

PNP Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	- 150	Vdc
Collector-Base Voltage	V _{CBO}	- 160	Vdc
Emitter–Base Voltage	V _{EBO}	- 5.0	Vdc
Collector Current — Continuous	Ι _c	- 500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR- 5 Board (1)	Pp	225	mW
T _A =25 °C			
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction to Ambient	R _{RJA}	556	°C/W
Total Device Dissipation	PD	300	m₩
Alumina Substrate, (2) T _A = 25°C			
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	R _{RJA}	417	°CW
Junction and Storage Temperature	Τ」, T _{stg}	-55to+150	°C

DEVICE MARKING

MMBT5401=2L

• ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
CHARACTERISTICS				
Collector-Emitter Breakdown Voltage	V (BR)CEO			Vdc
$(I_{c} = -1.0 \text{ mAdc}, I_{B} = 0)$	10070	- 150		
Collector-Base Breakdown Voltage	V (BR)CBO			Vdc
$(I_{c} = -100 \ \mu Adc, I_{E} = 0)$		- 160	1	
Emitter-BAse Breakdown Voltage	V _{(BR)EBO}			Vdc
(I _E = -10μAdc, I _c =0)		-5.0		
Collector Cutoff Current	I _{CES}			
$(V_{CB} = -120 \text{ Vdc}, I_E = 0)$			- 50	nAdd
(V _{CB} = -120 Vdc, I _E = 0, T _A =100 °C)		—	- 50	μAdo

1. FR-5 = 1.0 x 0.75 x 0.062 in.

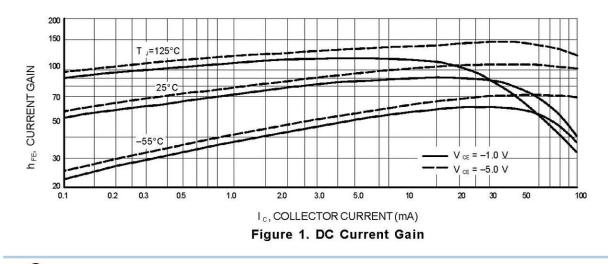
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

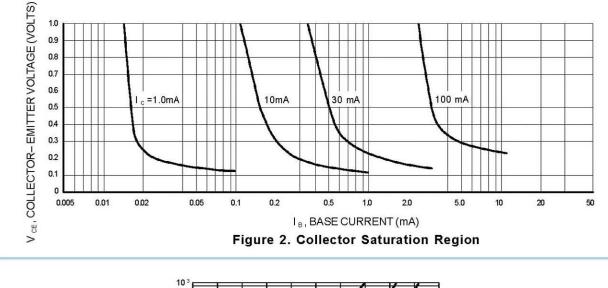
SHIKE MAKE CONSCIOUS PRODUCT

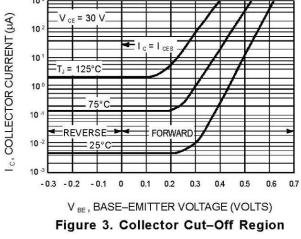
CONSCIOUS PRODUCTS BEGIN WITH CONSCIOUS PEOPLE

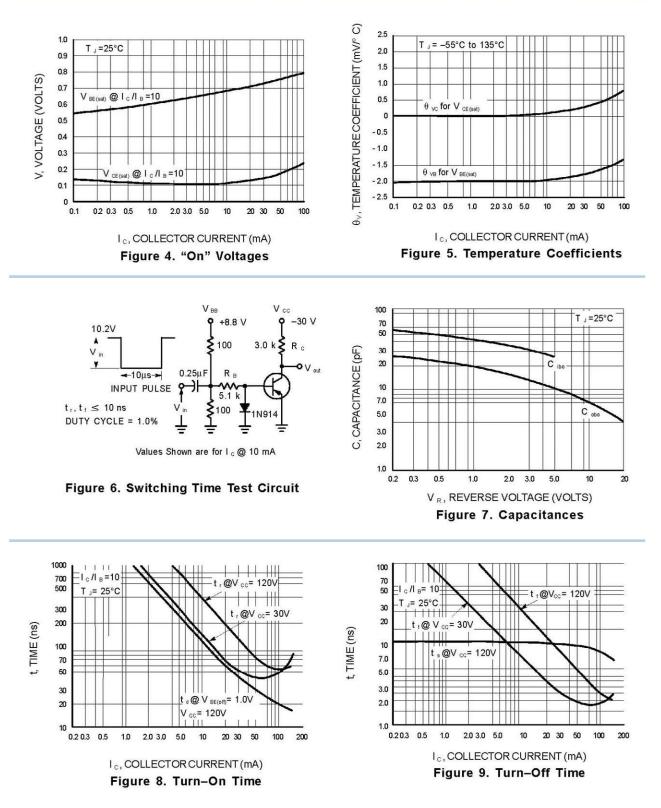
REV.07

Characteristic	Symbol	Min	Max	Unit
N CHARACTERISTICS (2)				
DC Current Gain	h _{FE}			
$(I_c = -1.0 \text{mAdc}, V_{ce} = -5.0 \text{ Vdc})$		50	·	
$(I_c = -10 \text{ mAdc}, V_{ce} = -5.0 \text{ Vdc})$		60	240	
$(I_c = -50 \text{ mAdc}, V_{cE} = -5.0 \text{ Vdc})$		50		
Collector–Emitter Saturation Voltage	$V_{CE(sat)}$			Vdc
$(I_c = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$			- 0.2	
$(I_c = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$			- 0.5	
Base–Emitter Saturation Voltage	$V_{\text{BE(sat)}}$			Vdc
$(I_{c} = -10 \text{ mAdc}, I_{B} = -1.0 \text{ mAdc})$			- 1.0	
$(I_c = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$			- 1.0	
MALL-SIGNAL CHARACTERISTICS				
Current–Gain — Bandwidth Product	f _T			MHz
$(I_c = -10 \text{ mAdc}, V_{ce} = -10 \text{ Vdc}, f = 100 \text{ MHz})$		100	300	
Output Capacitance	C _{obo}			pF
$(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$			6.0	
Small–Signal Current Gain	h _{fe}			
$(I_{c} = -1.0 \text{ mAdc}, V_{ce} = -10 \text{ Vdc}, f = 1.0 \text{ kHz})$		40	200	
Noise Figure	NF			dB
(I _c = –200 μAdc, V _{cE} = –5.0 Vdc,R _s =10Ω, f = 1.0 kHz)			8.0	


• ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) (Continued)


SHIKE MAKE CONSCIOUS PRODUCT CONSCIOUS PRODUCTS BEGIN WITH CONSCIOUS PEOPLE REV.07





SHIKE MAKE CONSCIOUS PRODUCT CONSCIOUS PRODUCTS BEGIN WITH CONSCIOUS PEOPLE REV.07

SHIKE MAKE CONSCIOUS PRODUCT CONSCIOUS PRODUCTS BEGIN WITH CONSCIOUS PEOPLE REV.07

4 of 4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by Shikues manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B