

FEATURES:

- Step Down DC/DC LED driver
- Constant current output
- Wide (4:1) input voltage range
- High efficiency up to 95%
- Operating Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Open and Short LED Protection
- PWM/Digital and Analog Voltage dimming
- Remote ON/OFF Control

Models

Single output

Model	Input Voltage (V)	Output Voltage (V)	Maximum Rated Current (mA)	Max Capacitive Load (uF)	Efficiency $(\%)$	Package Type
AMLDL-3030Z	$7-30$	$2-28$	300	47	95	DIP14
AMLDL-3035Z	$7-30$	$2-28$	350	47	95	DIP14
AMLDL-3050Z	$7-30$	$2-28$	500	47	95	DIP16
AMLDL-3060Z	$7-30$	$2-28$	600	47	95	DIP16
AMLDL-3070Z	$7-30$	$2-28$	700	47	95	DIP16
AMLDL-30100Z	$7-30$	$2-28$	1000	47	95	DIP16

NOTE: All specifications in this datasheet are measured at an ambient temperature of $25^{\circ} \mathrm{C}$, humidity $<75 \%$, nominal input voltage and at rated output load unless otherwise specified.

Input Specifications

Parameters	Nominal	Typical	Maximum	Units
Voltage range	24	7-30		VDC
Filter	Capacitor			
Absolute Maximum Rating			40	VDC
Peak Input Voltage time			500	ms
DC/DC ON (Leave open if not used)	ON -Open or $0.3 \mathrm{~V}<\mathrm{Vadj}<1.25$			
DC/DC OFF	OFF(shutdown) - Vadj<0.15			
Maximum Remote pin drive current	Vadj $=1.25 \mathrm{~V}$		1	mA
Quiescent Current in Shutdown mode	$\mathrm{Vin}=30 \mathrm{~V}, \mathrm{Vadj}<0.15$		0.25	mA
On/Off Control (Digital Control)	Max PWM Frequency 1KHz			
Minimum Switch ON/OFF time		200		ns
On/Off Control (Analog Dimming Control) (Leave open if not used)	Input voltage range	0.3-1.25		VDC
Drive with DC Voltage	0.3 V < VADJ<1.25V to adjust output current from 25% to 100%			
Output current adjustment*	Vin-Vout<20			\%
Control Voltage Range limits	ON-0.2-0.3V (Vadj rise)			
Maximum Analog pin drive current	Vadj $=1.25 \mathrm{~V}$	0.15-0.25V	1	mA

Output Specifications

Parameters	Conditions	Typical	Maximum	Units
Current accuracy		± 6		\%
Output Voltage range	V input $=30 \mathrm{~V}$	2-28		VDC
Output current	Vin - Vout $>1.5 \mathrm{~V}$ to 3V		300	mA
Short Circuit protection	Regulated at the rated current for each model			
Output no load Protection	Continuously			
Max load capacitance			47	$\mu \mathrm{F}$
Temperature coefficient	Ta $=-40$ to $+85^{\circ} \mathrm{C}$	± 0.05		\%/ ${ }^{\circ} \mathrm{C}$
Ripple \& Noise	20 MHz Bandwidth	250		mV p-p

General Specifications

Parameters	Conditions	Typical	Maximum	Units
Switching frequency	100\% load	40-380		KHz
Operating temperature	-40 to +85			${ }^{\circ} \mathrm{C}$
Storage temperature	-40 to +125			${ }^{\circ} \mathrm{C}$
www.aimtec.com	Tel: +1 5146202722		Toll free: + 18889 AIMTEC (924 6832)	
F 051e R9.I	1 of 14		North America only	

General Specifications (continued)

Parameters	Conditions	Typical	Maximum	Units	
Maximum case temperature			100	${ }^{\circ} \mathrm{C}$	
Thermal Impedance	Free air convection	+40		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Cooling	Free air convection				
Humidity			95	\% RH	
Case material	Non-Conductive Black Plastic (UL94-V0 rated)				
Weight	2.6 (DIP14)			g	
Weight	6.2 (DIP 16)				
Dimensions ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$)	DIP 14	$0.80 \times 0.40 \times 0.40$ inches $\quad 23.37 \times 13.97 \times 10.16 \mathrm{~mm}$			
	DIP 16				
MTBF	$>500000 \mathrm{hrs}$ (MIL-HDBK-217 F at $+25^{\circ} \mathrm{C}$)				
Maximum Soldering Temperature	1.5 mm from case for 10 sec .		260	${ }^{\circ} \mathrm{C}$	

NOTES:

1.Reversed polarity at the input power will damage the driver. The input ground must not be connected to the negative output.
2.Leave the pin VADJ opened if not used, grounding VADJ will shut the driver off, connecting VADJ to + Vin will damage the driver. 3.Maximum output open voltage is equal to input voltage

Safety Specifications

Parameters

Agency approvals

CE

EN 55015 (CISPR22)
IEC 61000-4-2 (Perf. Criteria A)
Standards

IEC 61000-4-3 (Perf. Criteria A)
IEC 61000-4-4 (Perf. Criteria A)
IEC 61000-4-6 (Perf. Criteria A) IEC 61000-4-8 (Perf. Criteria A)

Pin Out Specifications

DIP 14

Pin	Single		Pin	Single	
1	- V Input	- DC Supply	1	- V Input	- DC Supply
2	Vadj	PWM/ON/OFF or not used	2	- V Input	- DC Supply
7	- V Output	LED Cathode connection	3	Vadj	PWM/ON/OFF or not used
8	+ V Output	LED Anode connection	7	- V Output	LED Cathode connection
14	+ V Input	+ DC Supply	8	- V Output	LED Cathode connection
Derating		Free Air Convection	9	+ V Output	LED Anode connection
		10	+ V Output	LED Anode connection	
		15	+ V Input	+ DC Supply	
		16	+ V Input	+ DC Supply	

Dimensions

DIP 14: AMLDL-3030Z \& AMLDL3035Z

Application circuit examples:

Output Current Adjustment by External DC Control Voltage:

The nominal output current is given by:

$$
\text { lout } \sim \frac{0.08 \times \text { Vadj }}{x}
$$

Model Number	X
AMLDL-3030Z	0.327
AMLDL-3035Z	0.280
AMLDL-3050Z	0.197
AMLDL-3060Z	0.165
AMLDL-3070Z	0.1388
AMLDL-30100Z	0.095

Resistive Dimming Control

A simplified dimming control can be achieved using a variable resistor connected between VADJ and GND. Capacitor CADJ is optional, it is installed to limit AC mains interference and high frequency noise. The recommended value of CADJ is $0.22 \mu \mathrm{~F}$.

The nominal output current is given by:

$$
\text { loutnom }=\frac{\text { lout } \times \text { Radj }}{\text { Radj }+200 \mathrm{~K}}
$$

NOTE: Typical error is $\pm 10 \%$ with resistive dimming control

Output Current Adjustment by PWM Control:

Driving VADJ Directly

A Pulse Width Modulated (PWM) signal with a duty cycle of DPWM can be applied directly to VADJ pin as shown below.
The output current is given by:

Driving VADJ Via Open Collector Transistor

The VADJ can also be driven via an open collector transistor as shown below.
The diode and resistor serve to suppress any possible high amplitude negative voltage spikes to the VADJ input resulting from the collector to emitter capacitance of the transistor. Any negative voltage spikes will cause errors in output current and/or unstable driver operation.

Driving the VADJ from a Microcontroller

The VADJ can be driven from an open drain output of a microcontroller as shown below. The diode and resistor serve to suppress any possible high amplitude negative voltage spikes to the VADJ input resulting from the drain to source capacitance of the FET. Any negative voltage spikes will cause errors in output current and/or unstable driver operation.

Output Current Adjustment by PWM Control (Dimming):
A PWM signal must have a frequency of greater than 100 Hz to prevent any visible flicker.

Output Current Adjustment by PWM Control (Flash):

Recommended Class B EMI Filter:

Model Number	Inductor Value ($\mathbf{\mu H}$)
AMLDL-3030Z	68
AMLDL-3035Z	68
AMLDL-3050Z	27
AMLDL-3060Z	27
AMLDL-3070Z	27
AMLDL-30100Z	27

Thermal Feedback Circuit

The selection of components for the thermal feedback circuit is depends on the choice of R2 and R3 and the effectiveness of the LED heatsink. To optimize the LED brightness control at high temperatures, the LEDs must have a sufficient thermal extraction path, if not the reduction in drive current will not be optimal.

The thermal control threshold points are set by adjusting R2. Three values ($33 \mathrm{~K}, 22 \mathrm{~K}$, and 10 K) were tested. These values were chosen to provide thermal break points of approximately $25^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$, and $60^{\circ} \mathrm{C}$.

Note, that the LED drive current will not continually dim to zero - the thermal controls applying DC control to that VADJ pin has a dimming ratio from maximum current of approximately $5: 1$.

Once the reduced DC level drops below the shutdown threshold of around 200 mV , the LED drive current will fall to zero and the LEDs will be off.

The slope of the current reduction is determined by the beta value of the thermistor. The larger the Beta value the sharper will be the resultant current control response. The slope of the current reduction is also affected by Q1's base emitter voltage variation with temperature.

Output Current Adjustment By External DC Control Voltage:

Your Power Partner

Typical Characteristics:

AMLDL-3030Z

Efficiency vs Vin
Efficiency (\%) (Forward Voltage $=3.5 \mathrm{~V}$ per LED)

Output Current Vs VadJ

Typical Characteristics: AMLDL-3035Z

Efficiency vs Vin
Efficiency (\%) (Forward Voltage $=3.5 \mathrm{~V}$ per LED)

Vin (V)

Output Current Vs VadJ

Typical Characteristics: AMLDL-3050Z

Typical Characteristics: AMLDL-3060Z

Your Power Partner

Typical Characteristics: AMLDL-3070Z

Vin (V)

Efficiency vs Vin
(Forward Voltage $=3.5 \mathrm{~V}$ per LED)

Vin (V)

Output Current Vs Vadj

Typical Characteristics: AMLD-30100Z

VADJ (V)

NOTE: 1. Datasheets are updated as needed and as such, specifications are subject to change without notice. Once printed or downloaded, datasheets are no longer controlled by Aimtec; refer to www.aimtec.com for the most current product specifications. 2. Product labels shown, including safety agency certifications on labels, may vary based on the date manufactured. 3. Mechanical drawings and specifications are for reference only. 4. All specifications are measured at an ambient temperature of $25^{\circ} \mathrm{C}$, humidity $<75 \%$, nominal input voltage and at rated output load unless otherwise specified. 5. Aimtec may not have conducted destructive testing or chemical analysis on all internal components and chemicals at the time of publishing this document. CAS numbers and other limited information are considered proprietary and may not be available for release. 6. This product is not designed for use in critical life support systems, equipment used in hazardous environments, nuclear control systems or other such applications which necessitate specific safety and regulatory standards other the ones listed in this datasheet. 7. Warranty is in accordance with Aimtec's standard Terms of Sale available at www.aimtec.com.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by Aimtec manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S 18952 19-130041 CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 J80-0041NL V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS2415 XKS-1215 033456 NCT1000N040R050B SPB05B-15 SPB05C-15 SSQE48T25025-NAA0G L-DA20 HP3040-9RG HP1001-9RTG NVD0.4YJJ-M6G XKS-2415

