The documentation and process conversion
INCH POUND measures necessary to comply with this revision

MIL-PRF-19500/502E
4 September 2008 SUPERSEDING MIL-PRF-19500/502D 12 March 2004

PERFORMANCE SPECIFICATION SHEET

SEMICONDUCTOR DEVICE, DARLINGTON TRANSISTOR, NPN, SILICON, POWER, TYPES 2N6058 AND 2N6059, JAN, JANTX, AND JANTXV

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product described herein shall consist of this specification sheet and MIL-PRF-19500.

1. SCOPE
1.1 Scope. This specification covers the performance requirements for NPN, Darlington, silicon, power transistors. Three levels of product assurance are provided for each device type as specified in MIL-PRF-19500.
1.2 Physical dimensions. See figure 1 (similar to TO-3).
1.3 Maximum ratings at $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.

Type	$\mathrm{P}_{\mathrm{T}}(1)$ $\mathrm{T}_{\mathrm{C}}=$ $+25^{\circ} \mathrm{C}$	P_{T} $\mathrm{T}_{\mathrm{C}}=$ $+100^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CBO }}$	$\mathrm{V}_{\text {CEO }}$	$\mathrm{V}_{\text {EBO }}$	I_{C}	I_{B}	T_{J} and $\mathrm{T}_{\mathrm{STG}}$
	$\underline{\mathrm{W}}$	$\underline{\mathrm{W}}$	$\underline{\mathrm{Vdc}}$	$\underline{\mathrm{Vdc}}$	$\underline{\mathrm{Vdc}}$	$\underline{\mathrm{Adc}}$	$\underline{\mathrm{Adc}}$	$\underline{{ }^{\circ} \mathrm{C}}$
2N6058	150	75	80	80	5	12	0.2	-55 to +175
2N6059	150	75	100	100	5	12	0.2	-55 to +175

(1) Derate linearly at $1.00 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{C}}>+25^{\circ} \mathrm{C}$.

[^0]* 1.4 Primary electrical characteristics at $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.

Limit	$\begin{gathered} \mathrm{h}_{\text {FE2 }}(1) \\ \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} \mathrm{dc} \\ \mathrm{I}_{\mathrm{C}}=6 \mathrm{Adc} \end{gathered}$	$\begin{gathered} \mathrm{h}_{\text {FE3 }}(1) \\ \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} \mathrm{dc} \\ \mathrm{I}_{\mathrm{C}}=12 \mathrm{Adc} \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{fe}} \\ \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} \mathrm{dc} \\ \mathrm{I}_{\mathrm{c}}=5 \mathrm{Adc} \\ \mathrm{f}=1 \mathrm{kHz} \\ \hline \end{gathered}$	$\begin{gathered} \left\|\mathrm{h}_{\mathrm{fe}}\right\| \\ \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} \mathrm{dc} \\ \mathrm{I}_{\mathrm{c}}=5 \mathrm{Adc} \\ \mathrm{f}=1 \mathrm{MHz} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C}_{\text {obo }} \\ 100 \mathrm{kHz} \leq \mathrm{f} \leq 1 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{CB}}=10 \mathrm{~V} \mathrm{dc} \\ \mathrm{I}_{\mathrm{E}}=0 \end{gathered}$	$\mathrm{R}_{\text {өJС }}$
Min Max	$\begin{gathered} 1,000 \\ 18,000 \end{gathered}$	150	1,000	$\begin{gathered} 10 \\ 250 \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & 300 \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C} / \mathrm{W}$ 1.0

Limit	$\begin{gathered} \mathrm{V}_{\mathrm{BE}(\text { sat) }}(1) \\ \mathrm{I}_{\mathrm{C}}=12 \mathrm{~A} \mathrm{dc} \\ \mathrm{I}_{\mathrm{B}}=120 \mathrm{~mA} \mathrm{dc} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CE}(\text { sat) } 1}(1) \\ \mathrm{I}_{\mathrm{C}}=12 \mathrm{~A} \mathrm{dc} \\ \mathrm{I}_{\mathrm{B}}=120 \mathrm{~mA} \mathrm{dc} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CE}(\mathrm{sat}) 2}(1) \\ \mathrm{I}_{\mathrm{C}}=6 \mathrm{~A} \mathrm{dc} \\ \mathrm{I}_{\mathrm{B}}=24 \mathrm{~mA} \mathrm{dc} \end{gathered}$	Pulse response	
				$\mathrm{t}_{\text {on }}$	$\mathrm{t}_{\text {off }}$
	$\underline{\mathrm{V} \text { dc }}$	$\underline{\mathrm{V} \text { dc }}$	$\underline{\mathrm{V} \text { dc }}$	$\underline{\text { us }}$	$\underline{\text { MS }}$
Min Max	4.0	3.0	2.0	2	10

(1) Pulsed see 4.5.1.

2. APPLICABLE DOCUMENTS

2.1 General. The documents listed in this section are specified in sections 3,4 , or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3,4 , or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 Specifications, standards, and handbooks. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-19500 - Semiconductor Devices, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-750 - Test Methods for Semiconductor Devices.

* (Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil/ or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)
* 2.3 Order of precedence. Unless otherwise noted herein or in the contract, in the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

FIGURE 1. Physical dimensions and schematic circuit (similar to TO-3).

Symbol	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
CD		. 875		22.23	
CH	. 250	. 328	6.35	8.33	
HR	. 495	. 525	12.57	13.34	
HR_{1}	. 131	. 188	3.33	4.78	6
HT	. 060	. 135	1.52	3.43	
LD	. 038	. 043	0.97	1.09	5, 9
LL	. 312	. 500	7.92	12.7	5
L1		. 050		1.27	5, 9
MHD	. 151	161	3.84	4.09	7
MHS	1.177	1.197	29.90	30.40	
PS	420	. 440	10.67	11.18	4,10
PS_{1}	. 205	. 225	5.21	5.72	4, 5, 10
S_{1}	. 655	. 675	16.64	17.15	4

NOTES:

1. Dimensions are in inches.
2. Millimeters are given for general information only.
3. Body contour is optional within zone defined by CD.
4. These dimensions shall be measured at points .050 inch $(1.27 \mathrm{~mm})$ to .055 inch (1.40 mm) below the seating plane. When gauge is not used, measurement shall be made at seating plane.
5. Both terminals.
6. At both ends.
7. Two holes.
8. The collector shall be electrically connected to the case.
9. LD applies between L_{1} and LL. Diameter is uncontrolled in L_{1}.
10. The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch $(0.10 \mathrm{~mm})$ convex inside a .930 inch $(23.62 \mathrm{~mm})$ diameter circle on the center of the header and flat within .001 inch $(0.03 \mathrm{~mm})$ concave to .006 inch $(0.15 \mathrm{~mm})$ convex overall.
11. In accordance with ASME Y14.5M, diameters are equivalent to ϕ symbology.

FIGURE 1. Physical dimensions and schematic circuit (similar to TO-3) - Continued.

```
MIL-PRF-19500/502E
```


3. REQUIREMENTS

3.1 General. The individual item requirements shall be as specified in MIL-PRF-19500 and as modified herein.
3.2 Qualification. Devices furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.2 and 6.3).
3.3 Abbreviations, symbols, and definitions. Abbreviations, symbols, and definitions used herein shall be as specified in MIL-PRF-19500.
3.4 Interface and physical dimensions. Interface and physical dimensions shall be as specified in MIL-PRF-19500, and on figure 1 (similar to TO-3).
3.4.1 Lead finish. Lead finish shall be solderable in accordance with MIL-PRF-19500, MIL-STD-750, and herein. Where a choice of lead finish is desired, it shall be specified in the acquisition document (see 6.2).
3.5 Electrical performance characteristics. Unless otherwise specified herein, the electrical performance characteristics are as specified in 1.3, 1.4, and table I.
3.6 Electrical test requirements. The electrical test requirements shall be as specified in table I.
3.7 Marking. Marking shall be in accordance with MIL-PRF-19500.
3.8 Workmanship. Semiconductor devices shall be processed in such a manner as to be uniform in quality and shall be free from other defects that will affect life, serviceability, or appearance.
4. VERIFICATION
4.1 Classification of inspections. The inspection requirements specified herein are classified as follows:
a. Qualification inspection (see 4.2).
b. Screening (see 4.3).
c. Conformance inspection (see 4.4 and tables I and II).
4.2 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-19500.
4.2.1 Group E qualification. Group E inspection shall be performed for qualification or re-qualification only. In case qualification was awarded to a prior revision of the specification sheet that did not request the performance of table III tests, the tests specified in table III herein shall be performed on the first inspection lot of this revision to maintain qualification.

MIL-PRF-19500/502E

* 4.3 Screening (JANTX, and JANTXV levels only. Screening shall be in accordance with table E-IV of MIL-PRF-19500 and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I herein shall not be acceptable.

Screen (see table E-IV of MIL-PRF-19500)	Measurement
	JANTX and JANTXV levels
(1) 3 c	Thermal impedance, see 4.3.2.
9	$I_{\text {CEX } 1 .}$
11	$\mathrm{I}_{\text {CEX1 }}, \mathrm{h}_{\text {FE2 } 2}$; $\Delta \mathrm{I}_{\mathrm{CEX} 1}=100$ percent of initial value or $2 \mu \mathrm{Adc}$, whichever is greater.
12	See 4.3.1.
13	Subgroup 2 of table I herein; $\Delta \mathrm{I}_{\text {CEX1 }}=100$ percent of initial value or $2 \mu \mathrm{Adc}$, whichever is greater. $\Delta h_{\text {FE } 2}= \pm 40$ percent of initial value .

(1) Shall be performed anytime after temperature cycling, screen 3a; and does not need to be repeated in screening requirements.
4.3.1 Power burn-in conditions. Power burn-in conditions are as follows: $\mathrm{T}_{\mathrm{J}}=+162.5^{\circ} \mathrm{C} \pm 12.5^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CE}} \geq 10 \mathrm{~V} \mathrm{dc}$, $T_{A} \leq+100^{\circ} \mathrm{C}$. NOTE: No heat sink or forced air cooling on the devices shall be permitted.

* 4.3.2 Thermal impedance. The thermal impedance measurements shall be performed in accordance with method 3131 of MIL-STD-750 using the guidelines in that method for determining $\mathrm{I}_{\mathrm{M}}, \mathrm{I}_{\mathrm{H}}, \mathrm{t}_{\mathrm{H}}, \mathrm{t}_{\mathrm{sw}}$, (and V_{H} where appropriate). Measurement delay time $\left(\mathrm{t}_{\mathrm{MD}}\right)=70 \mu \mathrm{~s}$ max. See table III, group E, subgroup 4 herein.
4.4 Conformance inspection. Conformance inspection shall be in accordance with MIL-PRF-19500.
4.4.1 Group A inspection. Group A inspection shall be conducted in accordance with table E-V of MIL-PRF-19500 and table I herein. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2.
4.4.2 Group B inspection. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-VIB (JAN, JANTX, and JANTXV) of MIL-PRF-19500, and as follows. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2. Delta requirements shall be in accordance with the applicable step of table II herein.

4.4.2.1 Group B inspection, table E-VIB of MIL-PRF-19500.

Subgroup	Method	Condition
B3	1037	$V_{C B} \geq 10 \mathrm{~V} \mathrm{dc} ; \Delta T_{J}=$ between cycles $\geq+100^{\circ} \mathrm{C}$. ton $=$ toff $=3$ minutes for 2,000 cycles. No heat sink or forced-air cooling on the devices shall be permitted.
*		
B5	3131	Not applicable.

```
MIL-PRF-19500/502E
```

4.4.3 Group C inspection. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-VII of MIL-PRF-19500, and as follows. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2 herein. Delta requirements shall be in accordance with the applicable step of table II herein.

	Subgroup	Method	Condition
	C2	2036	Tension: test condition A; weight $=10 \mathrm{lbs} ;$ time $=15 \mathrm{~s}$.
*	C5	3131	See 4.3.2, $\mathrm{R}_{\theta \text { JС }}=1^{\circ} \mathrm{C} / \mathrm{W}$ (maximum).
	C6	1037	$\mathrm{V}_{\mathrm{CB}} \geq 10 \mathrm{~V} \mathrm{dc} ; \Delta \mathrm{T}_{\mathrm{J}}$ between cycles $\geq+100^{\circ} \mathrm{C} . \mathrm{t}_{\text {on }}=\mathrm{t}_{\text {off }}=3$ minutes for 6,000 cycles. No heat sink or forced-air cooling on device shall be permitted.

4.4.4 Group E inspection. Group E inspection shall be conducted in accordance with the conditions specified for subgroup testing in appendix E, table E-IX of MIL-PRF-19500 and as specified herein. Electrical measurements (end-points) shall be in accordance with table I, subgroup 2. Delta requirements shall be in accordance with the applicable step of table II herein.
4.5 Method of inspection. Methods of inspection shall be as specified in the appropriate tables and as follows.
4.5.1 Pulse measurements. Conditions for pulse measurement shall be as specified in section 4 of MIL-STD-750.

* TABLE I. Group A inspection.

Inspection 1/	MIL-STD-750		Symbol	Limits		Unit
	Method	Conditions		Min	Max	
Subgroup 1						
Visual and mechanical examination	2071					
Subgroup 2						
Thermal impedance	3131	See 4.3.2	$\mathrm{Z}_{\text {өJ }}$			${ }^{\circ} \mathrm{C} / \mathrm{W}$
Breakdown voltage, collector to emitter 2N6058 2N6059	3011	Bias condition D, $\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$ dc, pulsed (see 4.5.1)	$V_{\text {(BR)CEO }}$	$\begin{gathered} 80 \\ 100 \end{gathered}$		V dc V dc
Collector to emitter cutoff current 2N6058 2N6059	3041	Bias condition A ; $\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V}$ dc $\mathrm{V}_{\mathrm{CE}}=80 \mathrm{~V} \mathrm{dc}$ $\mathrm{V}_{\mathrm{CE}}=100 \mathrm{~V} \mathrm{dc}$	$I_{\text {CEX } 1}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\mu \mathrm{A} d c$ $\mu \mathrm{A} d c$
Collector to emitter cutoff current 2N6058 2N6059	3041	Bias condition D; $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V} \mathrm{dc} \\ & \mathrm{~V}_{\mathrm{CE}}=50 \mathrm{~V} \mathrm{dc} \end{aligned}$	$I_{\text {ceo }}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	mA dc mA dc
Emitter to base cutoff current	3061	Bias condition $\mathrm{D} ; \mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$ dc	$I_{\text {ebo }}$		2.0	mA dc
Base to emitter voltage (nonsaturated)	3066	Test condition B ; $\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} \mathrm{dc}$; $\mathrm{I}_{\mathrm{C}}=6 \mathrm{Adc}$	$V_{\text {be }}$		2.8	V dc
Base to emitter voltage (saturated)	3066	Test condition $\mathrm{A} ; \mathrm{I}_{\mathrm{c}}=12 \mathrm{Adc}$; $\mathrm{I}_{\mathrm{B}}=120 \mathrm{~mA}$ dc; pulsed (see 4.5.1)	$V_{\text {bE(sat) }}$		4.0	V dc
Collector to emitter voltage (saturated)	3071	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=12 \mathrm{~A} \mathrm{dc} ; \mathrm{I}_{\mathrm{B}}=120 \mathrm{~mA} \mathrm{dc} \text {; } \\ & \text { pulsed (see 4.5.1) } \end{aligned}$	$V_{\text {CE(sat) } 1}$		3.0	V dc
Collector to emitter voltage (saturated)	3071	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=6 \mathrm{Adc} ; \mathrm{I}_{\mathrm{B}}=24 \mathrm{~mA} \mathrm{dc} ; \\ & \text { pulsed (see 4.5.1) } \end{aligned}$	$V_{\text {CE(sat)2 }}$		2.0	V dc
Forward-current transfer ratio	3076	$V_{C E}=3 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}$; pulsed (see 4.5.1)	$\mathrm{h}_{\text {FE1 }}$	1,000		
Forward-current transfer ratio	3076	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{Vdc} ; \mathrm{I}_{\mathrm{C}}=6 \mathrm{Adc}$; pulsed (see 4.5.1)	$\mathrm{h}_{\text {FE2 }}$	1,000	18,000	
Forward-current transfer ratio	3076	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} \mathrm{dc} ; \mathrm{I}_{\mathrm{C}}=12 \mathrm{~A} \mathrm{dc} \\ & \text { pulsed (see 4.5.1) } \end{aligned}$	$\mathrm{h}_{\text {FE3 }}$	150		

See footnote at end of table.

* TABLE I. Group A inspection - Continued.

Inspection 1/	MIL-STD-750		Symbol	Limits		Unit
	Method	Conditions		Min	Max	
Subgroup 3						
High temperature operation:		$\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$				
Collector to emitter cutoff current 2N6058 2N6059	3041	Bias condition A; $\mathrm{V}_{\mathrm{BE}}=1.5 \mathrm{~V}$ dc $\mathrm{V}_{\mathrm{CE}}=80 \mathrm{~V} \mathrm{dc}$ $\mathrm{V}_{\mathrm{CE}}=100 \mathrm{~V} \mathrm{dc}$	$I_{\text {CEX2 }}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	mA dc $m A d c$
Collector to emitter voltage (saturated)	3071	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=6 \mathrm{~A} \mathrm{dc} ; \mathrm{I}_{\mathrm{B}}=24 \mathrm{~mA} \mathrm{dc} ; \\ & \text { pulsed (see 4.5.1) } \end{aligned}$	$\mathrm{V}_{\text {CE(sat)3 }}$		2.0	V dc
Low temperature operation:		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$				
Forward-current transfer ratio	3076	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} \mathrm{dc} ; \mathrm{I}_{\mathrm{C}}=6 \mathrm{~A} \mathrm{dc} \text {; } \\ & \text { pulsed (see 4.5.1) } \end{aligned}$	$\mathrm{h}_{\text {FE4 }}$	300		
Subgroup 4						
Small-signal shortcircuit forwardcurrent transfer ratio	3206	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} \mathrm{dc}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{Adc} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{hf}_{\text {fe }}$	1,000		
Magnitude of commonemitter small-signal short-circuit forwardcurrent transfer ratio	3306	$\begin{aligned} & V_{\mathrm{CE}}=3 \mathrm{~V} \mathrm{dc} ; \mathrm{I}_{\mathrm{C}}=5 \mathrm{Adc} ; \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	$\left\|\mathrm{h}_{\text {fe }}\right\|$	10	250	
Open circuit output capacitance	3236	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} \mathrm{dc} ; \mathrm{I}_{\mathrm{E}}=0 ; \\ & 100 \mathrm{kHz} \leq \mathrm{f} \leq 1 \mathrm{MHz} \end{aligned}$	$\mathrm{C}_{\text {obo }}$		300	pF
Pulse response						
Turn-on time		(See figure 2); $\mathrm{V}_{\mathrm{cc}}=30 \mathrm{Vdc}$; $\mathrm{I}_{\mathrm{C}}=5 \mathrm{Adc} ; \mathrm{I}_{\mathrm{B}}=20 \mathrm{mAdc}$	$\mathrm{t}_{\text {on }}$		2.0	$\mu \mathrm{S}$
Turn-off time		(See figure 2); $\mathrm{V}_{\mathrm{Cc}}=30 \mathrm{Vdc}$; $\mathrm{I}_{\mathrm{C}}=5 \mathrm{Adc} ; \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=20 \mathrm{mAdc}$	$\mathrm{t}_{\text {off }}$		10	$\mu \mathrm{s}$

See footnote at end of table.

* TABLE I. Group A inspection - Continued.

1/ For sampling plan, see MIL-PRF-19500.

TABLE II. Group B, C, and E delta measurements. 1/ $\underline{2} / \underline{3} /$

Step	Inspection	MIL-STD-750		Symbol	Limit
		Method	Conditions		
1.	Forward current transfer ratio	3076	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V} \mathrm{dc} ; \mathrm{I}_{\mathrm{C}}=6 \mathrm{Adc} ;$ pulsed (see 4.5.1)	$\Delta \mathrm{h}_{\mathrm{FE} 2}$	± 40 percent change from initial reading.

1/ The delta measurements for table E-VIB (JAN, JANTX and JANTXV) are: Subgroups 3 and 6 of MIL-PRF-19500, see table II, step 1 herein.
2/ The delta measurement for table E-VII is: Subgroup 6 of MIL-PRF-19500, see table II, step 1 herein.
3/ The delta measurements for table E-IX of MIL-PRF-19500 are: Subgroups 1 and 2, see table II, step 1 herein.

* TABLE III. Group E inspection (all quality levels) - for qualification or re-qualification only.

Inspection	MIL-STD-750		Sample plan
	Method	Conditions	
Subgroup 1			45 devices $c=0$
Temperature cycling	1051	Test condition C, 500 cycles.	
Hermetic seal Fine leak Gross leak	1071	Test conditions G or H Test conditions C or D	
End-point electrical measurements		See table I, subgroup 2 and table II herein.	
Subgroup 2			45 devices $c=0$
Intermittent life	1037	Intermittent operation life: $\mathrm{V}_{\mathrm{CB}} \geq 10 \mathrm{~V}$ dc, 6,000 cycles.	
End-point electrical measurements		See table I, subgroup 2 and table II herein.	
Subgroup 4			Sample size N/A
Thermal impedance curves		See MIL-PRF-19500.	
Subgroup 8			45 devices $c=0$
Reverse stability	1033	Condition B.	

NOTES:

1. The input waveform is supplied by a pulse generator with the following characteristics: $t_{r} \leq 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}$ $\leq 20 \mathrm{~ns}, \mathrm{Z}_{\text {out }}=50$ ohms, $\mathrm{PW}=25 \mu \mathrm{~s}$, duty cycle ≤ 2 percent.
2. Output wave forms are monitored on an oscilloscope with the following characteristics: $\mathrm{t}_{\mathrm{r}} \leq 2.0 \mathrm{~ns}$, $\mathrm{Z}_{\text {in }} \geq 20 \mathrm{k} \Omega, \mathrm{C}_{\text {in }} \leq 11.5 \mathrm{pF}$.
3. Resistors shall be noninductive types.
4. The dc power supplies may require additional by-passing in order to minimize ringing.

FIGURE 2. Pulse response test circuit.

FIGURE 3. Maximum safe operating area graph (continuous dc).

FIGURE 4. Safe operating area for switching between saturation and cutoff (unclamped inductive load).

5. PACKAGING

* 5.1 Packaging. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activities within the Military Service or Defense Agency, or within the Military Service's system commands. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

* (This section contains information of a general or explanatory nature that may be helpful, but is not mandatory. The notes specified in MIL-PRF-19500 are applicable to this specification.)
* 6.1 Intended use. Semiconductors conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
6.2 Acquisition requirements. Acquisition documents should specify the following:
a. Title, number, and date of this specification.
b. Packaging requirements (see 5.1).
c. Lead finish (see 3.4.1).
d. Product assurance level and type designator.
* 6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List (QML 19500) whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from Defense Supply Center, Columbus, ATTN: DSCC/VQE, P.O. Box 3990, Columbus, OH 43218-3990 or e-mail vge.chief@dla.mil. An online listing of products qualified to this specification may be found in the Qualified Products Database (QPD) at http://assist.daps.dla.mil .
6.4 Changes from previous issue. The margins of this specification are marked with asterisks to indicate where changes from the previous issue were made. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship to the last previous issue.

Custodians:	Preparing activity:
Army - CR	DLA - CC
Navy - EC	(Project 5961-2008-001)
Air Force - 85	
NASA - NA	
DLA - CC	
Review activities:	
Air Force $-19,99$	

* NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil/ .

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for vpt components manufacturer:
Other Similar products are found below :
JANTX2N3716 2N3868JANTX 2N2324AJANTX 2N2328AJANTXV 2N6341JANTX 2N2328JANTX JANSR2N2907AUB
JANTX2N6052 2N6059JANTX 2N3771JANTX JANTX2N5672 JANTX2N3441 JANTX2N3055 2N2323JAN 2N6193JANTX
JANS2N2222A 2N6301JANTX 2N3421JANTX 2N5153JANTX 2N4150JANTX 2N5154JANTX 2N2222AJANTX

[^0]: * Comments, suggestions, or questions on this document should be addressed to Defense Supply Center, Columbus, ATTN: DSCC-VAC, P.O. Box 3990, Columbus, OH 43218-3990, or emailed to Semiconductor@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil/.

