Normally closed type with reinforced insulation

PhotoMOS ${ }^{\text {© }}$

GE 1 Form B (AQY41OEH)

mm inch

RoHS compliant

FEATURES

1. 1 Form B output type

2. Low on-resistance

This has been realized thanks to the built-in MOSFET processed by our proprietary method, DSD (Doublediffused and Selective Doping) method.

3. Reinforced insulation of $5,000 \mathrm{~V}$

More than 0.4 mm internal insulation distance between inputs and outputs. Conforms to EN41003, EN60950 (reinforced insulation).
4. Controls low-level analog signals PhotoMOS feature extremely low closedcircuit offset voltage to enable control of low-level analog signals without distortion.

5. High sensitivity and low onresistance

Can control max. 0.55 A load current with 5 mA input current.
Low on-resistance of Typ. 1Ω
(AQY412EH).
6. Low-level off-state leakage current

TYPICAL APPLICATIONS

- Power supply
- Measuring equipment
- Security equipment
- Modem
- Telephone equipment
- Electricity, plant equipment
- Sensing equipment

TYPES

Type	I/O isolation voltage	Output rating*		Package	Part No.				Packing quantity		
				Through hole terminal	Surface-mount terminal						
		Load voltage	Load current		Tube packing style		Tape and reel packing style		Tube		
							Picked from the 1/2-pin side	Picked from the 3/4-pin side		Tape and reel	
AC/DC dual use	Reinforced 5,000 Vrms	60 V	550 mA		DIP4-pin	AQY412EH	AQY412EHA	AQY412EHAX	AQY412EHAZ	1 tube contains: 100 pcs. 1 batch contains: 1,000 pcs.	1,000 pcs.
		350 V	130 mA	AQY410EH		AQY410EHA	AQY410EHAX	AQY410EHAZ			
		400 V	120 mA	AQY414EH		AQY414EHA	AQY414EHAX	AQY414EHAZ			

*Indicate the peak AC and DC values.
Note: For space reasons, the initial letters of the part number "AQY", the surface mount terminal shape indicator "A" and the packing style indicator " X " or " Z " are not marked on the device. (Ex. the label for product number AQY412EHAX is 412 EH .)

RATING

1. Absolute maximum ratings (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			Symbol	AQY412EH(A)	AQY410EH(A)	AQY414EH(A)	Remarks
Input	LED forward current		If	50 mA			
	LED reverse voltage		$V_{\text {R }}$	5 V			
	Peak forward current		Ifp	1 A			$\mathrm{f}=100 \mathrm{~Hz}$, Duty factor $=0.1 \%$
	Power dissipation		Pin	75 mW			
Output	Load voltage (peak AC)		VL	60 V	350 V	400 V	
	Continuous load current		IL	0.55 A	0.13 A	0.12 A	Peak AC, DC
	Peak load current		Ipeak	1.5 A	0.4 A	0.3 A	100 ms (1 shot), V L= DC
	Power dissipation		Pout	500 mW			
Total power dissipation			PT	550 mW			
I/O isolation voltage			$V_{\text {iso }}$	5,000 Vrms			
Ambient temperature		Operating	Topr	-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$			(Non-icing at low temperatures)
		Storage	T stg	-40 to $+100^{\circ} \mathrm{C}-40$ to $+212^{\circ} \mathrm{F}$			

2. Electrical characteristics (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			Symbol	AQY412EH(A)	AQY410EH(A)	AQY414EH(A)	Condition
Input	LED operate (OFF) current	Typical	IFoff	1.4 mA			IL=Max.
		Maximum			3.0 mA		
	LED reverse (ON) current	Minimum	Ifon	0.4 mA			$\mathrm{l}=$ Max.
		Typical		1.3 mA			
	LED dropout voltage	Typical	V_{F}	1.25 (1.14 V at $\left.\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}\right)$			$\mathrm{If}=50 \mathrm{~mA}$
		Maximum		1.5 V			
Output	On resistance	Typical	Ron	1Ω	18Ω	26Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{IL}=\mathrm{Max} . \\ & \text { Within } 1 \mathrm{~s} \end{aligned}$
		Maximum		2.5Ω	25Ω	35Ω	
	Off state leakage current	Maximum	ILeak		$10 \mu \mathrm{~A}$		$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{L}}=\mathrm{Max} . \end{aligned}$
Transfer characteristics	Operate (OFF) time*	Typical	Toff	3.0 ms	1.0 ms	0.8 ms	$\begin{aligned} & \mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA} \rightarrow 5 \mathrm{~mA} \\ & \mathrm{IL}=\mathrm{Max} . \end{aligned}$
		Maximum		10.0 ms	3.0 ms		
	Reverse (ON) time*	Typical	Ton	0.2 ms	0.3 ms	0.2 ms	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \rightarrow 0 \mathrm{~mA} \\ & \mathrm{IL}=\mathrm{Max} . \end{aligned}$
		Maximum		1.0 ms			
	I/O capacitance	Typical	Ciso	0.8 pF			$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{VB}=0 \mathrm{~V} \end{aligned}$
		Maximum		1.5 pF			
	Initial I/O isolation resistance	Minimum	Riso	1,000M Ω			500 V DC

*Operate/Reverse time
3. Recommended operating conditions (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Please use under recommended operating conditions to obtain expected characteristics.

Item		Symbol	Min.	Max.	Unit
LED current		IF_{2}	5	30	mA
AQY412EH(A)	Load voltage (Peak AC)	V_{L}	-	48	V
	Continuous load current	I	-	0.55	A
AQY410EH(A)	Load voltage (Peak AC)	V_{L}	-	280	V
	Continuous load current	I	-	0.13	A
AQY414EH(A)	Load voltage (Peak AC)	V_{L}	-	320	V
	Continuous load current	IL	-	0.12	A

These products are not designed for automotive use.
If you are considering to use these products for automotive applications, please contact your local Panasonic Corporation technical representative.

REFERENCE DATA

1-(1). Load current vs. ambient temperature characteristics
Allowable ambient temperature: -40 to $+85^{\circ} \mathrm{C}$
-40 to $+185^{\circ} \mathrm{F}$

1-(2). Load current vs. ambient temperature characteristics
Allowable ambient temperature: -40 to $+85^{\circ} \mathrm{C}$ -40 to $+185^{\circ} \mathrm{F}$

2. On resistance vs. ambient temperature characteristics
Measured portion: between terminals 3 and 4 LED current: 0 mA ; Load voltage: Max.(DC); Continuous load current: Max. (DC)

3. Operate (OFF) time vs. ambient temperature characteristics
LED current: 5 mA ; Load voltage: Max. (DC); Continuous load current: Max. (DC)

6. LED reverse (ON) current vs. ambient temperature characteristics
Sample: All types;
Load voltage: Max. (DC);
Continuous load current: Max. (DC)

8-(2). Current vs. voltage characteristics of output at MOS portion
Measured portion: between terminals 3 and 4;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

11. Reverse (ON) time vs. LED forward current characteristics
Measured portion: between terminals 3 and 4; Load voltage: Max. (DC); Continuous load current: Max. (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

4. Reverse (ON) time vs. ambient temperature characteristics
LED current: 5 mA ; Load voltage: Max. (DC); Continuous load current: Max. (DC)

7. LED dropout voltage vs. ambient temperature characteristics LED current: 5 to 50 mA

9. Off state leakage current vs. load voltage characteristics
Measured portion: between terminals 3 and 4; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

12. Output capacitance vs. applied voltage characteristics
Measured portion: between terminals 3 and 4;
Frequency: 1 MHz ; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

5. LED operate (OFF) current vs. ambient temperature characteristics
Sample: All types;
Load voltage: Max. (DC);
Continuous load current: Max. (DC)

8-(1). Current vs. voltage characteristics of output at MOS portion
Measured portion: between terminals 3 and 4; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

10. Operate (OFF) time vs. LED forward current characteristics
Measured portion: between terminals 3 and 4;
Load voltage: Max. (DC); Continuous load current: Max. (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

"PhotoMOS", "PhotoMOS" and "PHOTOMOS" are registered trademarks of Panasonic Corporation.
*Recognized in Japan, the United States, all member states of European Union and other countries.

[^0]Electromechanical Control Business Division
■ 1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan
industrial.panasonic.com/ac/e/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :
M86F-2W M90F-2W G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST G3CN-202PL-3-US DC12 G3CN-203P DC3-28 G3RDX02SNUSDC12 PLA134S DMP6202A DS11-1005 AQ3A2-ZT432VDC AQV212J AQV214SD02 AQV252GAJ AQW414EA AQY212SXT AQY221N2SJ AQY221R2SJ EFR1200480A150 LCA220 LCB110S 1618400-5 SR75-1ST AQV212AJ AQV238AD01 AQW414TS AQY210SXT AQY212ST AQY214SXT AQY221N2V1YJ AQY275AXJ G2-1A02-ST G2-1A02-TT G2-1A03-ST G2-1A03TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT G3M-203PL-UTU-1 DC24 CPC2330N 3-1617776-2 CTA2425

[^0]: Please contact

