omega$
			V IN $=+3 \mathrm{~V}$		200	
Current-Limit Threshold	ILIMIT			2.9	4.3	A
Idle-Mode Current Threshold				0.2	1.0	A
No-Load Supply Current	IIN + ICC	$\mathrm{V}_{\mathrm{FB}}=1.2 \mathrm{~V}$			600	$\mu \mathrm{A}$
FB Input Bias Current	IfB	$\mathrm{V}_{\mathrm{FB}}=1.2 \mathrm{~V}$		0	300	nA
Off-Time	toff	RTOFF $=110 \mathrm{k} \Omega$		0.85	1.15	$\mu \mathrm{s}$

Note 2: Recommended operating frequency, not production tested.
Note 3: Specifications from $0^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.
(Circuit of Figure 1, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics

NORMALIZED OUTPUT ERROR
vs. OUTPUT CURRENT

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

Typical Operating Characteristics (continued)

(Circuit of Figure 1, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

ROUT $=0.5 \Omega$, RTOFF $=56 \mathrm{k} \Omega$
$\mathrm{V}_{\text {IN }}=+3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=+1.5 \mathrm{~V}$

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

Pin Description

PIN	NAME	FUNCTION
$\begin{gathered} 1,5,10 \\ 11,12 \\ 22,24, \\ 26,28 \end{gathered}$	N.C.	Not Internally Connected
2, 4	IN	Supply Voltage Input-for the Internal pMOS Power Switch
$\begin{gathered} 3,18,19, \\ 23,25 \end{gathered}$	LX	Connection for the Drains of the pMOS Power Switch and nMOS Synchronous-Rectifier Switch. Connect the inductor from this node to the output filter capacitor and load.
6	SS	Soft-Start. Connect a capacitor from SS to GND to limit inrush current during startup.
7	COMP	Integrator Compensation. Connect a capacitor from COMP to V_{CC} for integrator compensation. See Integrator Amplifier section.
8	TOFF	Off-Time Select Input. Sets the pMOS power switch off-time during constant-off-time operation. Connect a resistor from TOFF to GND to adjust the PMOS switch off-time.
9	FB	Feedback Input-for Both Preset-Output and Adjustable-Output Operating Modes. Connect directly to output for fixed-voltage operation or to a resistive divider for adjustable operating modes.
13, backside pad	GND	Analog Ground. Connect exposed backside pad to pin 13.
14	REF	Reference Output. Bypass REF to GND with a $1 \mu \mathrm{~F}$ capacitor.
15	FBSEL	Feedback Select Input. Selects output voltage. See Table 2 for programming instructions.
16	VCC	Analog Supply Voltage Input. Supplies internal analog circuitry. Bypass VCC with a 10Ω and $2.2 \mu \mathrm{~F}$ lowpass filter. See Figure 1.
17, 20, 21	PGND	Power Ground. Internally connected to the internal nMOS synchronous-rectifier switch.
27	$\overline{\text { SHDN }}$	Shutdown Control Input. Drive $\overline{\text { SHDN }}$ low to disable the reference, control circuitry, and internal MOSFETs. Drive high or connect to $\mathrm{V}_{C C}$ for normal operation.

Detailed Description
The MAX1843 synchronous, current-mode, constant-offtime, PWM DC-DC converter steps down input voltages of +3 V to +5.5 V to a preset output voltage of +2.5 V , +1.8 V , or +1.5 V , or to an adjustable output voltage from +1.1 V to VIN . It delivers up to 2.7 A of output current. Internal switches composed of a 0.09Ω pMOS power switch and a $0.07 \Omega \mathrm{nMOS}$ synchronous-rectifier switch improve efficiency, reduce component count, and eliminate the need for an external Schottky diode.
The MAX1843 optimizes efficiency by operating in con-stant-off-time mode under heavy loads and in Maxim's proprietary idle mode under light loads. A single resistorprogrammable constant-off-time control sets switching frequencies up to 1 MHz , allowing the user to optimize performance trade-offs in efficiency, switching noise, component size, and cost. Under low-dropout conditions, the device operates in a 100\% duty-cycle mode, where the pMOS switch remains continuously on. Idle mode enhances light-load efficiency by skipping cycles, thus reducing transition and gate-charge losses.

When power is drawn from a regulated supply, constant-off-time PWM architecture essentially provides constantfrequency operation. This architecture has the inherent advantage of quick response to line-and-load transients.
The MAX1843's current-mode, constant-off-time PWM architecture regulates the output voltage by changing the pMOS switch on-time relative to the constant offtime. Increasing the on-time increases the peak inductor current and the amount of energy transferred to the load per pulse.

Modes of Operation The current through the pMOS switch determines the mode of operation: constant-off-time mode (for load currents greater than half the Idle Mode threshold, of idle mode), or idle mode (for load currents less than half the Idle-Mode threshold). Current sense is achieved through a proprietary architecture that eliminates current-sensing $I^{2} R$ losses.

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

Figure 1. Typical Circuit

Figure 2. Functional Diagram

Constant-Off-Time Mode
Constant-off-time operation occurs when the current through the pMOS switch is greater than the idle-mode threshold current (which corresponds to a load current of half the idle mode threshold). In this mode, the regulation comparator turns the pMOS switch on at the end of each off-time, keeping the device in continuous-conduction
mode. The pMOS switch remains on until the output is in regulation or the current limit is reached. When the pMOS switch turns off, it remains off for the programmed off-time (tOFF). To control the current under short-circuit conditions, the pMOS switch remains off for approximately $4 \times$ tOFF when VOUT < VOUT(NOM) / 4.

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

Under light loads, this device improves efficiency by switching to a pulse-skipping idle mode. Idle-mode operation occurs when the current through the pMOS switch is less than the idle-mode threshold current. Idle mode forces the pMOS to remain on until the current through the switch reaches the idle mode threshold, thus minimizing the unnecessary switching that degrades efficiency under light loads. In idle mode, the device operates in discontinuous conduction. Currentsense circuitry monitors the current through the nMOS synchronous switch, turning it off before the current reverses. This prevents current from being pulled from the output filter through the inductor and nMOS switch to ground. As the device switches between operating modes, no major shift in circuit behavior occurs.

100\% Duty-Cycle Operation When the input voltage drops near the output voltage, the duty cycle increases until the pMOS MOSFET is on continuously. The dropout voltage in 100% duty cycle is the output current multiplied by the on-resistance of the internal pMOS switch and parasitic resistance in the inductor. The pMOS switch remains on continuously as long as the current limit is not reached.

Shutdown

Drive $\overline{\text { SHDN }}$ to a logic-level low to place the MAX1843 in low-power shutdown mode and reduce supply current to less than $1 \mu \mathrm{~A}$. In shutdown, all circuitry and internal MOSFETs turn off, and the LX node becomes high impedance. Drive $\overline{\text { SHDN }}$ to a logic-level high or connect to Vcc for normal operation.

Summing Comparator

Three signals are added together at the input of the summing comparator (Figure 2): an output voltage error signal relative to the reference voltage, an integrated output voltage error correction signal, and the sensed PMOS switch current. The integrated error signal is provided by a transconductance amplifier with an external capacitor at COMP. This integrator provides high DC accuracy without the need for a high-gain amplifier. Connecting a capacitor at COMP modifies the overall loop response (see the Integrator Amplifier section).

Synchronous Rectification In a step-down regulator without synchronous rectification, an external Schottky diode provides a path for current to flow when the inductor is discharging. Replacing the Schottky diode with a low-resistance NMOS synchronous switch reduces conduction losses and improves efficiency.

The nMOS synchronous-rectifier switch turns on following a short delay after the pMOS power switch turns off, thus preventing cross-conduction or "shoot through." In constant-off-time mode, the synchronous-rectifier switch turns off just prior to the pMOS power switch turning on. While both switches are off, inductor current flows through the internal body diode of the nMOS switch. The internal body diode's forward voltage is relatively high.

Thermal Resistance

Junction-to-ambient thermal resistance, $\theta \mathrm{JA}$, is highly dependent on the amount of copper area immediately surrounding the IC leads. The MAX1843 EV kit has 1in² of copper area and a thermal resistance of $50^{\circ} \mathrm{C} / \mathrm{W}$ with no forced airflow. Airflow over the board significantly reduces the junction-to-ambient thermal resistance. For heatsinking purposes, it is essential to connect the exposed backside pad to a large analog ground plane.

Power Dissipation Power dissipation in the MAX1843 is dominated by conduction losses in the two internal power switches. Power dissipation due to supply current in the control section and average current used to charge and discharge the gate capacitance of the internal switches (i.e., switching losses) is approximately:

$$
P D S=C \times V_{I N}^{2} \times f P W M
$$

where $\mathrm{C}=2.5 \mathrm{nF}$ and fPWM is the switching frequency in PWM mode.
This number is reduced when the switching frequency decreases as the part enters idle mode. Combined conduction losses in the two power switches are approximated by:

$$
\text { PD }=I_{O U T}{ }^{2} \times \text { RPMOS }
$$

where RPMOS is the on-resistance of the pMOS switch.
The junction-to-ambient thermal resistance required to dissipate this amount of power is calculated by:

$$
\theta J A=(T J, M A X-T A, M A X) / P D(T O T)
$$

where: $\theta J A=$ junction-to-ambient thermal resistance
$T_{J}(M A X)=$ maximum junction temperature
$T A(M A X)=$ maximum ambient temperature
$\operatorname{PD}(T O T)=$ total losses

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

Figure 3. Maximum Recommended Operating Frequency vs. Input Voltage
Table 1. Recommended Component
Values (lout = 2.7A)

$\mathbf{V} \mathbf{I N}$ $\mathbf{(V)}$	Vout $\mathbf{(V)}$	$\mathbf{f} \mathbf{(W W M}$ $\mathbf{(k H z)}$	\mathbf{L} $\mathbf{(} \mathbf{\mu} \mathbf{)}$	$\mathbf{R T O F F}$ $\mathbf{(k \Omega} \mathbf{)}$
5	3.3	800	2.2	39
5	2.5	1180	2.2	47
5	1.8	850	2.2	75
5	1.5	715	2.2	100
3.3	2.5	570	1.5	39
3.3	1.8	985	1.5	43
3.3	1.5	940	1.5	56

Design Procedure

For typical applications, use the recommended component values in Table 1. For other applications, take the following steps:

1) Select the desired PWM-mode switching frequency. See Figure 3 for maximum operating frequency.
2) Select the constant off-time as a function of input voltage, output voltage, and switching frequency.
3) Select Rtoff as a function of off-time.
4) Select the inductor as a function of output voltage, off-time, and peak-to-peak inductor current.

Figure 4. Adjustable Output Voltage
Table 2. Output Voltage Programming

PIN		OUTPUT VOLTAGE (V)
FBSEL	FB	2.5
VCC	Output voltage	1.5
Unconnected	Output voltage	1.8
REF	Output voltage	Adjustable
GND	Resistive divider	

Setting the Output Voltage

The output of the MAX1843 is selectable between one of three preset output voltages: $+2.5 \mathrm{~V},+1.8 \mathrm{~V}$, and +1.5 V . For a preset output voltage, connect FB to the output voltage, and connect FBSEL as indicated in Table 2. For an adjustable output voltage, connect FBSEL to GND, and connect FB to a resistive divider between the output voltage and ground (Figure 4). Regulation is maintained for adjustable output voltages when $V_{F B}=V_{\text {REF }}$. Use a resistor in the $10 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$ range for R 1 . R 2 is given by the equation:

$$
\mathrm{R} 2=\mathrm{R} 1\left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{REF}}}-1\right)
$$

where VREF is typically 1.1 V .

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

Programming the Switching Frequency and Off-Time

The MAX1843 features a programmable PWM mode switching frequency, which is set by the input and output voltage and the value of RTOFF, connected from TOFF to GND. RTOFF sets the pMOS power switch offtime in PWM mode. Use the following equation to select the off-time according to the desired switching frequency in PWM mode:

$$
t_{\text {OFF }}=\frac{\left(V_{\text {IN }}-V_{\text {OUT }}-V_{\text {PMOS }}\right)}{f_{\text {PWM }}\left(V_{\text {IN }}-V_{\text {PMOS }}+V_{\text {NMOS }}\right)}
$$

where: tOFF $=$ the programmed off-time
$\mathrm{V}_{\mathrm{IN}}=$ the input voltage
VOUT = the output voltage
VPMOS $=$ the voltage drop across the internal pMOS power switch
VNMOS $=$ the voltage drop across the internal nMOS synchronous-rectifier switch
fPWM $=$ switching frequency in PWM mode
Select RTOFF according to the formula:

$$
\text { RTOFF }=(\text { toFF }-0.07 \mu \mathrm{~s})(110 \mathrm{k} \Omega / 1.00 \mu \mathrm{~s})
$$

Recommended values for RTOFF range from $36 \mathrm{k} \Omega$ to $430 \mathrm{k} \Omega$ for off-times of $0.4 \mu \mathrm{~s}$ to $4 \mu \mathrm{~s}$.

Inductor Selection

The key inductor parameters must be specified: inductor value (L) and peak current (IPEAK). The following equation includes a constant, denoted as LIR, which is the ratio of peak-to-peak inductor AC current (ripple current) to maximum DC load current. A higher value of LIR allows smaller inductance but results in higher losses and ripple. A good compromise between size and losses is found at approximately a 25% ripple-current to load-current ratio ($\mathrm{LIR}=0.25$), which corresponds to a peak inductor current 1.125 times the DC load current:

$$
\mathrm{L}=\frac{\mathrm{V}_{\mathrm{OUT}} \times \mathrm{t}_{\mathrm{OFF}}}{\mathrm{I}_{\mathrm{OUT}} \times \mathrm{LIR}}
$$

where: IOUT = maximum DC load current
LIR = ratio of peak-to-peak AC inductor current to DC load current, typically 0.25

The peak inductor current at full load is $1.125 \times$ IOUT if the above equation is used; otherwise, the peak current is calculated by:

$$
\mathrm{I}_{\mathrm{PEAK}}=\mathrm{I}_{\mathrm{OUT}}+\frac{\mathrm{V}_{\mathrm{OUT}} \times \mathrm{t}_{\mathrm{OFF}}}{2 \times \mathrm{L}}
$$

Choose an inductor with a saturation current at least as high as the peak inductor current. The inductor you select should exhibit low losses at your chosen operating frequency.

Capacitor Selection
The input filter capacitor reduces peak currents and noise at the voltage source. Use a low-ESR and lowESL capacitor located no further than 5 mm from IN . Select the input capacitor according to the RMS input ripple-current requirements and voltage rating:

$$
\mathrm{I}_{\text {RIPPLE }}=\mathrm{I}_{\text {LOAD }} \frac{\sqrt{\mathrm{V}_{\mathrm{OUT}}\left(\mathrm{~V}_{\text {IN }}-\mathrm{V}_{\mathrm{OUT}}\right)}}{\mathrm{V}_{\text {IN }}}
$$

where IRIPPLE = input RMS current ripple.
The output filter capacitor affects the output voltage ripple, output load-transient response, and feedback-loop stability. For stable operation, the MAX1843 requires a minimum output ripple voltage of VRIPPLE $\geq 1 \% \times$ VOUT. The minimum ESR of the output capacitor should be:

$$
\mathrm{ESR}>1 \% \times \frac{\mathrm{L}}{\mathrm{t}_{\mathrm{OFF}}}
$$

Stable operation requires the correct output filter capacitor. When choosing the output capacitor, ensure that:

$$
\mathrm{C}_{\text {OUT }} \geq \frac{\mathrm{t}_{\text {OFF }}}{\mathrm{V}_{\text {OUT }}} 79 \mu \mathrm{FV} / \mu \mathrm{s}
$$

Integrator Amplifier
An internal transconductance amplifier fine tunes the output DC accuracy. A capacitor, CCOMP, from COMP to VCC compensates the transconductance amplifier. For stability, choose CCOMP $=470 \mathrm{pF}$.
A large capacitor value maintains a constant average output voltage but slows the loop response to changes in output voltage. A small capacitor value speeds up the loop response to changes in output voltage but decreases stability. Choose the capacitor values that result in optimal performance.

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

Abstract

Soft-Start Soft-start allows a gradual increase of the internal current limit to reduce input surge currents at startup and at exit from shutdown. A timing capacitor, Css, placed from SS to GND sets the rate at which the internal current limit is changed. Upon power-up, when the device comes out of undervoltage lockout (2.6 V typ) or after the SHDN pin is pulled high, a $4 \mu \mathrm{~A}$ constant-current source charges the soft-start capacitor and the voltage on SS increases. When the voltage on SS is less than approximately 0.7 V , the current limit is set to zero. As the voltage increases from 0.7 V to approximately 1.8 V , the current limit is adjusted from 0 to the current-limit threshold (see the Electrical Characteristics). The voltage across the soft-start capacitor changes with time according to the equation:

$$
V_{S S}=\frac{4 \mu \mathrm{~A} \times t}{C_{S S}}
$$

The soft-start current limit varies with the voltage on the soft-start pin, SS, according to the equation:

$$
\text { SSILIMIT }=\frac{V_{S S}-0.7 \mathrm{~V}}{1.1 \mathrm{~V}} \times \mathrm{LIMIT}^{\text {LIM }}
$$

where ILIMIT is the current threshold from the Electrical Characteristics.
The constant-current source stops charging once the voltage across the soft-start capacitor reaches 1.8 V (Figure 5).

Frequency Variation with Output Current
The operating frequency of the MAX1843 is determined primarily by toff (set by RTOFF), VIN, and VOUT as shown in the following formula:
fpwm $=\left(V_{I N}-V_{O U T}-V_{P M O S}\right) /\left[\right.$ toff (VIN $-V_{P M O S}+$ Vnmos)]

However, as the output current increases, the voltage drop across the nMOS and pMOS switches increases and the voltage across the inductor decreases. This causes the frequency to drop. The change in frequency can be approximated with the following formula:

$$
\Delta \text { fpw }=- \text { Iout } \times \text { RpMOS } /\left(V_{\text {IN }} \times \text { tOFF }\right)
$$

where RPMOS is the resistance of the internal MOSFETs ($90 \mathrm{~m} \Omega$ typ).

Figure 5. Soft-Start Current-Limit Over Time
Circuit Layout and Grounding
Good layout is necessary to achieve the MAX1843's intended output power level, high efficiency, and low noise. Good layout includes the use of ground planes, careful component placement, and correct routing of traces using appropriate trace widths. The following points are in order of decreasing importance:

1) Minimize switched-current and high-current ground loops. Connect the input capacitor's ground, the output capacitor's ground, and PGND. Connect the resulting island to GND at only one point.
2) Connect the input filter capacitor less than 5 mm away from IN . The connecting copper trace carries large currents and must be at least 1 mm wide, preferably 2.5 mm .
3) Place the LX node components as close together and as near to the device as possible. This reduces resistive and switching losses as well as noise.
4) Ground planes are essential for optimum performance. In most applications, the circuit is located on a multilayer board and full use of the four or more layers is recommended. For heat dissipation, connect the exposed backside pad to a large analog ground plane, preferably on a surface of the board that receives good airflow. If the ground plane is located on the IC surface, make use of the N.C. pins adjacent to GND to lower thermal resistance to the ground plane. If the ground is located elsewhere, use several vias to lower thermal resistance. Typical applications use multiple ground planes to minimize thermal resistance. Avoid large AC currents through the analog ground plane.

Chip Information
TRANSISTOR COUNT: 3662

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Synchronous Rectification in TQFN Package

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)

2.7A, 1MHz, Low-Voltage, Step-Down Regulator with Internal Synchronous Rectification in QFN Package

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#I IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALI CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE CONFORM TO JESD 95-1 SPP-O12. DETAILS OF TERMINAL \#1IDENTIFIER ARE IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-3 AND T2855-6.
10. WARPAGE SHALL NOT EXCEED 0.10 mm
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
13. LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION "e", ± 0.05.

DRAWING NOT TO SCALE-

EXPOSED PAD VARIATIONS								
PKG. CODES	D2			E2			Lemens	DOWN BONDS ALLOWED
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	± 0.15	
T1655-2	3.00	3.10	3.20	3.00	3.10	3.20	**	YES
T1655-3	3.00	3.10	3.20	3.00	3.10	3.20	**	NO
T1655N-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO
T2055-3	3.00	3.10	3.20	3.00	3.10	3.20	**	YES
T2055-4	3.00	3.10	3.20	3.00	3.10	3.20	**	NO
T2055-5	3.15	3.25	3.35	3.15	3.25	3.35	0.40	YES
T2855-3	3.15	3.25	3.35	3.15	3.25	3.35	**	YES
T2855-4	2.60	2.70	2.80	2.60	2.70	2.80	**	YES
T2855-5	2.60	2.70	2.80	2.60	2.70	2.80	**	NO
T2855-6	3.15	3.25	3.35	3.15	3.25	3.35	**	NO
T2855-7	2.60	2.70	2.80	2.60	2.70	2.80	**	YES
T2855-8	3.15	3.25	3.35	3.15	3.25	3.35	0.40	YES
T2855N-1	3.15	3.25	3.35	3.15	3.25	3.35	**	NO
T3255-3	3.00	3.10	3.20	3.00	3.10	3.20	**	YES
T3255-4	3.00	3.10	3.20	3.00	3.10	3.20	**	NO
T3255-5	3.00	3.10	3.20	3.00	3.10	3.20	**	YES
T3255N-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO
T4055-1	3.20	3.30	3.40	3.20	3.30	3.40	**	YES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Voltage Regulators category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
TLF30682QVS01XUMA1 TPSM84209RKHR FAN53526UC106X FAN53526UC128X MP1587EN-LF FAN48610BUC33X FAN48617UC50X FAN53526UC89X MIC45116-1YMP-T1 NCV891234MW50R2G EN2342QI AST1S31PUR 16017 A6986FTR NCP81103MNTXG NCP81203PMNTXG MAX17242ETPA+ MAX16935RATEB/V+ MP2313GJ-Z NCP81208MNTXG MP8759GD-Z FAN53526UC100X FAN53526UC84X PCA9412AUKZ MP2314SGJ-Z AS1340A-BTDM-10 MP3421GG-P NCP81109GMNTXG MP6003DN-LF-Z MAX16935BAUES/V+ LT8315IFE\#PBF SCY1751FCCT1G NCP81109JMNTXG MAX16956AUBA/V+ AP3409ADNTR-G1 FAN48623UC36FX MPQ2454GH MPQ2454GH-AEC1 MP21148GQD-P AS3701B-BWLM-68 MPQ2143DJ-P MP9942AGJ-P MP8759GD-P MP5610GQG-P MP28200GG-P MP2451DJ-LF-Z MP2326GD-P MP2314SGJ-P MP2158AGQH-P MP2148GQD-18-P

