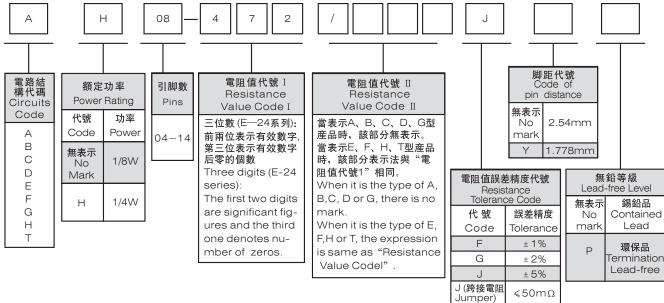
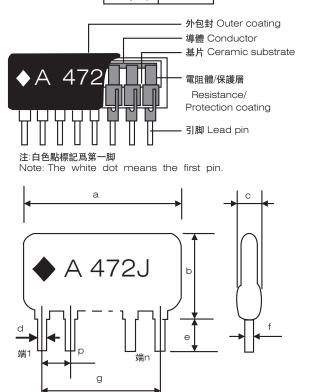

THICK FILM NETWORK RESISTOR


■ 厚膜網絡電阻器

THICK FILM NETWORK RESISTOR

- 産品簡介 BRIEF INTRODUCTION
- * 小型化、高密度組裝
- * 電性能穩定,可靠性高
- * 可得到不同電阻值組合
- * 符合RoHS指令
- · Miniature, high density assembly.
- Stable electrical capability, high reliability.
- Combinations of different ohmic value are available
- RoHS compliant



● 結構圖和外形尺寸 CONSTRUCTION AND DIMENSIONS

單位 unit:mm

代號 Code	常規尺寸 Normal dimension		特殊尺寸 Special dimension		
а	2.54 × (n-1)+2.50max		1.778×(n-1)+3.20max		
b	A、B、C、D、 E、F、G、H 型 Type	5.08max	A、B、C、D、 E、F、G、H 型 Type	5.08max	
	T 型 Type	8.50max	T 型 Type	8.50max	
С	3.00max		3.00max		
d	0.50 ± 0.1		0.50±0.1		
е	3.50±0.5		3.50 ± 0.5		
f	0.25 ± 0.1		0.30 ± 0.1		
g	2.54 × (n-1) ± 0.3		1.778 × (n-1) ± 0.3		
р	2.54±0.1		1.778±0.1		

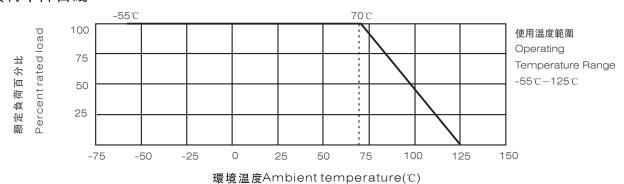
● 等效電路 EQUIVALENT CIRCUIT

型 號 Type	等 效 電 路 Equivalent Circuit	型 號 Type	等 效 電 路 Equivalent Circuit
А	$R_1 \cap R_2 \cap R_n $	В	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
С	R_1 R_2 R_n	D	R_1 R_2 R_2 R_3 R_4 R_5 R_6 R_6 R_7 R_8 R_8 R_8 R_8 R_8 R_8 R_9
Е	R_1 R_2 R_2 R_2 R_3 R_4 R_5 R_5 R_6 R_7 R_8 R_8 R_8 R_8 R_8 R_8 R_9	F	R_1 R_2 R_2 R_3 R_4 R_5 R_6 R_7 R_8 R_8 R_8 R_8 R_8 R_8 R_8 R_9
G	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н	R1 R1 R1 R1 R2 R2 R2 R2 R2 R2 R3 R1 R2 R2 R3 R1 R2 R2 R3 R1 R2 R2 R3 R1 R2 R2 R3
Т	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

• 參考標准 REFERENCE STANDARD

GB/T 15654-1995 GB/T 2828.1-2003 GB/T 2829-2002

● IEC E-24 系列電阻值代碼對照表


IEC E-24 Series Resistance Cross-reference List

E-24 系列 E-24 Series ($\times 10^{n}\Omega$)

(單位unit:1 Ω 、10 Ω 、100 Ω 、1K Ω 、10K Ω 、100K Ω 、1M Ω)

1.0	1.5	2.2	3.3	4.7	6.8
1.1	1.6	2.4	3.6	5.1	7.5
1.2	1.8	2.7	3.9	5.6	8.2
1.3	2.0	3.0	4.3	6.2	9.1

● 負荷下降曲綫 DERATING CURVE

* 當電阻使用的環境温度超過70℃時,其額定負荷(額定功率或額定電流)按上述曲綫下降。

For resistors operated in ambient over 70° C, rated load (power rating or current rating) shall be derated in accordance with above figure.

● 額定值 RATINGS

項 目 Item	標 准 Specification	
額定功率 Power Rating	1/8W (1/4w)	
最大工作電壓 Max. Working Voltage	200V	
最大過負荷電壓 Max. Overload Voltage	280V	
跨接電阻額定電流 Jumper Rated Current	2A	
電阻温度系數 Resistance Temperature Coefficient	$10\Omega \leqslant R \leqslant 1M\Omega$: ± 100 ppm/°C $1\Omega \leqslant R \leqslant 10\Omega$, $1M\Omega \leqslant R \leqslant 10M$: ± 250 ppm/°C	
阻值誤差精度 Resistance Tolerance	±1%, ±2%, ±5%, 跨接電阻 Jumper: ≤50mΩ	
阻值範圍 Resistance Range	0Ω (跨接電阻Jumper)、 $1.0\Omega{\sim}10M\Omega$ E $-24系列$	
使用温度範圍 Operating Temperature Range	−55℃~125℃	
額定温度 Rated Temperature	+70℃	

* 注: 額定電壓 = √額定功率 × 標稱電阻值 或最大工作電壓中的較小值。

Note: Rated Voltage= $\sqrt{\text{Power Rating} \times \text{Resistance Value}}$ or Max. Working Voltage, whichever is lower.

• 特性 CHARACTERISTICS

項目 Item	標 准 Specifications	測試方法(GB/T 15654-1995) Test Methods (GB/T 15654-1995)
電阻温度系數 T. C. R	在規定值内 Within the specified T.C.R	測定範圍: -55℃~125℃ measure between-55℃~125℃
短時間過負載 Short Time Overload	無可見損傷,No mechanical damage $\Delta R \leqslant \pm (2.0\% R + 0.05 \Omega)$ 跨接電阻 Jumper; $R \leqslant 50 \text{m}\Omega$	2.5倍額定電壓或最大過負荷電壓(取最小者) 保持5秒 2.5×Rated voltage or Max. Overload Voltage, choose the lower, for 5 seconds
包封絶緣阻抗 Coating Insulation Resistane	100MΩ Min	施加 500V DC Apply 500V DC
包封絶緣耐電壓 Coating Insulation Withstand Voltage	無弧光,燃燒及本體被擊穿 No arc, inflammation and damage	施加500V DC 保持1min Apply 500V DC 1min
可焊性 Solderability	可焊面積≥95% 95%Cover Min	260℃±5℃ 2±0.5秒 260℃±5℃ 2±0.5S
耐溶劑性 Resistance to Solvent	無可見損傷,No mechanical damage Δ R \leq ±(1.0%R+0.05 Ω) 跨接電阻 Jumper: R \leq 50m Ω	浸入异丙醇溶液 10±1小時,溶液温度爲23±2℃ Dip in isopropyl alcohol solution of 10h ± 1 h the solution temperature of 23 ± 2 ℃.
引綫强度 Pin strength	無可見損傷, No mechanical damage ΔR< ±(1.0%R+0.05Ω) 跨接電阻 Jumper: R<50mΩ	將引綫焊接在網絡電阻的受試引出端后, 以10mm/s平挂,拉力到500g止 Speed:10mm/s, pull strength:500g.
抗彎强度 Bending strength	無可見損傷 No mechanical damage	端子綫末端負重0.5kg,使電阻器本體與端子綫彎成90°,保持5s,爲一個循環,做2個循環 Force with 0.5kg on the terminal pin,between the resistor and the terminal pin is 90 degree,duration: 5s for 1 cycle。total 2 cycles
耐焊接熱 Resistance to Soldering Heat	無可見損傷,No mechanical damage ΔR < ±(1.0%R+0.05Ω) 跨接電阻 Jumper: R < 50mΩ	270℃±5℃ 10±1秒 270℃±5℃ 10s±1s
温度循環 Temperature Cycling	無可見損傷,No mechanical damage Δ R \leqslant \pm (1.0 %R $+0.05\Omega$) 跨接電阻 Jumper: R \leqslant 50m Ω	-55℃(30分鐘)~常温(2~3分鐘)~125℃ (30分鐘)5個循環 -55℃(30min)~normal temperature (2~3min)~125℃(30min)5cycles

項目 Item	標 准 Specifications	測試方法(GB/T 15654-1995) Test Methods (GB/T 15654-1995)
穩態濕熱 Steady state humidity	無可見損傷,No mechanical damage Δ R \leqslant \pm (3.0% R $+$ 0.1 Ω) 跨接電阻 Jumper: R \leqslant 100m Ω	40℃±2℃ 90%~95%RH1000小時 40℃±2℃ 90%~95%RH1000h
70℃耐久性 Load Life(70℃)	無可見損傷,No mechanical damage ΔR<±(3.0%R+0.1Ω) 跨接電阻 Jumper: R<100mΩ	70℃±2℃,1000小時,額定電壓或最大工作電壓兩者中的 較小值, 1.5小時/斷0.5小時 70℃±2℃,1000h,Rated Voltage or Max. Working Voltage, whichever is lower. 1.5h on/0.5h off
上限類别温度耐久性 Endurance at upper temperature	無可見損傷,No mechanical damage Δ R \leqslant \pm (3.0% R $+0.1$ Ω) 跨接電阻 Jumper: R \leqslant 100m Ω	125℃ ±2℃ 1000小時 125℃ ±2℃ 1000h

PACKAGING ● 包裝

* 包裝形式 Packaging style

* 包裝數量 Packaging quantity

塑料袋散包裝 Bag	袋	盒 Box			箱
	Bag	4、5 脚 Pins	6~11 脚 Pins	12~14 脚 Pins	Case
	200pcs	10 Bags	5 Bags	4 Bags	25 boxes Max.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Resistor Networks & Arrays category:

Click to view products by Fenghua Advanced manufacturer:

Other Similar products are found below:

CS6600552K000B8768 CSC08A01470KGEK M8340105K1002FGD03 M8340106MA010FHD03 M8340107K1471FGD03

M8340108K1001FCD03 M8340108K2402GGD03 M8340108K3242FGD03 M8340108K3322FCD03 M8340108K6192FGD03

M8340108K6202GGD03 M8340109K2002FCD03 M8340109M4701GCD03 EXB-24N121JX EXB-24N470JX EXB-A10E102J EXB-A10E104J 744C083101JTR EXB-U18240JX MDP1603100KGE04 PRA100I2-1KBWNW GUS-SS4-BLF-01-1002-G

ACAS06S0830339P100 ACAS06S0830343P100 ACAS06S0830344P100 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10

RM2012A-502104-PBVW10 RM3216B-102302-PBVW10 L091S102LF ACAS06S0830341P100 ACAS06S0830342P100

ACAS06S0830345P100 EXB-14V300JX EXB-U18330JX EXB-V8V220GV PRA100I2-10KBWN PRA100I4-10KBWN

M8340102M4701JAD04 M8340105K1002GGD03 M8340105M1001JCD03 M8340107K3402FCD03 M8340108K1000FGD03

M8340108K4122FGD03 M8340108K4992FGD03