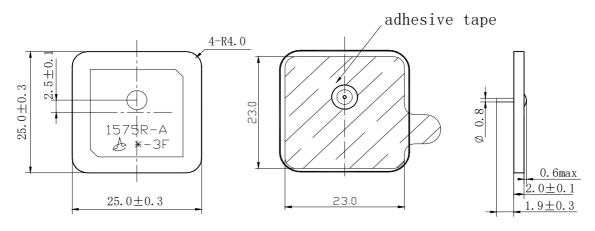


1 SCOPE


This specification shall cover the characteristics of the dielectric antenna element with the type ANT1575-2520A

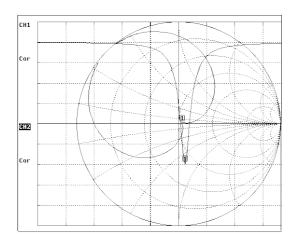
2 PART NO.

PART NUMBER	CUSTOMER PART NO	SPECIFICATION NO
ANT1575-2520A		

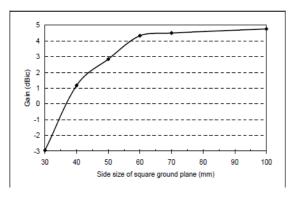
3 OUTLINE DRAWING AND DIMENSIONS

- 3.1 Appearance: No visible damage and dirt.
- 3.2 The products conform to the RoHS directive and national environment protection law.
- 3.3 Dimensions

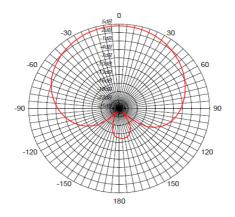
4 ELECTRICAL SPECIFICATIONS

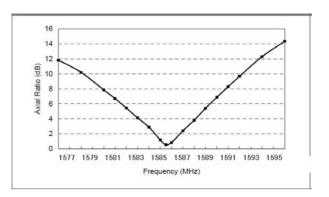

4.1 Performance Characteristics

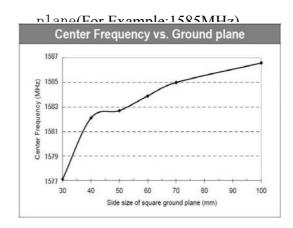
Items	Content	
Nominal frequency MHz	1575.42 ± 1.023	
Center frequency MHz (on the special PCB ground plane)	1575 ± 3.0	
Impedance(^Ω)	50±10	
VSWR at Fo max	1.5	
Polarization Model	RHCP	
Frequency Temperature Coefficient	20ppm/deg.°C max	



SRPASSIVES

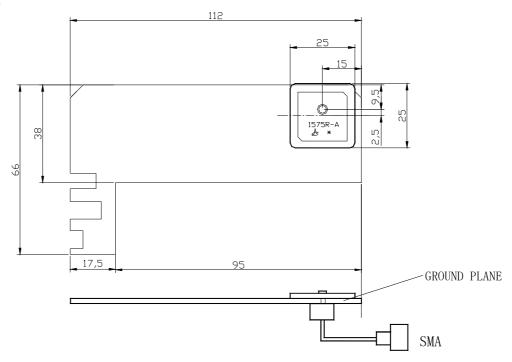

4.2 Impedance Characteristic


4.4 Antenna Gain vs. Ground Plane Size (For Example:1585MHz)


4.6 The Normalized Antenna Gain Chart (For Example:1585MHz)

4.3 Measured Axial Ratio
For Example:1585MHz,
70mm square ground plane

4.5 Center Frequency vs. Ground

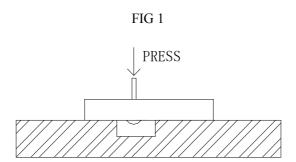


5 TEST

5.1 Test Conditions

Parts shall be measured under a condition (Temp.: $20^{\circ}\text{C} \pm 15^{\circ}\text{C}$, Humidity : $65\% \pm 20\%$ R.H.).

5.2 Test Jig



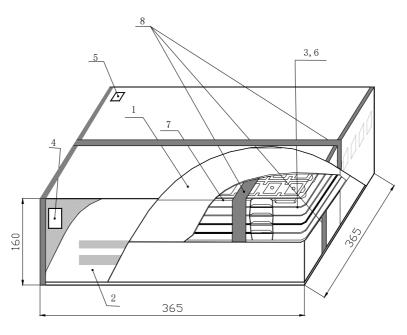
6 ENVIRONMENTAL TEST

No.	Item	Test Condition	Remark
6.1	Humidity Test	The device is subjected to 90%~95% relative humidity $60^{\circ}C \pm 3^{\circ}C$ for 96h~98h,then dry out at $25^{\circ}C \pm 5^{\circ}C$ and less than 65% relative humidity for $2h$ ~4h. After dry out the device shall satisfy the specification in table 1.	It shall fulfill the specifications in Table 1.
6.2	High Temperature Exposure	The device shall satisfy the specification in table 1 after leaving at 105 °C for $96h\sim98h$, provided it would be measured after $2h\sim4h$ leaving in 25 °C ±5 °C and less than 65 % relative humidity.	It shall fulfill the specifications in Table 1.
6.3	Low Temperature	The device shall satisfy the specification in table 1 after leaving at -40 $^{\circ}$ C for 96h~98h,provided it would be measured after 2h~4h leaving in 25 $^{\circ}$ C ± 5 $^{\circ}$ C and less than 65% relative humidity.	It shall fulfill the specifications in Table 1.

6.4	Temperature Cycle	Subject the device to -40 °C for 30 min. followed by a high temperature of 105 °C for 30 min cycling shall be repeated 5 times. At the room temperature for 1h prior to the measurement.	It shall fulfill the specifications in Table 1.
6.5	Vibration	Subject the device to vibration for 2h each in x , y and z axis with the amplitude of 1.5mm, the frequency shall be varied uniformly between the limits of $10\text{Hz}\sim55\text{Hz}$.	It shall fulfill the specifications in Table 1.
6.6	Soldering Test	Lead terminals are heated up to $350^{\circ}\text{C} \pm 10^{\circ}\text{C}$ for $5\text{s} \pm 0.5$ s with brand iron and then element shall be measured after being placed in natural conditions for 1 h. No visible damage and it shall fulfill the specifications in Table 1	It shall fulfill the specifications in Table 1.
6.7	Solder ability	Lead terminals are immersed in soldering bath of $260^{\circ}\text{C} \sim 290^{\circ}\text{C}$ for $3s \pm 0.5s$. More than 95% of the terminal surface of the device shall be covered with fresh solder.	shall be at least
6.8	Terminal Pressure Strength	Force of 2kg is applied to each lead in axial direction for $10s \pm 1$ s (see drawing). No visible damage and it shall fulfill the specifications in Fig 1	damage such as

TABLE 1

Item	Specification After Test (MHz)	
Center Frequency change	±2.0	
-10dB Bandwidth Change	±2.0	



7. PACKAGE

To protect the products in storage and transportation, it is necessary to pack them (outer and inner package). On paper pack, the following requirements are requested.

7.1 Dimensions and Mark

At the end of package, the warning (moisture proof, upward put) should be stick to it. Dimensions and Mark (see below)

unit:mm

NO.	Name	Quantity
1	Inner Box	4
2	Package	1
3	Vacuum Bag	4
4	Certificate of approval	1
5	Label	5
6	Cushion	20
7	Package Base	24
8	Adhesive tape	3.5m

ANT1575-2520A

7.2 Section of package

Package is made of corrugated paper with thickness of 0.8cm.Package has 4 inner boxes, each box has 1 vacuum bag.

7.3 Quantity of package

Per package base 50 elements

Per vacuum bag 5 package bases

Per inner box 1 vacuum bag

Per package 4 inner boxes

(1000 pieces of elements)

7.4 Inner box Dimensions

unit:mm

8. EIAJ Monthly Code

2007 / 2009/2011/2013/2015		2006 / 2008 / 2010/2012/2014	
MONTH	CODE	MONTH	CODE
JAN	A	JAN	N
FEB	В	FEB	P
MAR	С	MAR	Q
APR	D	APR	R
MAY	Е	MAY	S
JUN	F	JUN	T
JUL	G	JUL	U
AUG	Н	AUG	V
SEP	J	SEP	W
OCT	K	OCT	X
NOV	L	NOV	Y
DEC	M	DEC	Z

9. OTHER

- 9.1 Caution of use
- 9.1.1 Please don't apply excess mechanical stress to the component and terminals at soldering.
- 9.1.2 The component may be damaged when an excess stress will be applied.
- 9.1.3 This specification mentions the quality of the component as a single unit. Please insure the component is thoroughly evaluated in your application circuit.
- 9.2 Notice
- 9.2.1 Please return one of these specifications after your signature of acceptance.
- 9.2.2 When something gets doubtful with this specification, we shall jointly work to get an agreement

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Antennas category:

Click to view products by SR Passives manufacturer:

Other Similar products are found below:

CCT FM1 ABFT AD-NM-SMAF 001-0021 CTC110 MAF94149 EXE902SF MMCX-SMA-100 PDQ24496-91NF GAN30084EU 930-033-R A08-HABUF-P5I AAF95035 DG-ANT-20DP-BG-B APAMPGJ-141 1513563-1 OF86315-FNF OP24516DS-91NM A09-HASM-7 EXE902MD EXE902SM SPDA17806/2170LAR APAMPG-117 GPS1575SP26-004 GPS15MGSMA CMD69273P-30NF CMQ69273-30NF RD2458-5-OTDR-NM RD2458-5-RSMA TRAB24/49003 W4120ER5000 W6102B0100 YE572113-30RSMM 108-00014-50 SPDA17RP918 OP24516SX-91NM OP24516SX-91RSMM CMQ69273P-30NF CMS69273-30NF CMS69273P-30NF TRAB24003N TRAB24003NP TRAB8213NP TRAB8903 A09-Y8NF A09-Y11NF A09-HSM-7 A09-F8NF-M A09-F5NF-M