

TSX339

Micropower quad CMOS voltage comparators

Datasheet - production data

Features

- Low supply current: 5 µA typ. per comparator
- Wide single supply range 2.7 V to 16 V or dual supplies (±1.35 V to ±8 V)
- Extremely low input bias current: 1 pA typ.
- Input common-mode voltage range includes
 ground
- Open drain output
- High input impedance: $10^{12} \Omega$ typ
- Fast response time: 2 µs typ. for 5 mV overdrive
- ESD tolerance: 4 kV HBM, 200 V MM

Related products

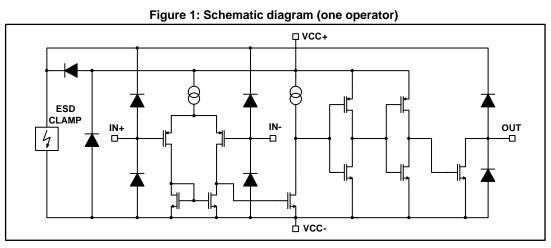
- Pin-to-pin and functionally compatible with the quad CMOS TS339 comparators
- See TSX3704 for push-pull output

Applications

- Automotive
- Industrial

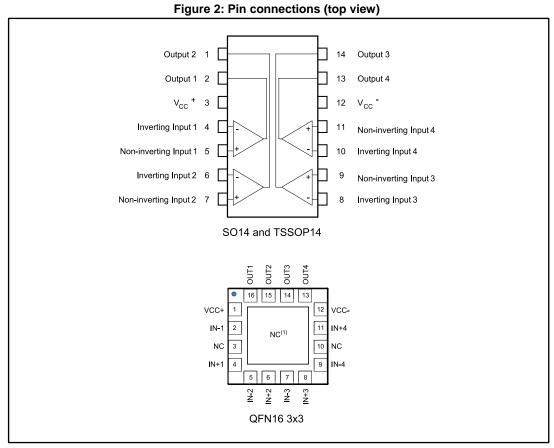
Description

The TSX339 is a micropower CMOS quad voltage comparator which exhibits a very low current consumption of 5 μ A typical per comparator. This device was designed as the improvement of the TS339: it shows a lower current consumption, a better input offset voltage, and an enhanced ESD tolerance. The TSX339 is fully specified over a wide temperature range and is proposed in automotive grade for the TSSOP14 package. It is fully compatible with TS339 CMOS comparator and is available with similar packages. The new tiny package, QFN16 3x3, is also proposed for the TSX339 thus allowing even more integration on applications.


This is information on a product in full production.

Contents

1	Schema	atic diagram	3
2	Packag	e pin connections	4
3	Absolut	te maximum ratings and operating conditions	5
4	Electric	al characteristics	6
5	Electric	al characteristic curves	10
6	Applica	tion information	13
	6.1	Input voltages	13
	6.2	For unused channel	14
	6.3	Bypass capacitor	14
7	Packag	e information	15
	7.1	SO14 package information	16
	7.2	TSSOP14 package information	17
	7.3	QFN16 3x3 package information	18
8	Orderin	g information	20
9	Revisio	n history	21



1 Schematic diagram

2 Package pin connections

1. NC = not connected

2. The exposed pad of the QFN16 3x3 can be connected to VCC- or left floating.

3 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)							
Symbol	Parameter		Value	Unit			
V _{CC} ⁺	Supply voltage ⁽¹⁾		18				
V _{id}	Differential input voltage ⁽²⁾		±18	V			
V _{in}	Input voltage		-0.3 to18	v			
Vo	Output voltage		18				
lo	Output current	20					
١ _F	Forward current in ESD protection diodes on inpu	50	mA				
Tj	Maximum junction temperature	150	°C				
T _{stg}	Storage temperature range	-65 to 150	C				
		SO14	105				
R _{thja}	Thermal resistance junction to ambient (4)	TSSOP14	100	°C/W			
		QFN16 3x3	39				
	HBM: human body model ⁽⁵⁾	4000					
ESD	MM: machine model ⁽⁶⁾	200	V				
	CDM: charged device model (7)	1500					
	Latch-up immunity		200	mA			

Notes:

⁽¹⁾All voltage values, except the differential voltage, are with respect to network ground terminal

⁽²⁾Differential voltages are the non-inverting input terminal with respect to the inverting input terminal

⁽³⁾Guaranteed by design

⁽⁴⁾Short-circuits can cause excessive heating and destructive dissipation. Values are typical

⁽⁵⁾According to JEDEC standard JESD22-A114F

⁽⁶⁾According to JEDEC standard JESD22-A115A

⁽⁷⁾According to ANSI/ESD STM5.3.1

Table 2: Operating conditions

Symbol	Parameter	Value	Unit
V_{CC}^+	Supply voltage	2.7 to 16	
V _{icm} ⁽¹⁾	Common mode input voltage range	0 to (V _{CC} ⁺) - 1.5	V
Vicm	$T_{min} \leq T_{amb} \leq T_{max}$	0 to (V _{CC} ⁺) - 2	
T _{oper}	Operating free-air temperature range	-40 to 125	°C

Notes:

⁽¹⁾The output state is guaranteed as long as one input remains with this common-mode input voltage range, and the other input remains between -0.3 V and 16 V (meaning that one input can be driven above VCC+).

4 Electrical characteristics

Table 3: VCC+ = 3 V, VCC- = 0 V, Tamb = 25 °C (unless otherwise specified)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
N	Input offset voltage (1)	V _{icm} = 0 V	-5	0.1	5	mV	
Vio	input onset voltage	$T_{min} \leq T_{amb} \leq T_{max}$	-6		6	mv	
	Input offset current (2)	$V_{icm} = V_{CC}/2$		1	10		
l _{io}	input onset current **	$T_{min} \leq T_{amb} \leq T_{max}$			600	~ ^	
	Input bias current ⁽²⁾	$V_{icm} = V_{CC}/2$		1	10	pА	
l _{ib}	input bias current	$T_{min} \leq T_{amb} \leq T_{max}$			1200		
CMR	Common-mode	V _{icm} = 0 to max V _{icm}	58	73			
CIVIR	rejection ratio	$T_{min} \leq T_{amb} \leq T_{max}$	55			dB	
SVR	Supply voltage rejection	V_{CC}^+ = 3 V to 5 V, V_{icm} = $V_{CC}/2$	69	88		uБ	
SVK	ratio	$T_{min} \leq T_{amb} \leq T_{max}$	69				
L	High-level output	V_{id} = 1 V, V_{OH} = 3 V		1	40	nA	
I _{ОН}	voltage drop	$T_{min} \leq T_{amb} \leq T_{max}$			1000	ΠA	
Vol		V_{id} = -1 V, I_{OL} = 4 mA		300	400	m\/	
VOL	Low-level output voltage	$T_{min} \leq T_{amb} \leq T_{max}$			600	mV	
	Supply current per comparator	No load - outputs low		5	6		
		$T_{min} \leq T_{amb} \leq T_{max}$			7		
I _{CC}		No load - outputs high		8	9	μA	
		$T_{min} \leq T_{amb} \leq T_{max}$			11		
	Response time low to	V_{icm} = 0 V, f = 10 kHz, R _L = 5.1 k Ω , C _L = 50 pF, overdrive = 5 mV		2.5			
t _{PLH}	high	Overdrive = 100 mV		0.53	0.65		
		$T_{min} \leq T_{amb} \leq T_{max}$			0.7		
	Response time high to	$\label{eq:Vicm} \begin{array}{l} V_{icm} = 0 \ V, \ f = 10 \ kHz, \ R_L = 5.1 \ k\Omega, \ C_L = 50 \ pF, \\ overdrive = 5 \ mV \end{array}$		2		μs	
t _{PHL}	low	Overdrive = 100 mV		0.4	0.6		
		$T_{min} \leq T_{amb} \leq T_{max}$			0.65		
t _f	Fall time	f = 10 kHz, C _L = 50 pF, R _L = 5.1 kΩ, overdrive 50 mV		39		ns	

Notes:

 $^{(1)}$ The specified offset voltage is the maximum value required to drive the output up to 2.5 V or down to 0.3 V.

⁽²⁾Guaranteed by design.

Symbol	Parameter	C+ = 5 V, VCC- = 0 V, Tamb = 25 °C (unless oth Condition	Min.	Тур.	Max.	Unit	
	(4)	et voltage ⁽¹⁾ $V_{icm} = V_{CC}/2$					
Vio	Input offset voltage ⁽¹⁾	$T_{min} \leq T_{amb} \leq T_{max}$	-6		6	mV	
	(2)	$V_{icm} = V_{CC}/2$			10		
l _{io}	Input offset current ⁽²⁾	$T_{min} \leq T_{amb} \leq T_{max}$			600		
_	(2)	$V_{icm} = V_{CC}/2$	1 10		10	pА	
l _{ib}	Input bias current ⁽²⁾	$T_{min} \leq T_{amb} \leq T_{max}$			1200		
	Common-mode	V _{icm} = 0 to max V _{icm}	66	85			
CMR	rejection ratio	T _{min} ≤ T _{amb} ≤ T _{max}	65				
	Supply voltage rejection	$V_{CC}^{+} = 5 \text{ V to } 10 \text{ V}, \text{ V}_{icm} = V_{CC}/2$	71	89		dB	
SVR	ratio	T _{min} ≤ T _{amb} ≤ T _{max}	70				
	High-level output	V _{id} = 1 V, V _{OH} = 5 V		1	40	-	
I _{ОН}	voltage drop	T _{min} ≤ T _{amb} ≤ T _{max}			1000	nA	
		$V_{id} = -1 V, I_{OL} = 4 mA$		180	250	† <u>.</u> .	
V _{OL}	Low-level output voltage	$T_{min} \leq T_{amb} \leq T_{max}$			400	mV	
		No load - outputs low		5	8		
	Supply current per comparator	T _{min} ≤ T _{amb} ≤ T _{max}			9	μA	
I _{CC}		No load - outputs high		9	10		
		$T_{min} \leq T_{amb} \leq T_{max}$			11		
		$V_{icm} = 0 \text{ V}, \text{ f} = 10 \text{ kHz}, \text{ R}_{L} = 5.1 \text{ k}\Omega, \text{ C}_{L} = 50 \text{ pF},$ overdrive = 5 mV		2.5			
		Overdrive = 10 mV		1.6			
		Overdrive = 20 mV		1			
t _{PLH}	Response time low to	Overdrive = 40 mV		0.7			
	high	Overdrive = 100 mV		0.52	0.6		
		$T_{min} \leq T_{amb} \leq T_{max}$			0.7		
		TTL input ⁽³⁾		0.55	0.7		
		$T_{min} \leq T_{amb} \leq T_{max}$			0.75		
		$V_{icm} = 0 \text{ V}, \text{ f} = 10 \text{ kHz}, \text{ R}_{L} = 5.1 \text{ k}\Omega, \text{ C}_{L} = 50 \text{ pF},$ overdrive = 5 mV		2.8		μs	
		Overdrive = 10 mV		1.8			
		Overdrive = 20 mV		1			
t _{PHL}	Response time high to	Overdrive = 40 mV		0.7			
	low	Overdrive = 100 mV		0.46	0.6		
		$T_{min} \leq T_{amb} \leq T_{max}$			0.7		
		TTL input ⁽³⁾		0.3	0.4		
		T _{min} ≤ T _{amb} ≤ T _{max}			0.5		
t _f	Fall time	f = 10 kHz, C _L = 50 pF, R _L = 5.1 kΩ, overdrive 50 mV		30		ns	

Table 4: VCC+ = 5 V, VCC- = 0 V, Tamb = 25 °C (unless otherwise specified)

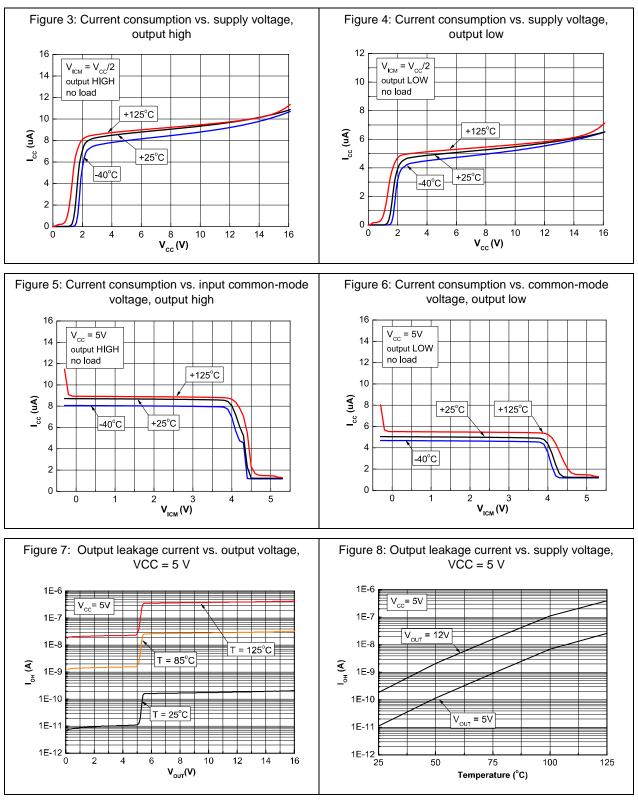
Notes:

 $^{(1)}$ The specified offset voltage is the maximum value required to drive the output up to 2.5 V or down to 0.3 V.

 $^{\rm (2)}{\rm Guaranteed}$ by design.

 $^{(3)}$ A step from 0 V to 3 V is applied on one input while the other is fixed at 1.4 V. The response time is the time interval between the application of the input voltage step and the moment the output voltage reaches 50 % of its final value.

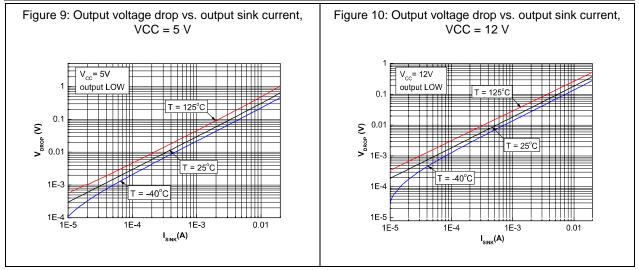
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit		
.,	(1)	$V_{icm} = V_{CC}/2$	-5	0.1	5			
Vio	Input offset voltage ⁽¹⁾	T _{min} ≤ T _{amb} ≤ T _{max}	6	mV				
		$V_{icm} = V_{CC}/2$		1	10			
l _{io}	Input offset current ⁽²⁾	$T_{min} \leq T_{amb} \leq T_{max}$			600			
	1	$V_{icm} = V_{CC}/2$		1	10	рА		
l _{ib}	Input bias current ⁽²⁾	$T_{min} \leq T_{amb} \leq T_{max}$			1200			
	Common-mode	V _{icm} = 0 to max V _{icm}	72	90				
CMR	rejection ratio	$T_{min} \leq T_{amb} \leq T_{max}$	70					
	Supply voltage rejection	$V_{CC}^{+} = 5 \text{ V to } 16 \text{ V}, V_{icm} = V_{CC}/2$	73	90		dB		
SVR	ratio	$T_{min} \leq T_{amb} \leq T_{max}$	72					
	High-level output	V _{id} = 1 V, V _{OH} = 6 V		1	40	0		
I _{OH}	voltage drop	$T_{min} \leq T_{amb} \leq T_{max}$			1000	nA		
M		V_{id} = -1 V, I_{OL} = 4 mA		90	150	m\/		
V _{OL}	Low-level output voltage	$T_{min} \leq T_{amb} \leq T_{max}$			250	mV		
	Supply current per comparator	No load - outputs low		7	9	μΑ		
1		$T_{min} \leq T_{amb} \leq T_{max}$			10			
I _{CC}		No load - outputs high		11	13			
		$T_{min} \leq T_{amb} \leq T_{max}$			14			
		V_{icm} = 0 V, f = 10 kHz, R _L = 5.1 k Ω , C _L = 50 pF, overdrive = 5 mV		2.3				
		Overdrive = 10 mV		1.5				
t _{PLH}	Response time low to	Overdrive = 20 mV		1				
	high	Overdrive = 40 mV		0.7				
		Overdrive = 100 mV		0.55	0.65			
		$T_{min} \leq T_{amb} \leq T_{max}$			0.7			
		V_{icm} = 0 V, f = 10 kHz, R _L = 5.1 k Ω , C _L = 50 pF, overdrive = 5 mV		2.4		μs		
		Overdrive = 10 mV		1.6				
t _{PHL}	Response time high to	Overdrive = 20 mV		1				
	low	Overdrive = 40 mV		0.7				
		Overdrive = 100 mV		0.55	0.7			
		$T_{min} \leq T_{amb} \leq T_{max}$			0.75			
t _f	Fall time	f = 10 kHz, C _L = 50 pF, R _L = 5.1 kΩ, overdrive 50 mV		11		ns		

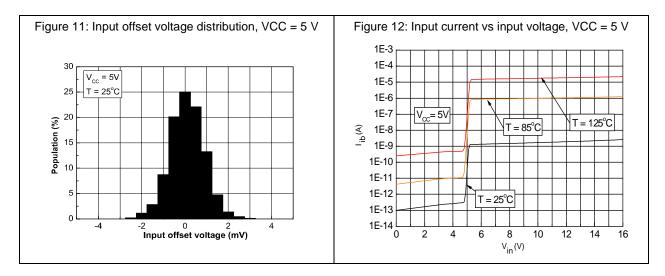

Table 5: VCC+ = 16 V, VCC- = 0 V, Tamb = 25 °C (unless otherwise specified)

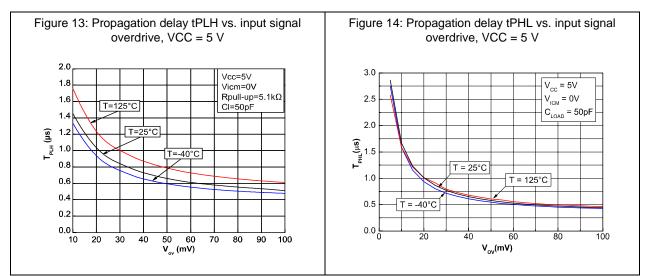
Notes:

 $^{(1)}$ The specified offset voltage is the maximum value required to drive the output up to 2.5 V or down to 0.3 V. $^{(2)}$ Guaranteed by design.

5 Electrical characteristic curves

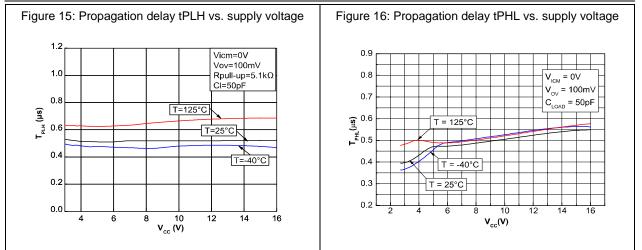






57

Electrical characteristic curves



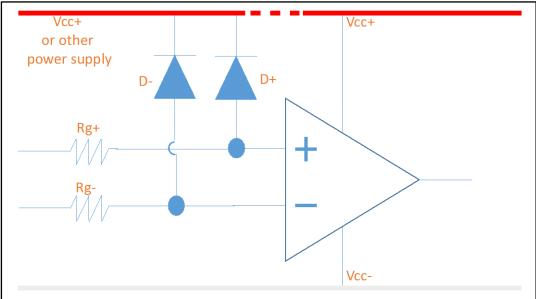
DocID028644 Rev 3

Electrical characteristic curves

TSX339

DocID028644 Rev 3

6 Application information


6.1 Input voltages

The output state is guaranteed as long as one input remains within the common mode input voltage range (defined in the operating conditions table), and the other input remains between -0.3 V and 16 V (meaning that one input can be driven above VCC+).

If one input voltage is beyond the range 0 V to 16 V, this input of the comparator should be protected according to *Figure 17*.

If the input is lower than Vcc-, a significant current may go through the ESD diode. To protect the circuit, this current must be limited to 10 mA by using the Rg+ or Rg- resistors.

If the input is bigger than 16 V, it has to be voltage limited. This is achieved using the D- or D+ additional, external diodes. To protect these diodes, the current is limited using the Rg resistor. D- and D+ diodes can be connected to another power supply with a maximum value of 16 V. The device is designed to prevent phase reversal.

6.2 For unused channel

An unused comparator has to be configured to avoid unexpected additional consumption. A simple solution is to connect the input to the power supply pins as shown in *Figure 18*. This keeps the circuit in a stable state.

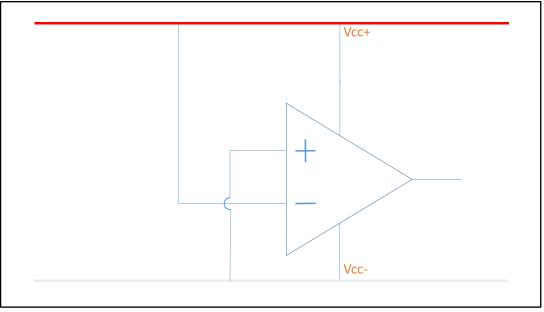
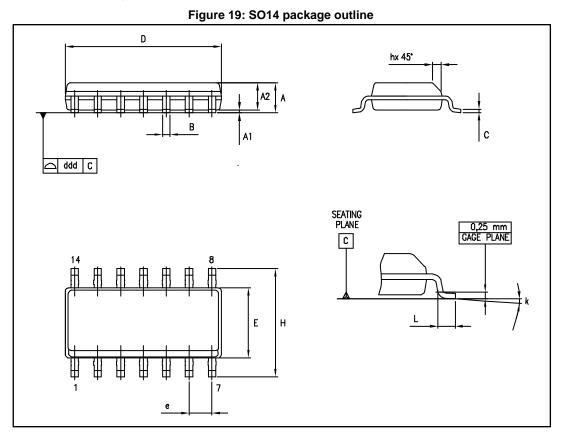


Figure 18: Input configuration for unused channel

6.3 Bypass capacitor

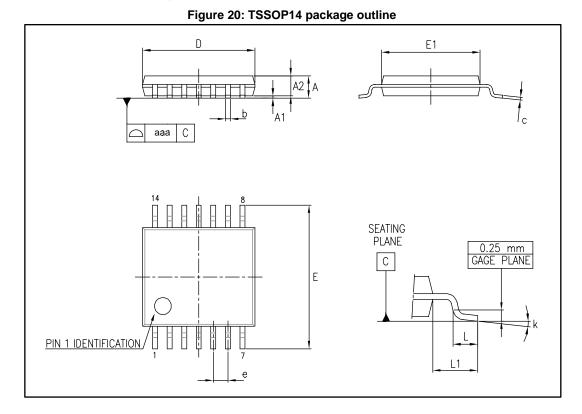
To maintain proper coupling of the power supply, it is strongly recommended to place a 0.1 μ F capacitor as close as possible to the supply pins.



7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 SO14 package information


Table 6: SO14 mechanical data

	Dimensions							
Ref.		Millimeters						
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	1.35		1.75	0.05		0.068		
A1	0.10		0.25	0.004		0.009		
A2	1.10		1.65	0.04		0.06		
В	0.33		0.51	0.01		0.02		
С	0.19		0.25	0.007		0.009		
D	8.55		8.75	0.33		0.34		
Е	3.80		4.0	0.15		0.15		
е		1.27			0.05			
Н	5.80		6.20	0.22		0.24		
h	0.25		0.50	0.009		0.02		
L	0.40		1.27	0.015		0.05		
k	8° (max)							
ddd			0.10			0.004		

DocID028644 Rev 3

7.2 TSSOP14 package information

Table 7: TSSOP14 mechanical data

	Dimensions						
Ref.		Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.20			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.90	5.00	5.10	0.193	0.197	0.201	
E	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.176	
е		0.65			0.0256		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00			0.039		
k	0°		8°	0°		8°	
aaa			0.10			0.004	

17/22

7.3 QFN16 3x3 package information

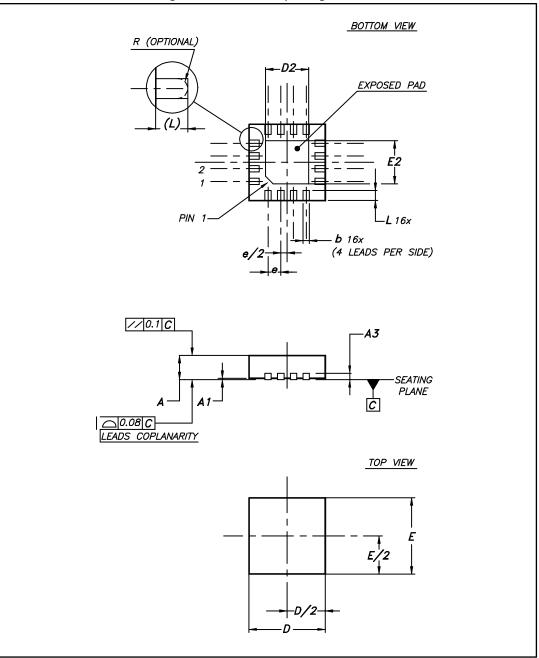
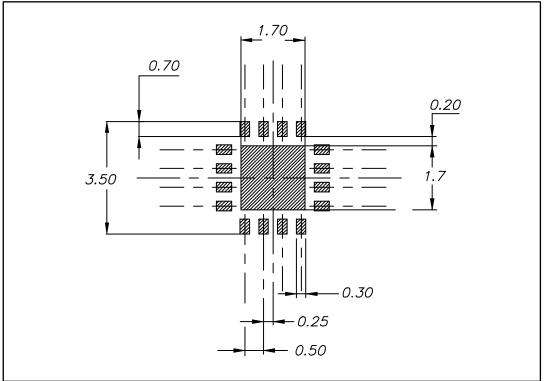


Figure 21: QFN16 3x3 package outline



The exposed pad is not internally connected and can be set to ground or left floating.

	Dimensios						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.80	0.90	1.00	0.031	0.035	0.039	
A1	0		0.05	0		0.002	
A3		0.20			0.008		
b	0.18		0.30	0.007		0.012	
D	2.90	3.00	3.10	0.114	0.118	0.122	
D2	1.50		1.80	0.059		0.071	
E	2.90	3.00	3.10	0.114	0.118	0.122	
E2	1.50		1.80	0.059		0.071	
е		0.50			0.020		
L	0.30		0.50	0.012		0.020	

Table 8: QFN16 3x3 mechanical data

8 Ordering information

Order code	Temperature range	Package	Packing	Marking
TSX339IDT	-40 °C to 125 °C	SO14		TSX339ID
TSX339IPT		TSSOP14	Topo and real	TSX339I
TSX339IQ4T		QFN16 3x3	Tape and reel	K527
TSX339IYPT ⁽¹⁾		TSSOP14 (automotive grade)		TSX339IY

Notes:

⁽¹⁾Automotive qualification ongoing

9 Revision history

Date	Revision	Changes
16-Dec-2015	1	Initial release
29-Feb-2016	2	Table 3, Table 4, and Table 5: updated V_{OL} condition I_{OL} = 4 mA (not 6mA).
18-Apr-2016 3		Replaced "dual" with "quad in document title and first page. <i>Table 9: "Order codes"</i> : modified footnote 1

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for stmicroelectronics manufacturer:

Other Similar products are found below :

DATAPACK/F0253201VXA SLDC/F0253201VXA LD29300D2T25R M24M02-DWMN3TP/K DATECODECHG/F8754901VXA AI-JTAGOPTO-1 BUV48A BZW04-15B LDK320AM33R SLDC-CHARGE/F8755201VXC SPC564A80CAL176 SPC56XVTOP-M STEVAL-ILL076V2 STEVAL-ISA175V1 STEVAL-VNH5050A STM32F207IGT7 STR91X-SK/RAI STTH12003TV1 STVNIM-EVAL M24C02-FDW6TP 417989F SG3525A ST7FLITE25F2M6 STEVAL-ILL079V1 STEVAL-ISF003V1 STL140N4F7AG STM32F031F4P7 STM32F071CBU6 STM32F303VBT6 STM32F765ZIT6 STM32PRIM-LABUPG STM8A128-EVAL STW56N65DM2 LD29150DT18R LF50ABV P-NUCLEO-IHM002 VIPER38HDTR VIPER27LD VIPER16HN PD57070-E PD55003-E EVAL6226QR EVAL6227PD EVAL6228QR EVALSP1340HDM EVLVIP16L-4WFL EV-VN7050AJ EV-VND5E025AK EV-VND7030AJ ANT2-M24LR16E