

P-Channel Enhancement Mode Vertical DMOS FETs

Features

- High input impedance and high gain
- Low power drive requirement
- Ease of paralleling
- Low $\mathrm{C}_{\text {iss }}$ and fast switching speeds
- Excellent thermal stability
- Integral source-drain diode
- Free from secondary breakdown

Applications

- Logic level interfaces - ideal for TTL and CMOS
- Solid state relays
- Analog switches
- Power management
- Telecom switches

General Description

This low threshold enhancement-mode (normally-off) transistor utilizes a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermallyinduced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Device	Package Options		$\begin{gathered} \mathrm{BV}_{\mathrm{Dss}} / \mathrm{BV}_{\mathrm{DGS}} \\ (\mathrm{~V}) \end{gathered}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (max) ($\Omega)$	$\begin{gathered} \mathbf{V}_{\mathrm{GS}(\mathrm{th})} \\ (\max) \\ (\mathrm{V}) \end{gathered}$
	TO-236AB (SOT-23)	TO-92			
TP2104	TP2104K1-G	TP2104N3-G	-40	6.0	-2.0

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	$\mathrm{BV}_{\text {DSS }}$
Drain-to-gate voltage	$\mathrm{BV}_{\text {DGS }}$
Gate-to-source voltage	$\pm 20 \mathrm{~V}$
Operating and storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering temperature*	$+300^{\circ} \mathrm{C}$

[^0]
Pin Configuration

SiTP		
2	1	0
Y	4	

$Y Y=$ Year Sealed
WW = Week Sealed = "Green" Packaging

Package may or may not include the following marks: Si or 51
TO-92 (N3)

W = Code for week sealed
\qquad = "Green" Packaging

[^1]
Thermal Characteristics

Package	$\underset{(\mathrm{continuous})^{\dagger}}{\mathrm{I}_{\mathrm{D}}}$	I_{D} (pulsed) (A)	Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (W)	$\begin{gathered} \theta_{j c} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	$\begin{gathered} \boldsymbol{\theta}_{j a} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{DR}}{ }^{2} \\ & (\mathrm{~mA}) \end{aligned}$	$I_{\text {DRM }}$ (A)
TO-236AB (SOT-23)	-160	-0.8	0.36	200	350	-160	-0.8
TO-92	-250	-1.0	0.74	125	170	-250	-1.0

$\dagger I_{D}$ (continuous) is limited by max rated T_{j}.

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$B V_{\text {DSs }}$	Drain-to-source breakdown voltage	-40	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1.0 \mathrm{~mA}$
$V_{G S(t h)}$	Gate threshold voltage	-1.0	-	-2.0	V	$V_{G S}=V_{D S}, I_{D}=-1.0 \mathrm{~mA}$
$\Delta V_{\text {GS(th) }}$	Change in $\mathrm{V}_{\text {GS(th) }}$ with temperature	-	5.8	6.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$V_{G S}=V_{D S}, I_{D}=-1.0 \mathrm{~mA}$
$\mathrm{I}_{\text {GSS }}$	Gate body leakage	-	-1.0	-100	nA	$V_{G S}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$\mathrm{I}_{\text {DSs }}$	Zero gate voltage drain current	-	-	-10	$\mu \mathrm{A}$	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=$ Max Rating
			-	-1.0	mA	$\begin{aligned} & V_{D S}=0.8 \mathrm{Max} \text { Rating, } \\ & V_{G S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
$\mathrm{I}_{\text {DON })}$	On-state drain current	-0.6	-	-	A	$V_{\text {GS }}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-25 \mathrm{~V}$
$\mathrm{R}_{\text {DS(ON) }}$	Static drain-to-source on-state resistance	-	-	10	Ω	$V_{G S}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-50 \mathrm{~mA}$
			-	6.0		$V_{\text {GS }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mathrm{~mA}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{O})}$ with temperature	-	0.55	1.0	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {GS }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mathrm{~mA}$
G_{FS}	Forward transconductance	150	200	-	mmho	$V_{\text {DS }}=-25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-500 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	35	60	pF	$\begin{aligned} & V_{G S}=0 \mathrm{~V}, \\ & V_{D S}=-25 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	22	30		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	8.0	10		
$\mathrm{t}_{\mathrm{d} \text { (ON) }}$	Turn-on delay time	-	4.0	6.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=-500 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
t_{r}	Rise time	-	4.0	8.0		
$\mathrm{t}_{\text {d(OFF) }}$	Turn-off delay time	-	5.0	9.0		
t_{f}	Fall time	-	5.0	8.0		
$\mathrm{V}_{\text {sD }}$	Diode forward voltage drop	-	-1.2	-2.0	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=-500 \mathrm{~mA}$
$\mathrm{t}_{\text {tr }}$	Reverse recovery time	-	400	-	ns	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\text {SD }}=-500 \mathrm{~mA}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu \mathrm{~s}$ pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

Typical Performance Curves

Transconductance vs. Drain Current

Saturation Characteristics

Power Dissipation vs. Temperature

Thermal Response Characteristics

Typical Performance Curves (cont.)

3-Lead TO-236AB (SOT-23) Package Outline (K1)

$2.90 \times 1.30 \mathrm{~mm}$ body, 1.12 mm height (max), 1.90mm pitch

Symbol		A	A1	A2	b	D	E	E1	e	e1	L	L1	$\boldsymbol{\theta}$
Dimension (mm)	MIN	0.89	0.01	0.88	0.30	2.80	2.10	1.20	$\begin{aligned} & 0.95 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 1.90 \\ & \text { BSC } \end{aligned}$	0.20^{+}	$\begin{aligned} & 0.54 \\ & \text { REF } \end{aligned}$	0°
	NOM	-	-	0.95	-	2.90	-	1.30			0.50		-
	MAX	1.12	0.10	1.02	0.50	3.04	2.64	1.40			0.60		8°

JEDEC Registration TO-236, Variation AB, Issue H, Jan. 1999.
\dagger This dimension is a non-JEDEC dimension.
Drawings not to scale.
Supertex Doc.\#: DSPD-3TO236ABK1, Version B072208.

3-Lead TO-92 Package Outline (N3)

Front View

Side View

Bottom View

Symbol		A	b	c	D	E	E1	e	e1	L
Dimensions (inches)	MIN	. 170	. $014{ }^{+}$.014 ${ }^{+}$. 175	. 125	. 080	. 095	. 045	. 500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	. 210	. 022^{+}	. 022^{+}	. 205	. 165	. 105	. 105	. 055	.610*

[^2][^3]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0\#T2 RJK60S5DPK-M0\#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q)

[^0]: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

 * Distance of 1.6 mm from case for 10 seconds.

[^1]: Package may or may not include the following marks: Si or $\$ 1$

[^2]: JEDEC Registration TO-92.

 * This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.
 \dagger This dimension is a non-JEDEC dimension.
 Drawings not to scale.
 Supertex Doc.\#: DSPD-3TO92N3, Version D080408.

[^3]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

