Low-power unbuffered inverter Rev. 5 — 29 June 2012

Product data sheet

1. **General description**

The 74AUP1GU04 provides the single unbuffered inverting gate.

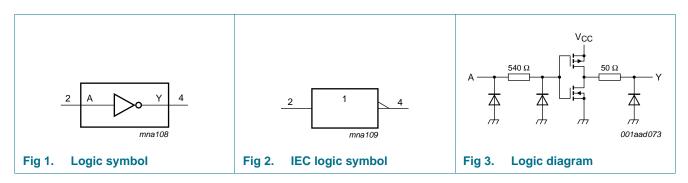
This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

Features and benefits 2.

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; $I_{CC} = 0.9 \mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Ordering information 3.

Table 1. Orderin	g information			
Type number	Package			
	Temperature range	Name	Description	Version
74AUP1GU04GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1
74AUP1GU04GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886
74AUP1GU04GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891
74AUP1GU04GN	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm	SOT1115
74AUP1GU04GS	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $1.0 \times 1.0 \times 0.35$ mm	SOT1202
74AUP1GU04GX	–40 °C to +125 °C	X2SON5	X2SON5: plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body $0.8 \times 0.8 \times 0.35$ mm	SOT1226

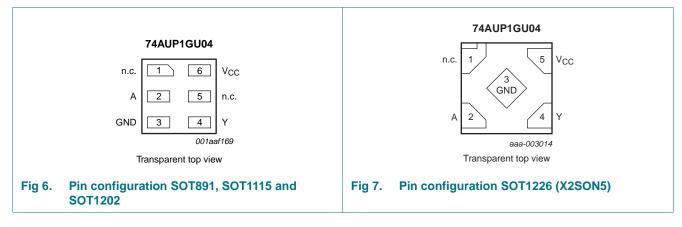

Low-power unbuffered inverter

4. Marking

Table 2. Marking	
Type number	Marking code ^[1]
74AUP1GU04GW	pD
74AUP1GU04GM	pD
74AUP1GU04GF	pD
74AUP1GU04GN	pD
74AUP1GU04GS	pD
74AUP1GU04GX	pD

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram


6. Pinning information

6.1 Pinning

74AUP1GU04 Product data sheet

Low-power unbuffered inverter

6.2 Pin description

Table 3. Pin description								
Symbol	Pin		Description					
	TSSOP5 and X2SON5	XSON6						
n.c.	1	1	not connected					
А	2	2	data input					
GND	3	3	ground (0 V)					
Y	4	4	data output					
n.c.	-	5	not connected					
V _{CC}	5	6	supply voltage					

7. Functional description

Table 4.	Function table ^[1]	
Input		Output
Α		Y
L		Н
Н		L

[1] H = HIGH voltage level; L = LOW voltage level.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

			0	.0	,
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage		<u>[1]</u> –0.5	V _{CC} + 0.5	V
lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±20	mA
I _{CC}	supply current		-	+50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C$	[2] _	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For TSSOP5 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.

For XSON6 and X2SON5 packages: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.

9. Recommended operating conditions

V_{CC} supply voltage0.83.6V V_{I} input voltage03.6V V_{O} output voltage0 V_{CC} V T_{amb} ambient temperature-40+125°C	Table 0.	Recommended operating conditi	0115			
	Symbol	Parameter	Conditions	Min	Max	Unit
V_O output voltage0 V_{CC} V T_{amb} ambient temperature-40+125°C	V _{CC}	supply voltage		0.8	3.6	V
T_{amb} ambient temperature -40 +125 °C	VI	input voltage		0	3.6	V
	Vo	output voltage		0	V_{CC}	V
$\Delta t / \Delta V$ input transition rise and fall rate $V_{CC} = 0.8 V$ to 3.6 V 0 200 ns.	T _{amb}	ambient temperature		-40	+125	°C
	$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 0.8 V \text{ to } 3.6 V$	0	200	ns/V

Table 6. Recommended operating conditions

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
VIH	HIGH-level input voltage	V_{CC} = 0.8 V to 3.6 V	$0.75 \times V_{CC}$	-	-	V
VIL	LOW-level input voltage	$V_{CC} = 0.8 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	$0.25\times V_{CC}$	V
V _{OH}	HIGH-level output voltage	I_{O} = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.75 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.32	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.6	-	-	V
V _{OL}	LOW-level output voltage	I_O = 20 $\mu A; V_{CC}$ = 0.8 V to 3.6 V	-	-	0.1	V
		$I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3\times V_{CC}$	V
		I_{O} = 1.7 mA; V_{CC} = 1.4 V	-	-	0.31	V
		$I_0 = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.31	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.31	V
		$I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.31	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.44	V
l _l	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μΑ
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = O \ A; \\ V_{CC} = O.8 \ V \ to \ 3.6 \ V \end{array}$	-	-	0.5	μA
CI	input capacitance	V_{CC} = 0 V to 3.6 V; V_{I} = GND or V_{CC}	-	1.5	-	pF
Co	output capacitance	$V_{O} = GND; V_{CC} = 0 V$	-	1.8	-	pF
T _{amb} = –	40 °C to +85 °C					
VIH	HIGH-level input voltage	$V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	$0.75 \times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 0.8 V to 3.6 V	-	-	$0.25\times V_{CC}$	V
V _{ОН}	HIGH-level output voltage	I_{O} = –20 $\mu\text{A};~V_{CC}$ = 0.8 V to 3.6 V	$V_{CC} - 0.1$	-	-	V
		$I_0 = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7\times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	1.97	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_{O} = -2.7$ mA; $V_{CC} = 3.0$ V	2.67	-	-	V
		$I_0 = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V

Low-power unbuffered inverter

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	I_{O} = 20 $\mu A;$ V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3\times V_{CC}$	V
		I_{O} = 1.7 mA; V_{CC} = 1.4 V	-	-	0.37	V
		I_{O} = 1.9 mA; V_{CC} = 1.65 V	-	-	0.35	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.33	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.33	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.45	V
l _l	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μΑ
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.9	μA
T _{amb} = -	40 °C to +125 °C					
VIH	HIGH-level input voltage	V_{CC} = 0.8 V to 3.6 V	$0.75 \times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 0.8 V to 3.6 V	-	-	$0.25\times V_{CC}$	V
V _{OH}	HIGH-level output voltage	I_O = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	V _{CC} - 0.11	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6 \times V_{\text{CC}}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	V
		$I_0 = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V
V _{OL}	LOW-level output voltage	I_{O} = 20 $\mu A;$ V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		$I_0 = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.33 \times V_{CC}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.41	V
		$I_0 = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.39	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.36	V
		I_{O} = 3.1 mA; V_{CC} = 2.3 V	-	-	0.50	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.36	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.50	V
l _l	input leakage current	$V_{\rm I}$ = GND to 3.6 V; $V_{\rm CC}$ = 0 V to 3.6 V	-	-	±0.75	μΑ
I _{CC}	supply current	$V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	1.4	μΑ

Static characteristics ... continued Table 7.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9

Symbo	Parameter	Conditions			25 °C		-40	°C to +1	25 °C	Unit
				Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 5	pF									
pd	propagation delay	A to Y; see Figure 8	[2]							
		$V_{CC} = 0.8 V$		-	6.2	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		0.9	2.3	4.4	0.9	4.8	5.3	ns
		V_{CC} = 1.4 V to 1.6 V		0.7	1.7	3.1	0.6	3.4	3.8	ns
		V_{CC} = 1.65 V to 1.95 V		0.5	1.4	2.6	0.5	2.9	3.2	ns
		V_{CC} = 2.3 V to 2.7 V		0.4	1.1	2.0	0.4	2.3	2.6	ns
		V_{CC} = 3.0 V to 3.6 V		0.3	1.0	1.8	0.3	2.1	2.4	ns
C _L = 10) pF									
pd	propagation delay	A to Y; see Figure 8	[2]							
		$V_{CC} = 0.8 V$		-	9.6	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		1.2	3.1	6.1	1.2	6.8	7.5	ns
		V_{CC} = 1.4 V to 1.6 V		1.0	2.3	4.0	0.9	4.6	5.1	ns
		V_{CC} = 1.65 V to 1.95 V		0.8	1.9	3.3	0.7	3.8	4.2	ns
		V_{CC} = 2.3 V to 2.7 V		0.6	1.5	2.7	0.6	3.1	3.5	ns
		V_{CC} = 3.0 V to 3.6 V		0.5	1.3	2.4	0.5	2.7	3.0	ns
C _L = 15	5 pF									
pd	propagation delay	A to Y; see Figure 8	[2]							
		$V_{CC} = 0.8 V$		-	13.0	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		1.6	3.8	7.9	1.4	8.8	9.7	ns
		V_{CC} = 1.4 V to 1.6 V		1.3	2.8	4.9	1.1	5.7	6.3	ns
		V_{CC} = 1.65 V to 1.95 V		1.0	2.3	4.0	0.9	4.7	5.2	ns
		V_{CC} = 2.3 V to 2.7 V		0.8	1.9	3.2	0.8	3.7	4.1	ns
		V_{CC} = 3.0 V to 3.6 V		0.7	1.6	2.9	0.7	3.3	3.7	ns
C _L = 30) pF									
pd	propagation delay	A to Y; see Figure 8	[2]							
		$V_{CC} = 0.8 V$		-	23.2	-	-	-	-	-
		V_{CC} = 1.1 V to 1.3 V		2.4	6.0	13.1	2.2	14.8	16.3	ns
		V_{CC} = 1.4 V to 1.6 V		2.0	4.2	7.6	1.8	9.0	9.9	ns
		V_{CC} = 1.65 V to 1.95 V		1.7	3.6	6.1	1.5	7.2	8.0	ns
		V_{CC} = 2.3 V to 2.7 V		1.4	2.9	4.8	1.3	5.7	6.3	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.2	2.5	4.3	1.1	5.1	5.7	ns

Low-power unbuffered inverter

Symbol	Parameter	Conditions	25 °C		–40 °C to +125 °C			Unit	
			Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 pl	F, 10 pF, 15 pF and	30 pF					1		
C _{PD}	power dissipation capacitance	$f = 1 \text{ MHz}; V_I = \text{GND to } V_{CC}$ [3]							
		$V_{CC} = 0.8 V$	-	1.2	-	-	-	-	pF
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	-	1.1	-	-	-	-	pF
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	-	1.2	-	-	-	-	pF
		V_{CC} = 1.65 V to 1.95 V	-	1.4	-	-	-	-	pF
		V_{CC} = 2.3 V to 2.7 V	-	2.8	-	-	-	-	pF
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	4.4	-	-	-	-	pF

Table 8. Dynamic characteristics ... continued

[1] All typical values are measured at nominal V_{CC} .

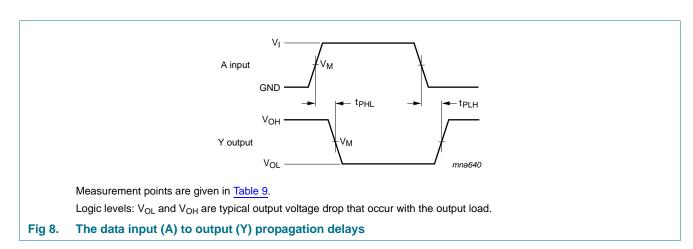
[2] t_{pd} is the same as t_{PLH} and t_{PHL}

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $\label{eq:PD} \mathsf{P}_{\mathsf{D}} = C_{\mathsf{PD}} \times \mathsf{V}_{\mathsf{CC}}{}^2 \times f_i \times \mathsf{N} + \Sigma(C_\mathsf{L} \times \mathsf{V}_{\mathsf{CC}}{}^2 \times f_o) \text{ where:}$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$


 C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

12. Waveforms

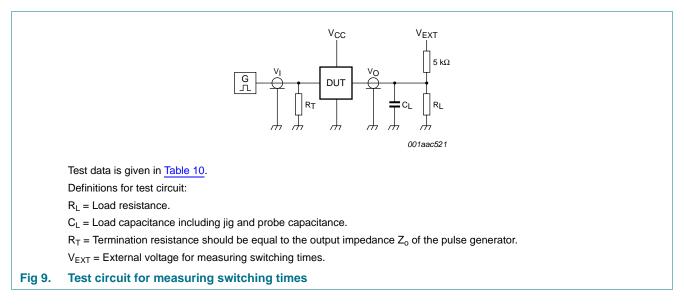
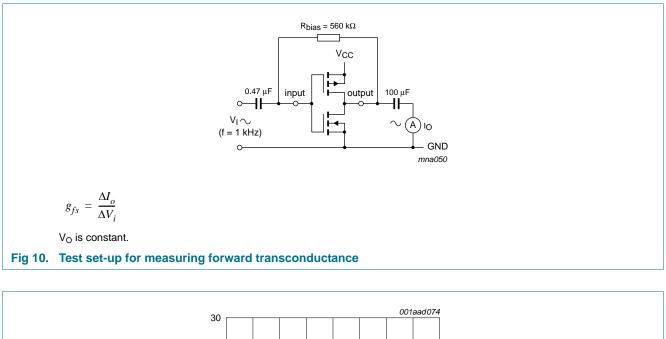


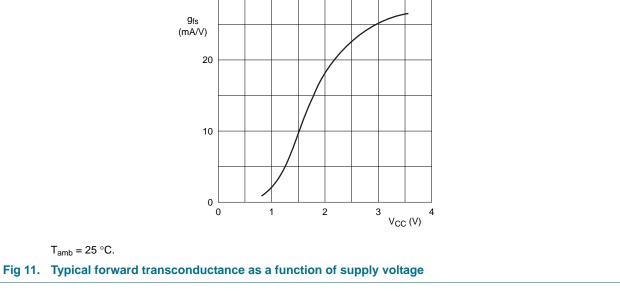
Table 9. **Measurement points**

Supply voltage	Output	Input				
V _{CC}	V _M	V _M	VI	$t_r = t_f$		
0.8 V to 3.6 V	$0.5 imes V_{CC}$	$0.5\times V_{CC}$	V _{CC}	≤ 3.0 ns		

74AUP1GU04 **Product data sheet**

Low-power unbuffered inverter

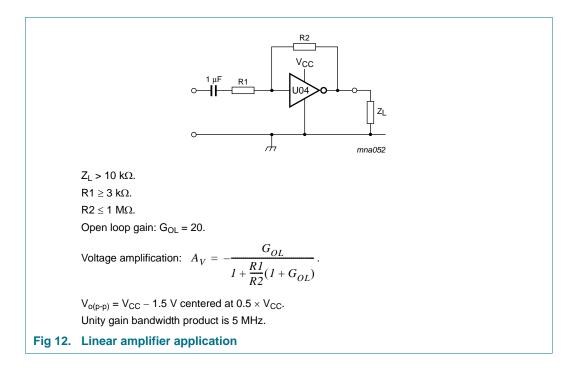

Table 10. Test data

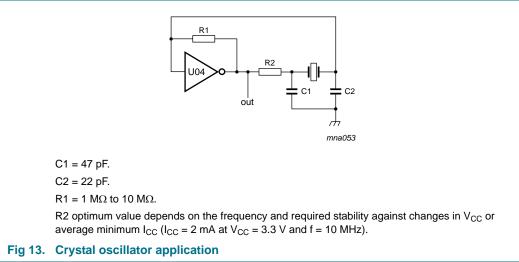

Supply voltage	Load	V _{EXT}			
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2 \times V_{CC}$

[1] For measuring enable and disable times $R_L = 5 k\Omega$, for measuring propagation delays, setup and hold times and pulse width $R_L = 1 M\Omega$.

Low-power unbuffered inverter

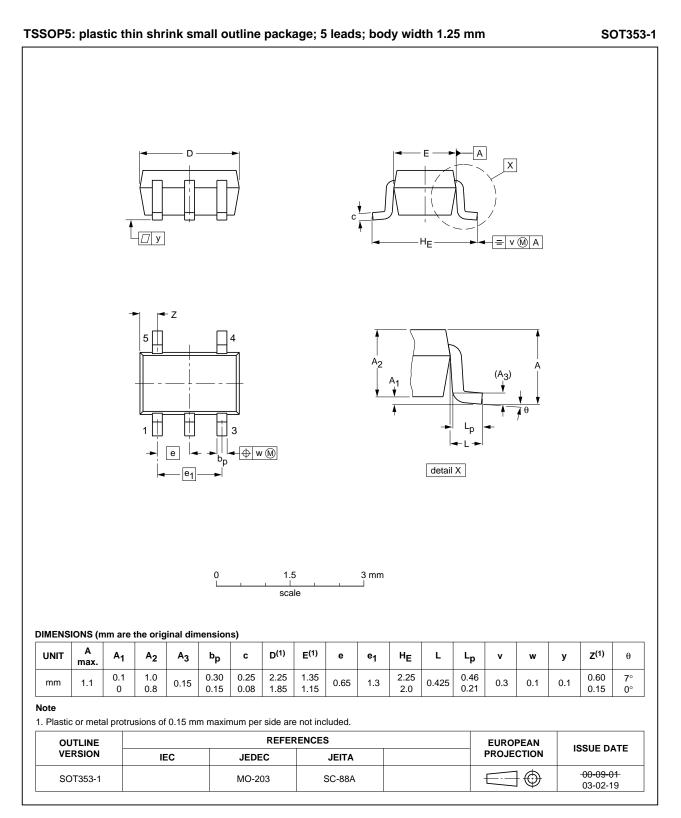
13. Additional characteristics




14. Application information

Some applications for the 74AUP1GU04 are:

- Linear amplifier (see Figure 12)
- Crystal oscillator (see Figure 13).


Remark: All values given are typical values unless otherwise specified.

Low-power unbuffered inverter

15. Package outline

Fig 14. Package outline SOT353-1 (TSSOP5)

All information provided in this document is subject to legal disclaimers.

Low-power unbuffered inverter

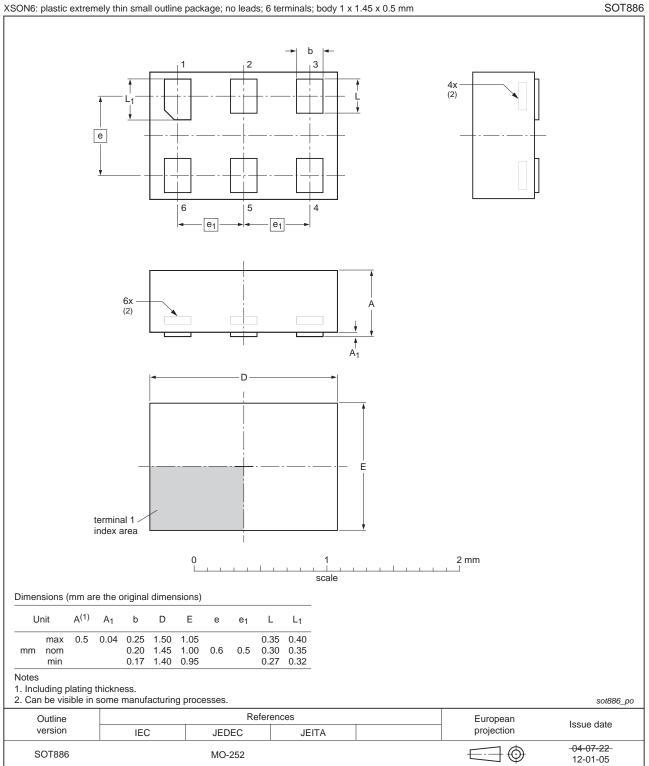


Fig 15. Package outline SOT886 (XSON6)

All information provided in this document is subject to legal disclaimers.

Low-power unbuffered inverter

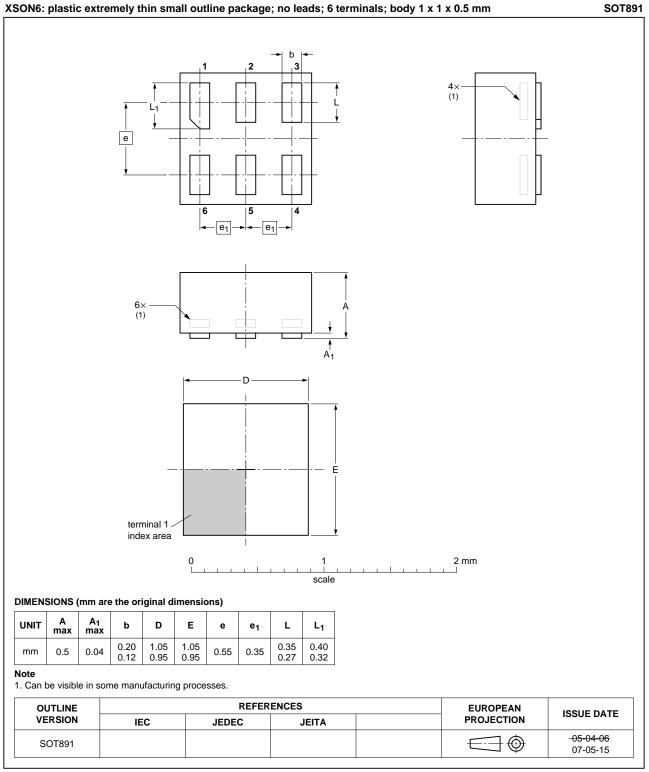
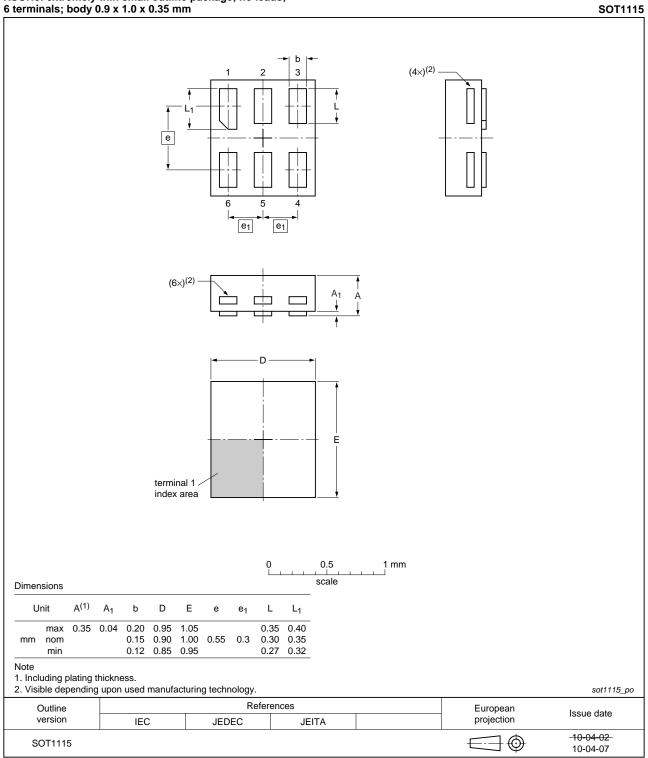
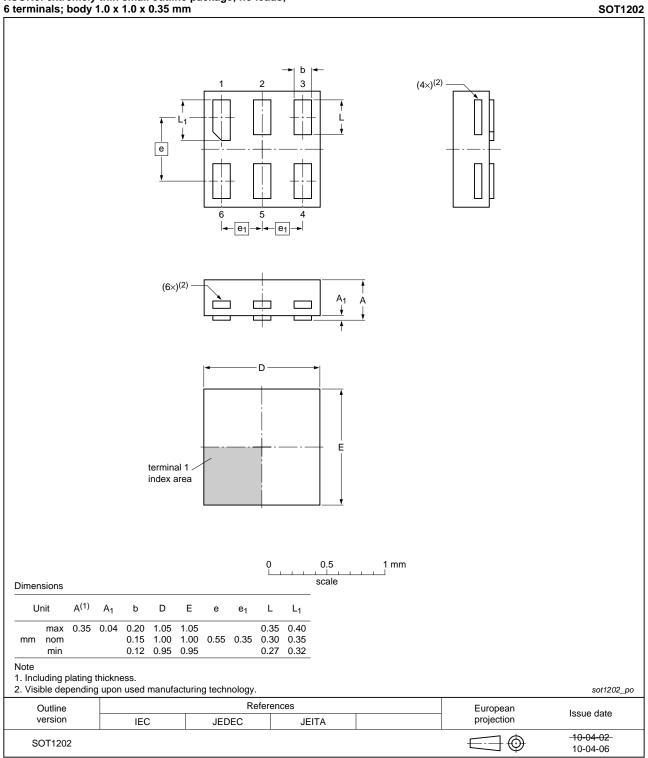



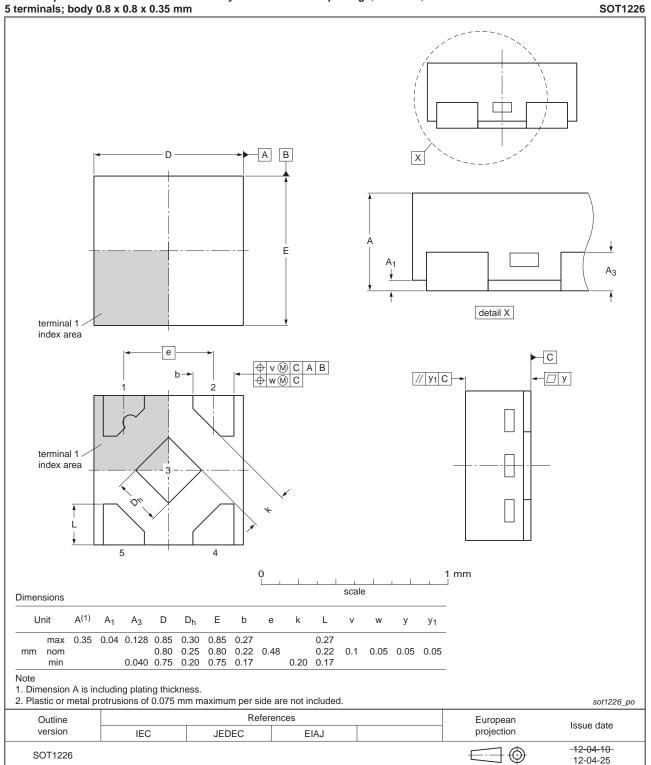
Fig 16. Package outline SOT891 (XSON6)


Low-power unbuffered inverter

XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm

Fig 17. Package outline SOT1115 (XSON6)

Low-power unbuffered inverter



XSON6: extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm

Fig 18. Package outline SOT1202 (XSON6)

All information provided in this document is subject to legal disclaimers.

Low-power unbuffered inverter

X2SON5: plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body 0.8 x 0.8 x 0.35 mm

Fig 19. Package outline SOT1226 (X2SON5)

All information provided in this document is subject to legal disclaimers.

Low-power unbuffered inverter

16. Abbreviations

Table 11. Abbreviations				
Acronym	Description			
CDM	Charged Device Model			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
MM	Machine Model			

17. Revision history

Table 12. Revisio	n history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP1GU04 v.5	20120629	Product data sheet	-	74AUP1GU04 v.4
Modifications:	 Added type r 	number 74AUP1GU04GX (SC	DT1226)	
	 Package out 	line drawing of SOT886 (Figu	re 15) modified.	
74AUP1GU04 v.4	20111116	Product data sheet	-	74AUP1GU04 v.3
Modifications:	 Legal pages 	updated.		
	 Package out 	line drawing SOT363 replace	d by SOT353-1.	
74AUP1GU04 v.3	20100721	Product data sheet	-	74AUP1GU04 v.2
74AUP1GU04 v.2	20060803	Product data sheet	-	74AUP1GU04 v.1
74AUP1GU04 v.1	20050810	Product data sheet	-	-

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP B.V. 2012. All rights reserved.

Low-power unbuffered inverter

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Low-power unbuffered inverter

20. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information1
4	Marking 2
5	Functional diagram 2
6	Pinning information 2
6.1	Pinning 2
6.2	Pin description 3
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics7
12	Waveforms 8
13	Additional characteristics 10
14	Application information 11
15	Package outline 12
16	Abbreviations 18
17	Revision history 18
18	Legal information 19
18.1	Data sheet status 19
18.2	Definitions 19
18.3	Disclaimers
18.4	Trademarks 20
19	Contact information 20
20	Contents 21

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 29 June 2012 Document identifier: 74AUP1GU04

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Inverters category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

5962-8550101CA E5-652Z NL17SGU04P5T5G NLX2G04BMX1TCG 412327H 022413E NL17SG14AMUTCG NLU2G04AMUTCG NLU2GU04BMX1TCG NLV14049UBDR2G NLV14069UBDTR2G NLV17SZ14DFT2G 74LVC2G17FW4-7 NLU2G04CMX1TCG NLV17SZ06DFT2G NLV27WZ04DFT2G NLV74HCT14ADTR2G NLX2G14CMUTCG SNJ54ACT14W SNJ54AC04W NCV1729SN35T1G TC74VHC04FK(EL,K) NLV74HC04ADTR2G NLV17SZ04DFT2G NLU1G04AMUTCG NLX2G04CMUTCG NLX2G04AMUTCG NLV74ACT00DR2G NLV74AC14DR2G NLV37WZ14USG NLV27WZ04DFT1G NLV14106BDG NLU1GU04CMUTCG NLU1GT14AMUTCG NLU1G04CMUTCG NL17SZU04P5T5G NL17SG14DFT2G 74LVC06ADTR2G 74LVC04ADR2G TC7SZ04AFS,L3J DC1-S24D3FN-A20CE1 NLU1GT04AMUTCG NLV37WZ04USG NLX3G14FMUTCG NL17SZ04P5T5G NL17SG14P5T5G NLV27WZU04DFT2G LV0008G100-4E0FN NXV08V080DB1 74AHC1G04QSE-7