1A Single Channel USB Switch

FEATURES

- $85 \mathrm{~m} \Omega$ High-Side MOSFET Switch.
- 1A Continuous Load Current.
- $40 \mu \mathrm{~A}$ Quiescent Supply Current.
- $1 \mu \mathrm{~A}$ Maximum Shutdown Supply Current.
- 3.2V to 6.5V Input Voltage Range.
- Open-Drain Over-Current Flag Output.
- Under-Voltage Lockout.
- Current-Limit / Short Circuit Protection.
- Thermal Shutdown Protection under Over Current Condition.
- Under Voltage Lockout Ensures that Switch is off at Start Up.
- Soft Start prevents large Inrush Current.
- No Reverse Current when Power off.
- Enable Active-High or Active-Low Version.
- Available in SOT-23-5 Packages.

APPLICATIONS

- USB Power Management
- High-Side Power Protection Switch
- Hot Plug-In Power Supplies
- Battery-Charger Circuits
- Portable Application.
- Digital televisions

TYPICAL APPLICATION CIRCUIT

- ORDERING INFORMATION

\author{

AIC6163-XXXXXX
 | |
| :---: |
| | |

Package Type	5 Pin Configuration
$\begin{gathered} \text { V5 } \\ \text { (SOT-23-5) } \end{gathered}$	FRONT VIEW

Example: AIC6163-1GV5TR
\rightarrow Active High Version, in SOT-23-5
Green package and TAPE \& REEL packing

- SOT-23-5 Marking

Part No.	Package	Package type	Marking	Note
AIC6163-x	GV5	SOT-23-5	HJFxG	$\mathrm{x}=0$ for active low, $\mathrm{x}=1$ for active High

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V_{IN}) 7.0V
CTL Input ($\mathrm{V}_{\text {СтL }}$) $-0.3 \mathrm{~V} \sim 7 \mathrm{~V}$
Operating Temperature Range $-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$
Junction Temperature $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $260^{\circ} \mathrm{C}$
Thermal Resistance, $\theta_{\text {JA }}$ (Junction to Ambient) SOT-23-5 $250^{\circ} \mathrm{C} / \mathrm{W}$
(Assume no Ambient Airflow, no Heatsink)Thermal Resistance, $\theta_{\text {лс }}$ (Junction to Case) SOT-23-5$115^{\circ} \mathrm{C} / \mathrm{W}$
Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note 1)

PARAMETERS	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply Current			40		$\mu \mathrm{A}$
Shutdown Supply Current			0.1	1	$\mu \mathrm{A}$
Input Voltage Range		3.2		6.5	V
Current Limit Threshold		1.1	1.5	2	A
Output MOSFET Resistance			85		$\mathrm{m} \Omega$
Output Turn-On Rise Time	$\mathrm{R}_{\mathrm{L}}=10 \Omega$ each Output		400		$\mu \mathrm{S}$
Output Turn-Off Fall Time	$R_{L}=10 \Omega$ each Output		0.7	20	$\mu \mathrm{S}$
EN Input Threshold		0.4	0.8	1.2	V
Output Leakage Current	EN='0', V ${ }^{\text {OUT }}$ =0V		0.5	1	$\mu \mathrm{A}$
Over Temperature Shutdown Threshold	TJ Increasing TJ Decreasing		$\begin{aligned} & 145 \\ & 125 \end{aligned}$		${ }^{\circ} \mathrm{C}$
Under Voltage Lockout			2.5		V
Under Voltage Lockout Hysteresis			200		mV
Over Current Flag Response Delay	Apply $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ until FLG low	4	9		ms
FLG Output Low Voltage				0.4	V
FLG Off-State Current				1	$\mu \mathrm{A}$

Note1:Specifications are production tested at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).

TYPICAL PERFORMANCE CHARACTERISTICS

Fig. 1 ON Resistance vs. Supply Voltage

Fig. 3 ON-State Supply Current vs. Supply Voltage

Fig. 5 Current Limit vs. Supply Voltage

Fig. 2 ON Resistance vs. Temperature

Fig. 4 ON State Current vs. Temperature

Fig. 6 Current Limit vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Fig. 7 Flag Delay Time vs. Supply Voltage

Fig. 9 Enable Threshold vs. Supply Voltage

Fig. 11 Rising Time vs. Temperature

Fig. 8 Flag Delay Time vs. Temperature

Fig. 10 UVLO Threshold Voltage vs. Temperature

AIC6163

BLOCK DIAGRAM

PIN DESCRIPTIONS

PIN1 CTL: Switch Enable.
PIN2 GND: Chip power ground.
PIN3 FLG: Fault status. A logic low on this pin indicates the switch is in current limit, or has been shut down by the thermal protection circuit.

PIN4 IN: Power supply input.
PIN5 OUT: MOSFET switch output.

APPLICATION INFORMATION

- Flag Output

An error Flag is an open-drained output of an N -channel MOSFET. Flag output is pulled low to signal the following fault conditions: input undervoltage, output current limit, and thermal shutdown. The current limit flag response delay time is 9 ms .

- Current Limit

The current limit threshold is preset internally. It protects the output MOSFET switches from damage resulting from undesirable short circuit conditions or excess inrush current, which is often encountered during hot plug-in. The error flag signals when any current limit conditions occur.

- Thermal Shutdown

When temperature of AIC6163 exceeds $145^{\circ} \mathrm{C}$ for any reasons, the thermal shutdown function turns MOSFET switch off and signals the error flag. A hysteresis of $20^{\circ} \mathrm{C}$ prevents the MOSFETs from turning back on until the chip temperature drops below $125^{\circ} \mathrm{C}$.

- Enable Control

Enable must be driven logic high or logic low for a clearly defined input. Floating the input may cause unpredictable operation.

- Under-voltage Lockout

UVLO (undervoltage lockout) prevents the output MOSFET from turning on until input voltage exceeds 2.5 V typically. After the switch turns on, if the input voltage drops below 2.3 V typically, UVLO shuts off the output MOSFET.

- Supply Filtering

A $1 \mu \mathrm{~F}$ bypass capacitor from USB IN to GND, located near the device, is strongly recommended to control supply transients. Without a bypass capacitor, an output short may cause sufficient ringing on the input (from supply
lead inductance) to damage internal control circuitry.

- Transient Requirements

USB supports dynamic attachment (hot plug-in) of peripherals. A current surge is caused by the input capacitance of downstream device. Ferrite beads are recommended in series with all power and ground connector pins. Ferrite beads reduce EMI and limit the inrush current during hot-attachment by filtering high-frequency signals.

- Short Circuit Transient

Bulk capacitance provides the short-term transient current needed during a hot-attachment event. A $22 \mu \mathrm{~F} / 10 \mathrm{~V}$ ceramic capacitor mounted close to downstream connector each port should provide transient drop protection.

- Printed Circuit Layout

The power circuitry of USB printed circuit boards requires a customized layout to maximize thermal dissipation and to minimize voltage drop and EMI.

PHYSICAL DIMENSIONS (unit: mm)

- SOT-23-5

Note : 1. Refer to JEDEC MO-178AA.
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 10 mil per side.
3. Dimension "E1" does not include inter-lead flash or protrusions.
4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

S Y M B O L	SOT-23-5	
	MILLIMETERS	
	MIN.	MAX.
A	0.95	1.45
A1	0.00	0.15
A2	0.90	1.30
b	0.30	0.50
c	0.08	0.22
D	2.80	3.00
E	2.60	3.00
E1	1.50	1.70
e	0.95 BSC	
e1	1.90 BSC	
L	0.30	0.60
L1	0.60 REF	
θ	0°	8°

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.
Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by AIC manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P MC15XS3400DHFKR2 FPF1015 FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2 NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073

