## MMBT3906

## PNP GENERAL PURPOSE SWITCHING TRANSISTOR

VOLTAGE 40 Volt POWER 225 mWatt

## FEATURES

- PNP epitaxial silicon, planar design
- Collector-emitter voltage VCE $=-40 \mathrm{~V}$
- Collector current IC = -200mA
- Lead free in compliance with EU RoHS 2011/65/EU directive
- Green molding compound as per IEC61249 Std. .
(Halogen Free)


## MECHANICAL DATA

Case: SOT-23, Plastic
Terminals: Solderable per MIL-STD-750, Method 2026
Approx. Weight: 0.0003 ounces, 0.0084 grams
Marking: S2A


## ABSOLUTE RATINGS

|  | Parameter | Symbol | Value |
| :--- | :---: | :---: | :---: |
| Collector - Emitter Voltage | Vceo | -40 | Units |
| Collector - Base Voltage | Vcbo | -40 | V |
| Emitter - Base Voltage | VEBO | -5 | V |
| Collector Current - Continuous | I c | -200 | mA |

THERMAL CHARACTERISTICS

| Parameter | Symbol | Value | Units |
| :--- | :---: | :---: | :---: |
| Max Power Dissipation (Note 1) | Ртот | 330 | mW |
| Thermal Resistance , Junction to Ambient | RөJA | 375 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Operating Junction Temperature and Storage Temperature Range | TJ,TstG | -55 to 150 | ${ }^{\circ} \mathrm{C}$ |

Note 1: Transistor mounted on FR-5 board $1 \times 0.75 \times 0.062$ in.

## MMBT3906

ELECTRICALCHARACTERISTICS

| Parameter | Symbol | Test Condition | MIN. | TYP. | MAX. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Collector - Emitter Breakdown Voltage | $V(B R) C E O$ | $I C=-1 m A, I B=0$ | -40 | - | - | V |
| Collector - Base Breakdown Voltage | $V(\mathrm{BR}) \mathrm{CBO}$ | $I C=-10 u A, I E=0$ | -40 | - | - | V |
| Emitter - Base Breakdown Voltage | $V(B R) E B O$ | $I E=-10 u A, I C=0$ | -5 | - | - | V |
| Base Cutoff Current | IbL | $V C E=-30 V, V E B=-3 V$ | - | - | -50 | nA |
| Collector Cutoff Current | Icex | $V C E=-30 V, V E B=-3 V$ | - | - | -50 | nA |
| DC Current Gain (Note 2) | $\mathrm{h}_{\text {FE }}$ | $\begin{aligned} & I C=-0.1 \mathrm{~mA}, V C E=-1 \mathrm{~V} \\ & I C=-1 \mathrm{~mA}, V C E=-1 \mathrm{~V} \\ & I C=-10 \mathrm{~mA}, V C E=-1 \mathrm{~V} \\ & I C=-50 \mathrm{~mA}, V C E=-1 \mathrm{~V} \\ & I C=-100 \mathrm{~mA}, V C E=-1 \mathrm{~V} \end{aligned}$ | $\begin{gathered} 60 \\ 80 \\ 100 \\ 60 \\ 30 \end{gathered}$ |  | $300$ | - |
| Collector - Emitter Saturation Voltage (Note 2) | Vce(SAT) | $\begin{aligned} & I C=-10 m A, I B=-1 m A \\ & I C=-50 m A, I B=-5 m A \end{aligned}$ | - | - | $\begin{gathered} -0.25 \\ -0.4 \end{gathered}$ | V |
| Base - Emitter Saturation Voltage (Note 2) | Vbe(SAT) | $\begin{aligned} & I C=-10 m A, I B=-1 m A \\ & I C=-50 m A, I B=-5 m A \end{aligned}$ | $-0.65$ |  | $\begin{aligned} & -0.85 \\ & -0.95 \end{aligned}$ | V |
| Collector - Base Capacitance | Ссво | $V C B=-5 V, I E=0, f=1 \mathrm{MHz}$ | - | - | 4.5 | pF |
| Emitter - Base Capacitance | Cebo | $V E B=-0.5 V, I C=0, f=1 \mathrm{MHz}$ | - | - | 10 | pF |
| Delay Time | td | $\begin{aligned} & V с с=-3 V, V_{B E}=-0.5 \mathrm{~V}, \\ & I C=-10 \mathrm{~mA}, I_{B}=-1 \mathrm{~mA} \end{aligned}$ | - | - | 35 | ns |
| Rise Time | tr | $\begin{aligned} & V C C=-3 V, V_{B E}=-0.5 \mathrm{~V}, \\ & I C=-10 \mathrm{~mA}, I_{B}=-1 \mathrm{~mA} \end{aligned}$ | - | - | 35 | ns |
| Storage Time | ts | $\begin{aligned} & V C C=-3 V, I C=-10 \mathrm{~mA} \\ & I B 1=I B 2=-1 \mathrm{~mA} \end{aligned}$ | - | - | 225 | ns |
| Fall Time | tf | $\begin{aligned} & \mathrm{VCC}=-3 \mathrm{~V}, \mathrm{IC}=-10 \mathrm{~mA} \\ & \mathrm{IB} 1=I \mathrm{~B} 2=-1 \mathrm{~mA} \end{aligned}$ | - | - | 75 | ns |
| Current Gain-Bandwidth Product | $\mathrm{f}_{\mathrm{T}}$ | $\begin{aligned} & \text { Ic=-10mA, VCE }=-20 \mathrm{~V}, \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$ | 250 | - | - | M Hz |

Note 2: Pulse Test: Pulse Width $\leq 300$ us, Duty Cycle $\leq 2.0 \%$.
SWITCHING TIME EQUIVALENT TEST CIRCUITS


Storage and Fall Time Equivalent Test Circuit


Fig. 1. Typical $\mathbf{h}_{\text {FE }}$ vs. Collector Current


Fig. 3. Typical $\mathbf{V}_{\text {CE (sat) }}$ vs. Collector Current


Fig. 2. Typical $\mathbf{V}_{\text {BE }}$ vs. Collector Current


Fig. 4. Typical $\mathrm{V}_{\text {Be (sat) }}$ vs. Collector Current


Fig. 5. Typical Capacitances vs. Reverse Voltage

## MMBT3906

## MOUNTING PAD LAYOUT



ORDER INFORMATION

- Packing information

T/R - 12K per 13" plastic Reel
T/R - 3K per 7" plastic Reel

## MMBT3906

## Part No_packing code_Version

MMBT3906_R1_00001
MMBT3906_R2_00001

For example :
RB500V-40_R2_00001


| Packing Code XX |  |  |  | Version Code |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Packing type | $1^{\text {st }}$ Code | Packing size code | $2^{\text {nd }}$ Code | HF or RoHS | $1{ }^{\text {st }}$ Code | $2^{\text {nd }} \sim 5^{\text {th }}$ Code |
| Tape and Ammunition Box (T/B) | A | N/A | 0 | HF | 0 | serial number |
| Tape and Reel (T/R) | R | 7" | 1 | RoHS | 1 | serial number |
| Bulk Packing (B/P) | B | 13" | 2 |  |  |  |
| Tube Packing (T/P) | T | 26 mm | X |  |  |  |
| Tape and Reel (Right Oriented) (TRR) | S | 52 mm | Y |  |  |  |
| Tape and Reel (Left Oriented) (TRL) | L | PANASERT T/B CATHODE UP (PBCU) | U |  |  |  |
| FORMING | F | PANASERT T/B CATHODE DOWN (PBCD) | D |  |  |  |

## MMBT3906

## Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by Panjit manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B

