Compliant with European standards 1a/1c 6A Slim power relays

RoHS compliant

Protective construction: Sealed type

FEATURES

1. High density mounting with 5 mm .197 inch width
Space saved with 5 mm .197 inch slim type with 28 mm 1.102 inch length. Allows high density mounting and use in compact devices.
2. Satisfies reinforced insulation standard (EN/IEC 61810-1)
3. High switching capacity

Supports 6A 250 V AC nominal switching capacity (resistive load) and AC15 and DC13 (inductive load).
4. 1 Form A and 1 Form C contact arrangements with options for a variety of applications
5. 4,000 V high breakdown voltage and $6,000 \mathrm{~V}$ high surge breakdown voltage
Controller protection against surges and noise with a breakdown voltage of $4,000 \mathrm{Vrms}$ for 1 min . between contacts and coil, and $6,000 \mathrm{~V}$ surge breakdown voltage between contacts and coil.
6. Resistance to heat and fire; EN60335-1, clause 30 (GWT) approved
7. Sealed construction allows automatic washing
8. Complies with all safety standards UL/C-UL, VDE certified.
9. High insulation resistance

Creepage distance between contact and coil terminal: Min. 8.0 mm .315 inch
Clearance distance between contact and coil terminal: Min. 6.0 mm .236 inch

TYPICAL APPLICATIONS

1. Interface relays for programmable controllers
2. Output relays for measuring equipment, timers, counters and temperature controllers
3. Industrial equipment, office equipment
4. Household appliances for Europe

ORDERING INFORMATION

TYPES

Contact arrangement	Nominal coil voltage	Part No.	Contact arrangement	Nominal coil voltage	Part No.
1 Form A (AgNi type)	4.5 V DC	APF1024H	1 Form C (AgNi type)	4.5 V DC	APF3024H
	5V DC	APF10205		5V DC	APF30205
	6V DC	APF10206		6V DC	APF30206
	9V DC	APF10209		9V DC	APF30209
	12 V DC	APF10212		12 V DC	APF30212
	18 V DC	APF10218		18 V DC	APF30218
	24V DC	APF10224		24V DC	APF30224
	48 V DC	APF10248		48 V DC	APF30248
	60 V DC	APF10260		60 V DC	APF30260
1 Form A (AgNi type/Au-plated)	4.5 V DC	APF1034H	1 Form C (AgNi type/Au-plated)	4.5 V DC	APF3034H
	5V DC	APF10305		5V DC	APF30305
	6V DC	APF10306		6V DC	APF30306
	9V DC	APF10309		9V DC	APF30309
	12 V DC	APF10312		12 V DC	APF30312
	18 V DC	APF10318		18 V DC	APF30318
	24V DC	APF10324		24 V DC	APF30324
	48 V DC	APF10348		48 V DC	APF30348
	60V DC	APF10360		60 V DC	APF30360

Standard packing: Tube: 20 pcs.; Case: 1,000 pcs.

RATING

1. Coil data

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
4.5 V DC	Max. $70 \% \mathrm{~V}$ nominal voltage (Initial)	Min. 5% V nominal voltage (Initial)	37.8 mA	119Ω	170 mW	$120 \% \mathrm{~V}$ of nominal voltage
5V DC			34.0 mA	147Ω		
6V DC			28.3 mA	212Ω		
9V DC			18.9 mA	476Ω		
12V DC			14.2 mA	847Ω		
18V DC			9.4 mA	1,906		
24 V DC			7.1 mA	3,388,		
48 V DC			4.5 mA	10,618 Ω	217 mW	
60 V DC			2.9 mA	20,570	175 mW	

2. Specifications

Characteristic	Item		Specifications	
Contact	Arrangement		1 Form A	1 Form C
	Contact resistance (Initial)		Max. $100 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)	
	Contact material		AgNi type, AgNi type/Au-plated	
Rating	Nominal switching capacity (resistive load)		6 A 250 V AC	
	Max. switching power (resistive load)		1,500 VA	
	Max. switching voltage		250 V AC	
	Max. switching current		6 A (AC)	
	Nominal operating power		170 mW (5 to 24 V DC), 217 mW (48 V DC), 175 mW (60 V DC)	
	Min. switching capacity (Reference value)*		100 mA 5 V DC (without Au-plated), 1 mA 1 V DC (with Au-plated)	
Electrical characteristics	Insulation resistance (Initial)		Min. 1,000M Ω (at 500 V DC) Measurement at same location as "Breakdown voltage" section.	
	Breakdown voltage (Initial)	Between open contacts	1,000 Vrms for 1 min . (Detection current: 10 mA)	
		Between contact and coil	$4,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)	
	Surge breakdown voltage ${ }^{* 2}$ (Between contact and coil) (Initial)		6,000 V	
	Temperature rise (coil) (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		$\text { Max. } 45^{\circ} \mathrm{C} 113^{\circ} \mathrm{F}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 6A.)	
	Operate time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 8 ms(Nominal coil voltage applied to the coil, excluding contact bounce time.)	
	Release time (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 4 ms(Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)	
Mechanical characteristics	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)	Min. $49 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms.$\left.\right)$	
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 1 mm (Detection time: $10 \mu \mathrm{~s}$.)	
		Destructive	10 to 55 Hz at double amplitude of 1.5 mm	
Expected life	Mechanical		Min. 5×10^{6} (at 180 times/min.)	
	Electrical ${ }^{* 4}$		$\text { N.O.: Min. } 5 \times 10^{4}$ (at resistive load, 6 times/min. and nominal switching capacity)	N.O.: Min. 5×10^{4}, N.C.: Min. 3×10^{4} (at resistive load, 6 times $/ \mathrm{min}$. and nominal switching capacity)
Conditions	Conditions for operation, transport and storage ${ }^{* 3}$		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)	
Unit weight			Approx. 5 g .18 oz	

Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
*2. Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
*3. The upper operation ambient temperature limit is the maximum temperature that can satisfy the coil temperature rise value. Refer to "Usage, transport and storage conditions" in NOTES.
*4. For cycle lifetime, refer to "Cautions for use 4)" in NOTES.

REFERENCE DATA

1. Electrical life

Tested sample: APF30224

Load type		Voltage	Current	Ambient temperature	No. of ops.
Resistive load		250 V AC	6 A	$85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$	30,000
Inductive load	AC15	250 V AC	3 A	$25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$	20,000
	DC13	24 V DC	2 A	$25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$	6,000

Notes: 1. Switch contacts are all on N.O. side
2. AC15 and DC13 comply with IEC-60947-5-1 testing conditions.

DIMENSIONS (mm inch) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/

1. 1 Form A type

CAD Data

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$
Schematic (Bottom view)
$\underset{\substack{\mathrm{COIL} \\ \text { OnO }}}{ }$

2. 1 Form C type

CAD Data

External dimensions

General tolerance: $\pm 0.3 \pm .012$

PC board pattern (Bottom view)

Schematic (Bottom view)

SAFETY STANDARDS

Certification authority	File No.	Applicable standard	Rating	Remarks
UL/C-UL	E120782	UL508, CSA C22.2 No. 14 UL1604 (class I, Division 2, Group A, B, C, D)	8A 277V AC, General use, 6A 24V DC, General use, B300, R300 (Pilot Duty)	
VDE	40027672	EN/IEC 61810-1	6A 250V AC $(\cos \phi=1.0) 85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$ N.O. side, N.C. side 8A 250V AC $(\cos \phi=1.0) 25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$ N.O. side	Insulation: Reinforced insulation between contact and coil. Resistance to heat and fire; EN60335-1, clause 30 (GWT) approved.

*CSA standard: Certified by C-UL

NOTES

1. For cautions for use, please read "GENERAL APPLICATION GUIDELINES" on page B-1.
2. Usage, transport and storage conditions
1) Temperature:
-40 to $+85^{\circ} \mathrm{C}-40$ to $+185^{\circ} \mathrm{F}$
2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa

Temperature and humidity range for usage, transport, and storage

4) Condensation

Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation.
5) Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C} 32^{\circ} \mathrm{F}$. This causes problems such as sticking of movable parts or operational time lags.
6) Low temperature, low humidity environments
The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Panasonic manufacturer:
Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```

