

1000V, 42A, 0.20Ω Max, t_{rr} ≤400ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C_{rss}/C_{iss} result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

Single die FREDFET

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
l _a	Continuous Drain Current @ T _C = 25°C	42	
'D	Continuous Drain Current @ T _C = 100°C	27	Α
I _{DM}	Pulsed Drain Current ^①	260	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy ©	4075	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	33	Α

Thermal and Mechanical Characteristics

Symbol	Characteristic		Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			960	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.13	13 °C/W	
R _{ecs}	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)	2500			V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Terminals and Mounting Screws.		·	10	in·lbf	
				1.1	N·m	

Static Characteristics

T_J = 25°C unless otherwise specified

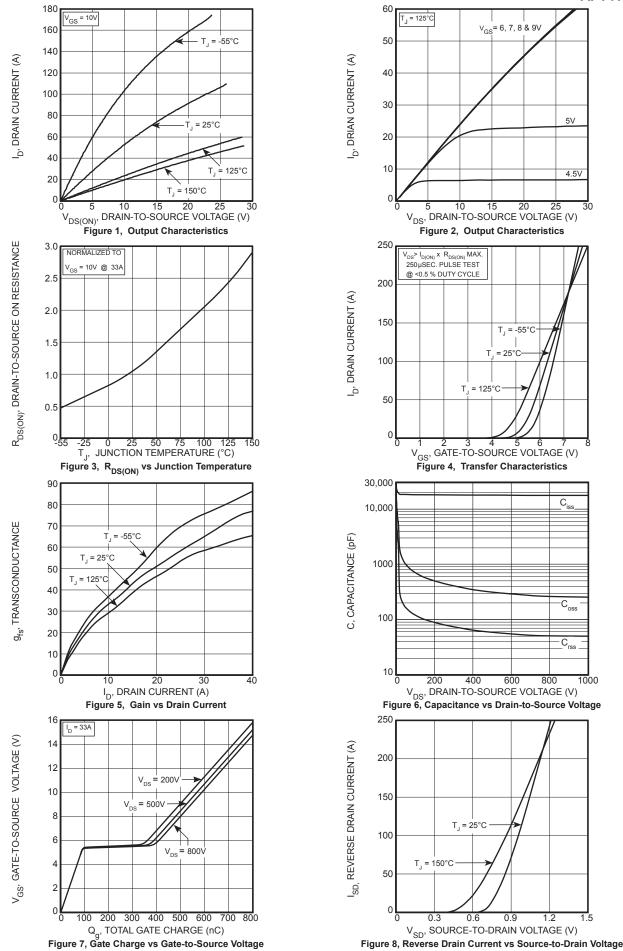
AP.	T41	F1	00	J
-----	------------	----	----	---

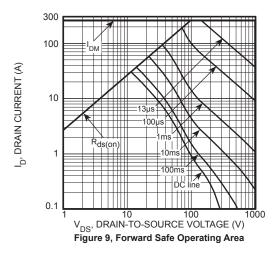
Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$		1000			V
$\Delta V_{BR(DSS)} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µA			1.15		V/°C
R _{DS(on)}	Drain-Source On Resistance ^③	V _{GS} = 10V, I _D = 33A			0.18	0.20	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 5mA$		2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient				-10		mV/°C
I _{DSS}	Zoro Coto Voltago Drain Current	V _{DS} = 1000V	T _J = 25°C			250	
	Zero Gate Voltage Drain Current	$V_{GS} = 0V$ $T_J = 125^{\circ}C$				1000	μA
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			·	±100	nA

Dvnamic Characteristics

T₁ = 25°C unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
9 _{fs}	Forward Transconductance	V _{DS} = 50V, I _D = 33A		75		S
C _{iss}	Input Capacitance)/ O)/)/ O5)/		18500		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		245		
C _{oss}	Output Capacitance	1 111112		1555		
$C_{o(cr)} @$	Effective Output Capacitance, Charge Related	V = 0V V = 0V to 667V		635		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	V _{GS} = 0V, V _{DS} = 0V to 667V		325		
Q _g	Total Gate Charge	V 01.40V 1.00A		570		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 33A,$ $V_{DS} = 500V$		100		nC
Q_{gd}	Gate-Drain Charge	v _{DS} = 500V		270		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		55		
t _r	Current Rise Time	V _{DD} = 667V, I _D = 33A		55		ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		235		1115
t _f	Current Fall Time]		55		1


Source-Drain Diode Characteristics


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)	showing the	PD		42	Α
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	os		260	
V _{SD}	Diode Forward Voltage	I _{SD} = 33A, T _J = 25°C, V _{GS} = 0V			1.0	V
t _{rr}	Reverse Recovery Time	T _J = 25°C			400	no
`rr		T _J = 125°C			800	ns
Q _{rr}	Daviera Danaviani Chare	$I_{SD} = 33A^{\textcircled{3}}$ $T_{J} = 25^{\circ}C$		3.3		
arr.	Reverse Recovery Charge	$V_{DD} = 100V$ $T_{J} = 125^{\circ}C$		8.0		μC
1	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$		17.2		_
'rrm		T _J = 125°C		24.6		A
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 33A$, di/dt $\le 1000A/\mu$ s, $V_{DD} = 667V$, $T_{J} = 125^{\circ}C$			25	V/ns

- ① Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 7.48mH, $R_G = 25\Omega$, $I_{AS} = 33A$.
- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.

- \bigcirc R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

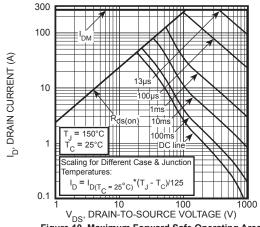
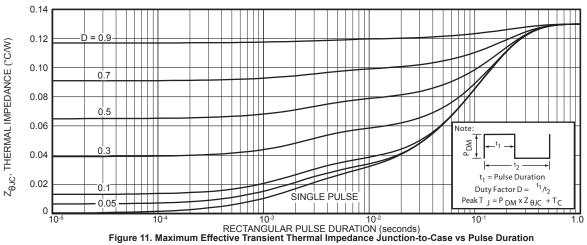
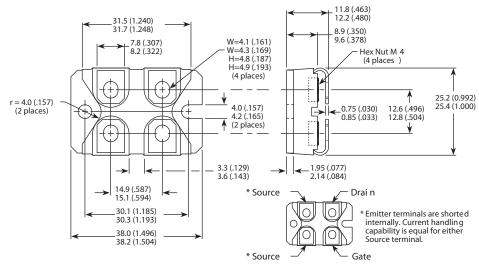




Figure 10, Maximum Forward Safe Operating Area

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Discrete Semiconductor Modules category:

Click to view products by Microsemi manufacturer:

Other Similar products are found below:

M252511FV M254043 DD260N12K-A DD285N02K DD380N16A DDB6U144N16R DDB6U145N16L APT20M11JFLL

APT2X101DL40J APT2X21DC60J APT2X30D40J APT2X30D60J APT2X31DQ120J APT39M60J APT47M60J APT50DF170HJ

APT50M50JLL APT50M75JLLU3 APT50N60JCCU2 APT58M80J APT80F60J DZ540N26K B522F-2-YEC MSTC90-16

MT16HTF12864AZ-800G1 MT18HTF12872PZ-667G1 MT18HTF25672FDZ-667H1D6 MT18HTF25672PZ-80EH1 MT18RTF25672FDZ-667H1D6 MT36HTF51272FZ-667H1D4 MT36HTF51272FZ-667H1D6 MT8HTF12864HTZ-667H1 MT9HTF6472PZ-667G1

MT9HVF12872PZ-80EH1 MT9HVF6472PZ-667G1 ND104N16K 25.163.0653.1 25.330.4753.1 25.330.5253.1 25.334.3253.1

25.320.4853.1 25.320.5253.1 25.325.3653.1 25.326.3253.1 25.326.3553.1 25.330.1653.1 25.330.4753.1 25.330.5253.1 25.334.3253.1