$\angle \mathcal{C I M E R}$ TECHNOLOGY Single/Dual/Quad 100MHz, Rail-†o-Rail Input and Output, Ultralow 1.9nV/ $\sqrt{\mathrm{Hz}}$ Noise, Low Power Op Amps

 feATURES

 feATURES DESCRIPTION

- Low Noise Voltage: $1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}(100 \mathrm{kHz})$
- Low Supply Current: 3mA/Amp Max
- Gain Bandwidth Product: 100MHz
- Dual LT6203 in Tiny DFN Package
- Low Distortion: -80dB at 1MHz
- Low Offset Voltage: $500 \mu \mathrm{~V}$ Max
- Wide Supply Range: 2.5V to 12.6 V
- Input Common Mode Range Includes Both Rails
- Output Swings Rail-to-Rail
- Common Mode Rejection Ratio 90dB Typ
- Unity Gain Stable
- Low Noise Current: $1.1 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Output Current: 30mA Min
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Low Profile (1 mm) SOT-23 (ThinSOT ${ }^{\text {TM }}$) Package

APPLICATIONS

- Low Noise, Low Power Signal Processing
- Active Filters
- Rail-to-Rail Buffer Amplifiers
- Driving A/D Converters
- DSL Receivers
- Battery Powered/Battery Backed Equipment

The LT®6202/LT6203/LT6204 are single/dual/quad low noise, rail-to-rail input and output unity gain stable op amps that feature $1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ noise voltage and draw only 2.5 mA of supply current per amplifier. These amplifiers combine very low noise and supply current with a 100 MHz gain bandwidth product, a $25 \mathrm{~V} / \mathrm{\mu s}$ slew rate, and are optimized for low supply signal conditioning systems.

These amplifiers maintain their performance for supplies from 2.5 V to 12.6 V and are specified at $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies. Harmonic distortion is less than -80 dBc at 1 MHz making these amplifiers suitable in low power data acquisition systems.
The LT6202 is available in the 5-pin TSOT-23 and the 8-pin SO, while the LT6203 comes in 8-pin SO and MSOP packages with standard op amp pinouts. For compact layouts the LT6203 is also available in a tiny fine line leadless package (DFN), while the quad LT6204 is available in the 16-pin SSOP and 14-pin SO packages. These devices can be used as plug-in replacements for many op amps to improve input/output range and noise performance.

[^0]
TYPICAL APPLICATION

Low Noise 4- to 2-Wire Local Echo Cancellation Differential Receiver

Line Receiver Integrated Noise 25kHz to 150kHz

LT6202/LT6203/LT6204

ABSOLUTE MAXIMUUM RATINGS (Nole 1)

Total Supply Voltage (V^{+}to V^{-})..............................12.6V
Input Current (Note 2).. $\pm 40 \mathrm{~mA}$
Output Short-Circuit Duration (Note 3) Indefinite
Operating Temperature Range (Note 4)
LT6202C/LT6203C/LT6204C \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6202I/LT6203I/LT6204I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6202H/LT6203H............................ $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Specified Temperature Range (Note 4) LT6202C/LT6203C/LT6204C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6202I/LT6203I/LT6204I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6202H/LT6203H............................ $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
$300^{\circ} \mathrm{C}$

PIn CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT6202CS5\#PBF	LT6202CS5\#TRPBF	LTG6	5-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6202IS5\#PBF	LT6202IS5\#TRPBF	LTG6	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6202HS5\#PBF	LT6202HS5\#TRPBF	LTG6	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT6202CS8\#PBF	LT6202CS8\#TRPBF	6202	8-Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6202IS8\#PBF	LT6202IS8\#TRPBF	62021	8-Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6203CDD\#PBF	LT6203CDD\#TRPBF	LAAP	8-Lead (3mm $\times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6203IDD\#PBF	LT6203IDD\#TRPBF	LAAP	8-Lead (3mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6203CMS8\#PBF	LT6203CMS8\#TRPBF	LTB2	8-Lead Plastic MSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6203IMS8\#PBF	LT6203IMS8\#TRPBF	LTB3	8-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6203HMS8\#PBF	LT6203HMS8\#TRPBF	LTB3	8-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT6203CS8\#PBF	LT6203CS8\#TRPBF	6203	8-Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6203IS8\#PBF	LT6203IS8\#TRPBF	62031	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6204CGN\#PBF	LT6204CGN\#TRPBF	6204	16-Lead Narrow Plastic SSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6204IGN\#PBF	LT6204IGN\#TRPBF	62041	16-Lead Narrow Plastic SSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6204CS\#PBF	LT6204CS\#TRPBF	LT6204CS	14-Lead Plastic S0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6204IS\#PBF	LT6204IS\#TRPBF	LT6204IS	14-Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

LT6202/LT6203/LT6204

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{oV} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply,
unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \text { OV, } \mathrm{V}_{\text {CM }}=\text { Half Supply } \\ & \text { LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 TSOT-23 } \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.7 \end{aligned}$	mV mV
		$\begin{aligned} & V_{S}=3 V, \text { OV, } V_{\text {CM }}=\text { Half Supply } \\ & \text { LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 TSOT-23 } \end{aligned}$		$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.7 \end{aligned}$	mV
		$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+}$to V^{-} LT6203, LT6204, LT6202S8 LT6202 TSOT-23		$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$	mV mV
		$V_{S}=3 V, O V, V_{C M}=V^{+} \text {to } V^{-}$ LT6203, LT6204, LT6202S8 LT6202 TSOT-23		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.7 \end{aligned}$	mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 5)	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$		$\begin{gathered} 0.15 \\ 0.3 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 1.8 \end{aligned}$	mV mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{aligned} & \hline-7.0 \\ & -8.8 \\ & \hline \end{aligned}$	$\begin{gathered} \hline-1.3 \\ 1.3 \\ -3.3 \end{gathered}$	2.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
ΔI_{B}	I_{B} Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}		4.7	11.3	$\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 5)			0.1	0.6	$\mu \mathrm{A}$
los	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 0.12 \\ & 0.07 \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1.1 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	Input Noise Voltage	0.1 Hz to 10 Hz		800		$\mathrm{n} \mathrm{VP}_{\text {P-P }}$
e_{n}	Input Noise Voltage Density	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{f}=10 \mathrm{kHz}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 2 \\ 2.9 \end{gathered}$	4.5	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
in_{n}	Input Noise Current Density, Balanced Input Noise Current Density, Unbalanced	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$		$\begin{gathered} 0.75 \\ 1.1 \end{gathered}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
	Input Resistance	Common Mode Differential Mode		$\begin{gathered} \hline 4 \\ 12 \end{gathered}$		$M \Omega$ $\mathrm{k} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Common Mode Differential Mode		$\begin{aligned} & 1.8 \\ & 1.5 \end{aligned}$		pF pF
AVOL	Large Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, R_{L}=100 \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { to } \mathrm{V}_{S} / 2 \end{aligned}$	$\begin{aligned} & 40 \\ & 8.0 \\ & 17 \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & 14 \\ & 40 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=V^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, V_{C M}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V_{C M}=V^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \\ & 56 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 83 \\ 100 \\ 80 \\ \hline \end{gathered}$		dB dB dB
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=1.5 \mathrm{~V}$ to 3.5 V	85	120		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	60	74		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to 10V, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	70	100		dB
	Minimum Supply Voltage (Note 6)		2.5			V
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW Saturation (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SINK }}=20 \mathrm{~mA} \\ & V_{S}=3 V, I_{\text {SINK }}=15 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline 5 \\ 85 \\ 240 \\ 185 \\ \hline \end{gathered}$	$\begin{gathered} \hline 50 \\ 190 \\ 460 \\ 350 \\ \hline \end{gathered}$	mV mV mV mV
V_{OH}	Output Voltage Swing HIGH Saturation (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=20 \mathrm{~mA} \\ & V_{S}=3 V, I_{\text {SOURCE }}=15 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline 25 \\ 90 \\ 325 \\ 225 \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ 210 \\ 600 \\ 410 \\ \hline \end{gathered}$	mV mV mV mV

LT6202/LT6203/LT6204

ELECTRICL CHARACTERSTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=$ half supply,
unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$I_{\text {SC }}$	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 25 \end{aligned}$	$\begin{aligned} & \pm 45 \\ & \pm 40 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
I_{S}	Supply Current per Amp	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.3 \end{aligned}$	$\begin{gathered} \hline 3.0 \\ 2.85 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}, \mathrm{V}_{S}=5 \mathrm{~V}$		90		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	17	24		V/ us
FPBW	Full Power Bandwidth (Note 9)	$V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	1.8	2.5		MHz
$\mathrm{t}_{\text {S }}$	Settling Time	$0.1 \%, V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		85		ns

The \bullet denotes the specifications which apply over $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}$;
$V_{\text {CM }}=V_{\text {OUT }}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=$ Half Supply LT6203, LT6204, LT6202S8 LT6202 TSOT-23	\bullet		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.9 \end{aligned}$	mV mV
		$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, OV, $\mathrm{V}_{\text {CM }}=$ Half Supply LT6203, LT6204, LT6202S8 LT6202 TSOT-23	\bullet		$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.9 \end{aligned}$	mV mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & \text {LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 TSOT-23 } \end{aligned}$	\bullet		$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$	mV mV
		$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+}$to V^{-} LT6203, LT6204, LT6202S8 LT6202 TSOT-23	\bullet		$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.2 \end{aligned}$	mV mV
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	$\mathrm{V}_{\text {CM }}=$ Half Supply	\bullet		3.0	9.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 5)	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{gathered} 0.15 \\ 0.5 \end{gathered}$	$\begin{aligned} & 0.9 \\ & 2.3 \end{aligned}$	mV mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & V_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & \hline-7.0 \\ & -8.8 \end{aligned}$	$\begin{gathered} \hline-1.3 \\ 1.3 \\ -3.3 \end{gathered}$	2.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{B}}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		4.7	11.3	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {B }}$ Match (Channel-to-Channel) (Note 5)		\bullet		0.1	0.6	$\mu \mathrm{A}$
Ios	Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	\bullet		$\begin{aligned} & 0.15 \\ & 0.10 \\ & 0.15 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1.1 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{S} / 2 \\ & \mathrm{~V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \text { to } \mathrm{V}_{S} / 2 \\ & \mathrm{~V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{t} \text { to } 2.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 35 \\ & 6.0 \\ & 15 \end{aligned}$	$\begin{aligned} & 60 \\ & 12 \\ & 36 \end{aligned}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=V^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, V_{C M}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 60 \\ & 78 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 83 \\ & 97 \\ & 75 \end{aligned}$		dB dB dB
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ to 3.5 V	\bullet	83	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	\bullet	60	70		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	\bullet	70	100		dB
	Minimum Supply Voltage (Note 6)		\bullet	3.0			V
V_{OL}	Output Voltage Swing LOW Saturation (Note 7)	No Load $I_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 5.0 \\ 95 \\ 260 \end{gathered}$	$\begin{gathered} 60 \\ 200 \\ 365 \end{gathered}$	mV mV mV
							620234fd

LT6202/LT6203/LT6204

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$
temperature range. $\mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V_{OH}	Output Voltage Swing HIGH Saturation (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=20 \mathrm{~mA} \\ & V_{S}=3 V, I_{\text {SOURCE }}=15 \mathrm{~mA} \end{aligned}$			$\begin{gathered} 50 \\ 115 \\ 360 \\ 260 \end{gathered}$	$\begin{aligned} & 100 \\ & 230 \\ & 635 \\ & 430 \end{aligned}$	mV mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 20 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 33 \\ & \pm 30 \end{aligned}$		mA mA
Is	Supply Current per Amp	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} \hline 3.1 \\ 2.75 \end{gathered}$	$\begin{aligned} & 3.85 \\ & 3.50 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		87		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	15	21		V/ $/ \mathrm{s}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	\bullet	1.6	2.2		MHz

The \bullet denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\text { Half Supply } \\ & \text { LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 TSOT-23 } \end{aligned}$	\bullet		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	mV mV
		$\begin{aligned} & V_{S}=3 V, \text { OV, } V_{C M}=\text { Half Supply } \\ & \text { LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 TSOT-23 } \end{aligned}$	\bullet		$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$	mV mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & \text {LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 TS0T-23 } \end{aligned}$	\bullet		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	mV mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & \text {LT6203, LT6204, LT6202S8 } \\ & \text { LT6202 TSOT-23 } \end{aligned}$	\bullet		$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.7 \end{aligned}$	mV
Vos TC	Input Offset Voltage Drift (Note 8)	$\mathrm{V}_{\text {CM }}$ = Half Supply	\bullet		3.0	9.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 5)	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.3 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & \hline-7.0 \\ & -8.8 \end{aligned}$	$\begin{gathered} \hline-1.3 \\ 1.3 \\ -3.3 \end{gathered}$	2.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta{ }^{\text {B }}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		4.7	11.3	$\mu \mathrm{A}$
	IB Match (Channel-to-Channel) (Note 5)		\bullet		0.1	0.6	$\mu \mathrm{A}$
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		0.2 0.2 0.2	$\begin{gathered} 1 \\ 1.1 \\ 1.2 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 32 \\ & 4.0 \\ & 13 \end{aligned}$	$\begin{aligned} & 60 \\ & 10 \\ & 32 \end{aligned}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=V^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, V_{C M}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 60 \\ & 75 \\ & 56 \end{aligned}$	$\begin{aligned} & 80 \\ & 95 \\ & 75 \end{aligned}$		dB $d B$ $d B$
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ to 3.5 V	\bullet	80	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10V, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	60	70		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	\bullet	70	100		dB
	Minimum Supply Voltage (Note 6)		\bullet	3.0			V

LT6202/LT6203/LT6204

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$
temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 \mathrm{UT}}=$ half supply, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW Saturation (Note 7)	No Load $I_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{SINK}}=15 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 6 \\ 95 \\ 210 \end{gathered}$	$\begin{gathered} 70 \\ 210 \\ 400 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH Saturation (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=15 \mathrm{~mA} \\ & V_{S}=3 V, I_{\text {SOURCE }}=15 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 55 \\ 125 \\ 370 \\ 270 \end{gathered}$	$\begin{aligned} & \hline 110 \\ & 240 \\ & 650 \\ & 650 \end{aligned}$	mV mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 25 \\ & \pm 23 \end{aligned}$		mA mA
Is	Supply Current per Amp	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 3.3 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 4.1 \\ 3.65 \end{gathered}$	mA mA
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		83		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	12	17		V/ $/ \mathrm{s}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	\bullet	1.3	1.8		MHz

The \bullet denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\text { Half Supply } \\ & \text { LT6203 } \\ & \text { LT6202 } \end{aligned}$	\bullet		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.4 \end{aligned}$	mV mV
		$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=$ Half Supply LT6203 LT6202	\bullet		$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$	mV mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & \text {LT6203 } \\ & \text { LT6202 } \end{aligned}$	\bullet		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.3 \end{aligned}$	mV mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \text {to } \mathrm{V}^{-} \\ & \text {LT6203 } \\ & \text { LT6202 } \end{aligned}$	\bullet		$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.7 \end{aligned}$	mV mV
Vos TC	Input Offset Voltage Drift (Note 8)	$\mathrm{V}_{\text {CM }}$ = Half Supply	\bullet		3.0	9.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 5)	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.3 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 3.0 \end{aligned}$	mV mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & \hline-7.4 \\ & -9.8 \end{aligned}$	$\begin{gathered} \hline-1.3 \\ 1.3 \\ -3.3 \\ \hline \end{gathered}$	2.5	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{B}}$	I_{B} Shift	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$to V^{+}	\bullet		4.7	12.3	$\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 5)		\bullet		0.1	0.6	$\mu \mathrm{A}$
l OS	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & \hline 0.2 \\ & 0.2 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & 1.2 \\ & 1.3 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large Signal Gain	$\begin{aligned} & \mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \text { to } \mathrm{V}_{S} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 29 \\ & 3.7 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 10 \\ & 32 \end{aligned}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=V^{-} \text {to } \mathrm{V}^{+} \\ & V_{S}=5 \mathrm{~V}, V_{C M}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 V, V_{C M}=V^{-} \text {to } V^{+} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 60 \\ & 75 \\ & 56 \end{aligned}$	$\begin{aligned} & 80 \\ & 95 \\ & 75 \end{aligned}$		dB dB dB
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ to 3.5 V	\bullet	80	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=3 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0 \mathrm{~V}$	\bullet	60	70		dB

LT6202/LT6203/LT6204

ELECTRICAL CHARACTERISTICS The e denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$
temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10V, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	\bullet	70	100		dB
	Minimum Supply Voltage (Note 6)		\bullet	3.0			V
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW Saturation (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 6 \\ 95 \\ 210 \end{gathered}$	$\begin{gathered} \hline 70 \\ 220 \\ 420 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH Saturation (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=15 \mathrm{~mA} \\ & V_{S}=3 V, I_{\text {SOURCE }}=15 \mathrm{~mA} \end{aligned}$			$\begin{gathered} 55 \\ 125 \\ 370 \\ 270 \end{gathered}$	$\begin{aligned} & 130 \\ & 255 \\ & 650 \\ & 670 \end{aligned}$	mV mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 V \end{aligned}$	\bullet	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 25 \\ & \pm 23 \end{aligned}$		mA mA
Is	Supply Current per Amp	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & \hline 3.3 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 4.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		83		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	12	17		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	\bullet	1.3	1.8		MHz

$T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 5 \mathrm{~V} ; V_{C M}=V_{O U T}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6203, LT6204, LT6202S8 } \\ & V_{C M}=0 V \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.6 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5.5 \\ & 5.0 \end{aligned}$	mV mV mV
		$\begin{aligned} & \text { LT6202 SOT-23 } \\ & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.6 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 6.0 \\ & 5.5 \end{aligned}$	mV mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 5)	$\begin{aligned} & V_{\mathrm{CM}}=0 \mathrm{~V} \\ & V_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	mV mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\begin{aligned} & \hline-7.0 \\ & -9.5 \end{aligned}$	$\begin{gathered} \hline-1.3 \\ 1.3 \\ -3.8 \end{gathered}$	3.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\triangle{ }^{\text {B }}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}		5.3	12.5	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {B }}$ Match (Channel-to-Channel) (Note 5)			0.1	0.6	$\mu \mathrm{A}$
10 S	Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \\ & \hline \end{aligned}$		$\begin{gathered} 0.15 \\ 0.2 \\ 0.35 \end{gathered}$	$\begin{gathered} 1 \\ 1.2 \\ 1.3 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	Input Noise Voltage	0.1 Hz to 10 Hz		800		$n V_{P-P}$
e_{n}	Input Noise Voltage Density	$\begin{aligned} & f=100 \mathrm{kHz} \\ & f=10 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.8 \end{aligned}$	4.5	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Input Noise Current Density, Balanced Input Noise Current Density, Unbalanced	$\mathrm{f}=10 \mathrm{kHz}$		$\begin{gathered} 0.75 \\ 1.1 \end{gathered}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
	Input Resistance	Common Mode Differential Mode		$\begin{gathered} 4 \\ 12 \end{gathered}$		$M \Omega$ $\mathrm{k} \Omega$
$\overline{C_{\text {IN }}}$	Input Capacitance	Common Mode Differential Mode		$\begin{aligned} & \hline 1.8 \\ & 1.5 \\ & \hline \end{aligned}$		pF pF
AVOL	Large Signal Gain	$\begin{aligned} & V_{0}= \pm 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \end{aligned}$	$\begin{aligned} & 75 \\ & 11 \end{aligned}$	$\begin{gathered} 130 \\ 19 \end{gathered}$		V / mV V / mV

LT6202/LT6203/LT6204

ELECTRICAL CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=V^{-} \text {to } V^{+} \\ & V_{C M}=-2 V \text { to } 2 V \end{aligned}$	$\begin{aligned} & 65 \\ & 85 \end{aligned}$	$\begin{aligned} & 85 \\ & 98 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to 2V	85	120		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.25 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	60	74		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{S}= \pm 1.25 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	70	100		dB
V_{OL}	Output Voltage Swing LOW Saturation (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$		$\begin{gathered} 5 \\ 87 \\ 245 \end{gathered}$	$\begin{gathered} 50 \\ 190 \\ 460 \end{gathered}$	mV mV mV
$\overline{\mathrm{V} \mathrm{OH}}$	Output Voltage Swing HIGH Saturation (Note 7)	$\begin{aligned} & \text { No Load } \\ & l_{\text {SOURCE }}=5 \mathrm{~mA} \\ & \text { I }_{\text {SOURCE }}=20 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{gathered} 40 \\ 95 \\ 320 \end{gathered}$	$\begin{gathered} 95 \\ 210 \\ 600 \end{gathered}$	mV mV mV
ISC	Short-Circuit Current		± 30	± 40		mA
I_{S}	Supply Current per Amp			2.8	3.5	mA
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	70	100		MHz
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	18	25		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	1.9	2.6		MHz
ts	Settling Time	$0.1 \%, V_{\text {STEP }}=2 V, A_{V}=-1, R_{L}=1 \mathrm{k}$		78		ns
dG	Differential Gain (Note 10)	$A_{V}=2, R_{F}=R_{G}=499 \Omega, R_{L}=2 k$		0.05		\%
dP	Differential Phase (Note 10)	$A_{V}=2, R_{F}=R_{G}=499 \Omega, R_{L}=2 k$		0.03		DEG

The \bullet denotes the specifications which apply over $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{S}= \pm 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=0 \mathrm{~V}$, unless otherwise noted.

LT6202/LT6203/LT6204

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$
temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	60	70		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	70	100		dB
V_{0}	Output Voltage Swing LOW Saturation (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $I_{\text {SINK }}=15 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 6 \\ 95 \\ 210 \end{gathered}$	$\begin{gathered} 70 \\ 200 \\ 400 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH Saturation (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=20 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 65 \\ 125 \\ 350 \end{gathered}$	$\begin{aligned} & 120 \\ & 240 \\ & 625 \end{aligned}$	mV mV mV
$I_{\text {SC }}$	Short-Circuit Current		\bullet	± 25	± 34		mA
Is	Supply Current per Amp		\bullet		3.5	4.3	mA
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		95		MHz
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	16	22		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	\bullet	1.7	2.3		MHz

The \bullet denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Vos	Input Offset Voltage	$\begin{aligned} & \text { LT6203, LT6204, LT6202S8 } \\ & V_{\text {CM }}=0 V \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 1.7 \\ & 3.8 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 7.5 \\ & 6.6 \end{aligned}$	$m V$ $m V$ $m V$
		$\begin{aligned} & \text { LT6202 SOT-23 } \\ & V_{\text {CM }}=0 \mathrm{~V} \\ & V_{\text {CM }}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 1.7 \\ & 3.8 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 7.7 \\ & 6.7 \end{aligned}$	mV mV mV
V ${ }_{\text {OS TC }}$	Input Offset Voltage Drift (Note 8)	$\mathrm{V}_{\text {CM }}=$ Half Supply	\bullet		7.5	24	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 5)	$\begin{aligned} & V_{\mathrm{CM}}=0 \mathrm{~V} \\ & V_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \end{aligned}$	mV mV
I_{B}	Input Bias Current	$\begin{aligned} & V_{\mathrm{CM}}=\text { Half Supply } \\ & V_{\mathrm{CM}}=\mathrm{V}^{+} \\ & V_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & \hline-7.0 \\ & -10 \\ & \hline \end{aligned}$	$\begin{gathered} \hline-1.4 \\ 1.8 \\ -4.5 \end{gathered}$	3.6	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\Delta{ }^{\text {B }}$	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		5.4	13	$\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 5)		\bullet		0.15	0.7	$\mu \mathrm{A}$
Ios	Input Offset Current	$\begin{aligned} & V_{\text {CM }}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{array}{r} 0.15 \\ 0.3 \\ 0.5 \\ \hline \end{array}$	$\begin{gathered} 1 \\ 1.2 \\ 1.6 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large Signal Gain	$\begin{aligned} & V_{0}= \pm 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 1.5 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=100 \end{aligned}$	\bullet	$\begin{aligned} & 60 \\ & 6.0 \end{aligned}$	$\begin{gathered} 110 \\ 13 \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=V^{-} \text {to } V^{+} \\ & V_{C M}=-2 V \text { to } 2 V \end{aligned}$	\bullet	$\begin{aligned} & \hline 65 \\ & 80 \end{aligned}$	$\begin{aligned} & 84 \\ & 95 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to 2 2 V	\bullet	80	110		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	60	70		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	70	100		dB
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW Saturation (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{SINK}}=15 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 7 \\ 98 \\ 260 \end{gathered}$	$\begin{gathered} 75 \\ 205 \\ 500 \end{gathered}$	mV mV mV

LT6202/LT6203/LT6204

ELECTRICRL CHARACTERSTICS The o denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$
temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{OV}$, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OH }}$	Output Voltage Swing HIGH Saturation (Note 7)	$\begin{aligned} & \text { No Load } \\ & \text { ISOURCE }=5 \mathrm{~mA} \\ & \text { ISOURCE }=15 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{gathered} 70 \\ 130 \\ 360 \end{gathered}$	$\begin{aligned} & 130 \\ & 250 \\ & 640 \end{aligned}$	mV mV mV
ISC	Short-Circuit Current		\bullet	± 15	± 25		mA
Is	Supply Current per Amp		\bullet		3.8	4.5	mA
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		90		MHz
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	13	18		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full Power Bandwidth (Note 9)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	\bullet	1.4	1.9		MHz

The - denotes the specifications which apply over $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<125^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6203 } \\ & V_{C M}=0 \mathrm{~V} \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 1.7 \\ & 3.8 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 9.1 \\ & 7.6 \end{aligned}$	mV mV mV
		$\begin{aligned} & \hline \text { LT6202 } \\ & V_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	\bullet		$\begin{aligned} & 1.7 \\ & 3.8 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Vos TC	Input Offset Voltage Drift (Note 8)	$V_{\text {CM }}=$ Half Supply	\bullet		7.5	24	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 5)	$\begin{aligned} & V_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{-} \text {to } \mathrm{V}^{+} \end{aligned}$	\bullet		$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=\text { Half Supply } \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{+} \\ & \mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} \hline-7.3 \\ -11.1 \end{gathered}$	$\begin{gathered} \hline-1.4 \\ 1.8 \\ -4.5 \end{gathered}$	4.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Δl_{B}	I_{B} Shift	$\mathrm{V}_{\text {CM }}=\mathrm{V}^{-}$to V^{+}	\bullet		5.4	15	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {B }}$ Match (Channel-to-Channel) (Note 5)		\bullet		0.15	0.7	$\mu \mathrm{A}$
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=\text { Half Supply } \\ & V_{C M}=V^{+} \\ & V_{C M}=V^{-} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 0.15 \\ 0.3 \\ 0.5 \end{gathered}$	$\begin{aligned} & 1.1 \\ & 1.3 \\ & 1.6 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
AVOL	Large Signal Gain	$\begin{aligned} & V_{0}= \pm 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 1.5 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=100 \end{aligned}$	\bullet	$\begin{aligned} & 54 \\ & 5.7 \end{aligned}$	$\begin{gathered} 110 \\ 13 \end{gathered}$		$\begin{aligned} & \hline \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}=V^{-} \text {to } V^{+} \\ & V_{C M}=-2 V \text { to } 2 V \end{aligned}$	\bullet	$\begin{aligned} & 65 \\ & 79 \end{aligned}$	$\begin{aligned} & 84 \\ & 95 \end{aligned}$		$\begin{aligned} & \overline{\mathrm{dB}} \\ & \mathrm{~dB} \end{aligned}$
	CMRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to 2 2 V	\bullet	80	110		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	60	70		dB
	PSRR Match (Channel-to-Channel) (Note 5)	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	70	100		dB
V_{OL}	Output Voltage Swing LOW Saturation (Note 7)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{SINK}}=15 \mathrm{~mA}$	\bullet		$\begin{gathered} \hline 7 \\ 98 \\ 260 \\ \hline \end{gathered}$	$\begin{gathered} \hline 75 \\ 215 \\ 500 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH Saturation (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=15 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 70 \\ 130 \\ 360 \end{gathered}$	$\begin{aligned} & 150 \\ & 270 \\ & 640 \end{aligned}$	mV mV mV
ISC	Short-Circuit Current		\bullet	± 15	± 25		mA

 temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IS	Supply Current per Amp		\bullet	3.8	5.3	mA
GBW	Gain Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet	90	MHz	
SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=4 \mathrm{~V}$	\bullet	13	18	$\mathrm{~V} / \mathrm{\mu S}$
FPBW	Full Power Bandwidth (Note 9$)$	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$	\bullet	1.4	1.9	MHz

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Inputs are protected by back-to-back diodes and diodes to each supply. If the inputs are taken beyond the supplies or the differential input voltage exceeds 0.7 V , the input current must be limited to less than 40 mA .
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 4: The LT6202C/LT6203C/LT6204C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT6202C/LT6203C/LT6204C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, but are not tested or QA sampled at these temperatures. The LT6202I/LT6203I/LT6204I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The LT6202H and LT6203H are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Note 5: Matching parameters are the difference between the two amplifiers A and D and between B and C of the LT6204; between the two amplifiers of the LT6203. CMRR and PSRR match are defined as follows: CMRR and PSRR are measured in $\mu \mathrm{V} / \mathrm{V}$ on the identical amplifiers. The difference is calculated between the matching sides in $\mu \mathrm{V} / \mathrm{V}$. The result is converted to dB .
Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test.
Note 7: Output voltage swings are measured between the output and power supply rails.
Note 8: This parameter is not 100% tested.
Note 9: Full-power bandwidth is calculated from the slew rate: FPBW $=\mathrm{SR} / 2 \pi \mathrm{~V}_{\mathrm{P}}$
Note 10: Differential gain and phase are measured using a Tektronix TSG120YC/NTSC signal generator and a Tektronix 1780R Video Measurement Set. The resolution of this equipment is 0.1% and 0.1°. Ten identical amplifier stages were cascaded giving an effective resolution of 0.01% and 0.01°.

TYPICAL PERFORMANCE CHARACTERISTICS

LT6202/LT6203/LT6204

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

Unbalanced Noise Current vs Frequency

Gain Bandwidth and Phase
Margin vs Temperature

LT6202/03/04 G21

LT6202/03/04 G22
0.1 Hz to 10 Hz Output Voltage Noise

Gain Bandwidth and Phase

Margin vs Supply Voltage

LT6202/03/04 G24

Slew Rate vs Temperature

LT6202/03/04 G25

Output Impedance vs Frequency

LT6202/03/04 G26

LT6202/03/04 G29
 (Inverting)

Channel Separation vs Frequency

Series Output Resistor
vs Capacitive Load

Maximum Undistorted Output

 Signal vs Frequency

Power Supply Rejection Ratio vs Frequency

Settling Time vs Output Step

 (Noninverting)

LT6202/03/04 G31

LT6202/LT6203/LT6204

TYPICAL PERFORMANCE CHARACTERISTICS

LT6202/03/04 G35

Distortion vs Frequency

200ns/DIV
$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}$
$A_{V}=1$
$R_{L}=1 k$
$\pm 5 \mathrm{~V}$ Large-Signal Response

200ns/DIV

$R_{L}=1 \mathrm{k}$
LT620203044 G40

LT6202/03/04 G38
号

5V Small-Signal Response

200ns/DIV

$$
\begin{aligned}
& V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\
& A_{\mathrm{V}}=1 \\
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}
\end{aligned}
$$

[^1]17

LT6202/LT6203/LT6204

APPLICATIONS INFORMATION

Amplifier Characteristics

Figure 1 shows a simplified schematic of the LT6202/ LT6203/LT6204, which has two input differential amplifiers in parallel that are biased on simultaneously when the common mode voltage is at least 1.5 V from either rail. This topology allows the input stage to swing from the positive supply voltage to the negative supply voltage. As the common mode voltage swings beyond $\mathrm{V}_{C C}-1.5 \mathrm{~V}$, current source I_{1} saturates and current in Q1/Q4 is zero. Feedback is maintained through the Q2/Q3 differential amplifier, but with an input g_{m} reduction of $1 / 2$. A similar effect occurs with I_{2} when the common mode voltage swings within 1.5 V of the negative rail. The effect of the g_{m} reduction is a shift in the $V_{O S}$ as I_{1} or I_{2} saturate.

Input bias current normally flows out of the + and - inputs. The magnitude of this current increases when the input common mode voltage is within 1.5 V of the negative rail, and only Q1/Q4 are active. The polarity of this current reverses when the input common mode voltage is within 1.5 V of the positive rail and only Q2/Q3 are active.

The second stage is a folded cascode and current mirror that converts the input stage differential signals to a single ended output. Capacitor C 1 reduces the unity cross frequency and improves the frequency stability without degrading the gain bandwidth of the amplifier. The differential drive generator supplies current to the output transistors that swing from rail-to-rail.

Figure 1. Simplified Schematic

APPLICATIONS INFORMATION

Input Protection

There are back-to-back diodes, D1 and D2, across the + and - inputs of these amplifiers to limit the differential input voltage to $\pm 0.7 \mathrm{~V}$. The inputs of the LT6202/LT6203/ LT6304 do not have internal resistors in series with the input transistors. This technique is often used to protect the input devices from over voltage that causes excessive currents to flow. The addition of these resistors would significantly degrade the low noise voltage of these amplifiers. For instance, a 100Ω resistor in series with each input would generate $1.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of noise, and the total amplifier noise voltage would rise from $1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ to $2.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. Once the input differential voltage exceeds $\pm 0.7 \mathrm{~V}$, steady state current conducted though the protection diodes should be limited to $\pm 40 \mathrm{~mA}$. This implies 25Ω of protection resistance per volt of continuous overdrive beyond $\pm 0.7 \mathrm{~V}$. The input diodes are rugged enough to handle transient currents due to amplifier slew rate overdrive or momentary clipping without these resistors.
Figure 2 shows the input and output waveforms of the amplifier driven into clipping while connected in a gain of $A_{V}=1$. When the input signal goes sufficiently beyond the power supply rails, the input transistors will saturate. When saturation occurs, the amplifier loses a stage of phase inversion and the output tries to change states. Diodes D1 and D2 forward bias and hold the output within

Figure 2. $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1$ with Large Overdrive
a diode drop of the input signal. In this photo, the input signal generator is clipping at $\pm 35 \mathrm{~mA}$, and the output transistors supply this generator current through the protection diodes.

With the amplifier connected in a gain of $A_{V} \geq 2$, the output can invert with very heavy input overdrive. To avoid this inversion, limit the input overdrive to 0.5 V beyond the power supply rails.

ESD

The LT6202/LT6203/LT6204 have reverse-biased ESD protection diodes on all inputs and outputs as shown in Figure 1. If these pins are forced beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to one hundred milliamps or less, no damage to the device will occur.

Noise

The noise voltage of the LT6202/LT6203/LT6204 is equivalent to that of a 225Ω resistor, and for the lowest possible noise it is desirable to keep the source and feedback resistance at or below this value, i.e. $R_{S}+R_{G} \| R_{F B} \leq 225 \Omega$. With $R_{S}+R_{G} \| R_{F B}=225 \Omega$ the total noise of the amplifier is: $e_{\mathrm{n}}=\sqrt{(1.9 \mathrm{nV})^{2}+(1.9 \mathrm{nV})^{2}}=2.7 \mathrm{nV}$. Below this resistance value, the amplifier dominates the noise, but in the resistance region between 225Ω and approximately $10 \mathrm{k} \Omega$, the noise is dominated by the resistor thermal noise. As the total resistance is further increased, beyond 10k, the noise current multiplied by the total resistance eventually dominates the noise.
The product of $e_{n} \cdot \sqrt{I_{\text {SUPPLY }}}$ is an interesting way to gauge low noise amplifiers. Many low noise amplifiers with low e_{n} have high ISUPPLY Current. In applications that require low noise with the lowest possible supply current, this product can prove to be enlightening. The LT6202/LT6203/LT6204 have an $\mathrm{e}_{\mathrm{n}}, \sqrt{I_{\text {SUPPLY }}}$ product of 3.2 per amplifier, yet it is commonto see amplifiers with similar noise specifications have an $\mathrm{e}_{\mathrm{n}} \bullet \sqrt{I_{\text {SUPPLY }}}$ product of 4.7 to 13.5.
For a complete discussion of amplifier noise, see the LT1028 data sheet.

LT6202/LT6203/LT6204

TYPICAL APPLICATIONS

Low Noise, Low Power 1M Ω AC
 Photodiode Transimpedance Amplifier

Figure 3 shows the LT6202 applied as a transimpedance amplifier (TIA). The LT6202 forces the BF862 ultralow-noise JFET source to OV, with R3 ensuring that the JFET has an $I_{\text {DRAIN }}$ of 1 mA . The JFET acts as a source follower, buffering the input of the LT6202 and making it suitable for the high impedance feedback elements R1 and R2. The BF862 has a minimum $I_{D S S}$ of 10 mA and a pinchoff voltage between -0.3 V and -1.2 V . The JFET gate and the LT6202 output

Figure 3. Low Noise, Low Power 1M Ω AC Photodiode Transimpedance Amplifier
therefore sit at a point slightly higher than one pinchoff voltage below ground (typically about -0.6 V). When the photodiode is illuminated, the current must come from the LT6202's output through R1 and R2, as in a normal TIA. Amplifier input noise density and gain-bandwidth product were measured at $2.4 \mathrm{nV} / \mathrm{Hz}$ and 100 MHz , respectively. Note that because the JFET has a high g_{m}, approximately $1 / 80 \Omega$, its attenuation looking into R3 is only about 2%. Gain-bandwidth product was measured at 100 MHz and the closed-loop bandwidth using a 3pF photodiode was approximately 1.4 MHz .

Precision Low Noise, Low Power, 1M Ω Photodiode Transimpedance Amplifier

Figure 4 shows the LT6202 applied as a transimpedance amplifier (TIA), very similar to that shown in Figure 3. In this case, however, the JFET is not allowed to dictate the DC-bias conditions. Rather than being grounded, the LT6202's noninverting input is driven by the LTC2050 to the exact state necessary for zero JFET gate voltage. The noise performance is nearly identical to that of the circuit in Figure 3, with the additional benefit of excellent DC performance. Input offset was measured at under $200 \mu \mathrm{~V}$ and output noise was within $2 \mathrm{mV} \mathrm{V}_{\text {-p }}$ overa20MHz bandwidth.

Figure 4. Precision Low Noise, Low Power Transimpedance Amplifier

LT6202/LT6203/LT6204

TYPICAL APPLICATIONS

Single-Supply 16-Bit ADC Driver

Figure 5 shows the LT6203 driving an LTC1864 unipolar 16 -bit A/D converter. The bottom half of the LT6203 is in a gain-of-one configuration and buffers the 0 V negative full-scale signal $V_{\text {Low }}$ into the negative input of the LTC1864. The top half of the LT6203 is in a gain-of-ten configuration referenced to the buffered voltage $\mathrm{V}_{\text {LOW }}$ and drives the positive input of the LTC1864. The input range of the LTC1864 is 0 V to 5 V , but for best results the input range of $\mathrm{V}_{\text {IN }}$ should be from $\mathrm{V}_{\text {Low }}$ (about 0.4 V) to about 0.82 V . Figure 6 shows an FFT obtained with a 10.1318 kHz coherent input waveform, from 8192 samples with no windowing or averaging. Spurious free dynamic range is seen to be about 100 dB .

Although the LTC1864 has a sample rate far below the gain bandwidth of the LT6203, using this amplifier is not necessarily a case of overkill. The designer is reminded that A/D converters have sample apertures that are vanishingly small (ideally, infinitesimally small) and make demands on the upstream circuitry far in excess of what is implied by the innocent-looking sample rate. In addition, when an A/D converter takes a sample, it applies a small capacitor to its inputs with a fair amount of glitch energy and expects the voltage on the capacitor to settle to the true value very quickly. Finally, the LTC1864 has a 20MHz analog input bandwidth and can be used in undersampling applications, again requiring a source bandwidth higher than Nyquist.

Figure 5. Single-Supply 16-Bit ADC Driver

LT6202/03/04 F06
Figure 6. FFT Showing 100dB SFDR

LT6202/LT6203/LT6204

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

GN Package

16-Lead Plastic SSOP (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1641)
(Resence LTC DWG

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660 Rev F)

LT6202/LT6203/LT6204

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

LT6202/LT6203/LT6204

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
S Package
14-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

NOTE:

1. DIMENSIONS IN $\frac{\text { NLCHES }}{\text { (MILLIMETERS) }}$
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)

LT6202/LT6203/LT6204

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
S5 Package
5-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1635)

REVISIO HISTORY (Revision history begins at Rev C)

REV	DATE	DESCRIPTION	PAGE NUMBER
C	$5 / 11$	Revised units to M Ω for Input Resistance Common Mode	3
D	$12 / 11$	Corrected LT part number in the Description section Added H-grade Removed DD package junction temperature and storage temperature range in Absolute Maximum Ratings and revised $T_{J M A X}$ value for S5 and DD packages and θ_{JA} for DD package Revised $V_{\text {OS }}$ conditions in the Electrical Characteristics table	$1-12$

LT6202/LT6203/LT6204

TYPICAL APPLICATION

Low Noise Differential Amplifier with Gain Adjust and Common Mode Control

Low Noise Differential Amplifier Frequency Response

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1028	Single, Ultralow Noise 50MHz Op Amp	$1.1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT1677	Single, Low Noise Rail-to-Rail Amplifier	3V Operation, $2.5 \mathrm{~mA}, 4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}, 60 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 \mathrm{~S}}$
LT1722/LT1723/LT1724	Single/Dual/Quad Low Noise Precision Op Amps	70V/us Slew Rate, $400 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 \mathrm{~S}}$, $3.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}, 3.7 \mathrm{~mA}$
LT1800/LT1801/LT1802	Single/Dual/Quad Low Power 80MHz Rail-to-Rail Op Amps	$8.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, 2mA Max Supply
LT1806/LT1807	Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifiers	2.5V Operation, $550 \mu \mathrm{~V}$ Max $\mathrm{V}_{\text {OS }}, 3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT6200	Single Ultralow Noise Rail-to-Rail Amplifier	$0.95 \mathrm{nV} / \sqrt{\mathrm{Hz}}, 165 \mathrm{MHz}$ Gain Bandwidth

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Operational Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
5962-8851302HA UPC259G2-A MAX4265EUA MAX4351EKA+T MAX4350EXK+T NJM324CG-TE2 LT1809IS6\#TRM LT1801IMS8 LT1993CUD-4\#PBF MAX4203EUA+T MAX4018EEE+T MAX4416EUA+T MAX4362EUB+T MAX4285EUT+T MAX4213ESA+T MAX4022EEE+T NJM3472G-TE2 MAX4213EUA+T LTC6226IS8\#PBF LTC6226HS8\#PBF THS4222DGNR 5962-9098001M2A 59629151901M2A 5962-9325801M2A JM38510/11905BPA ADA4895-2ARMZ-R7 ADA4807-4ARUZ ADA4806-1ARJZ-R7 MAX9001EUB+ MAX4452EXKT MAX4412EXK+T MAX4381EUB+ MAX4031EESD MAX4392EUA+ MAX4390EXT+T MAX4383EUD+ MAX4222EEE+ MAX4022EEE+ OPA2677IDDAR OPA356AQDBVRQ1 THS6042ID THS4221DBVR THS4081CD ADA4858-3ACPZR7 EL5263ISZ-T7 LT1007CS8\#PBF LTC6400IUD-20\#PBF LT1497CS\#PBF LT1007CN8\#PBF LT1127CSW\#PBF

[^0]: $\boldsymbol{\mathcal { O }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

[^1]: $V_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$
 $A_{V}=2$

