

A Professional MLCC (Multi-Layer Ceramic Capacitor) Manufacturer

In the post-PC 21st century, all information and communication technology products will be closely connected with our daily lives. In a colorful communication world, DARFON's Multi-layer Ceramic Capacitor is significant. This product addresses the market's application needs by combining technology from materials engineering, chemical engineering, electronic engineering, and mechanical engineering.

A Multi-layer Ceramic Capacitor with different functions is always the goal of DARFON's R&D, with R&D taking the direction of multi-levels and small scale. As far as the technical aspect is concerned, the company has surpassed other domestic companies in Taiwan by being first to develop the BME process and 0201 ultra miniature MLCC. This product's ultra thin thickness is top notch.

Through automated equipment with high efficient management systems, DARFON can guarantee the quality of each end product.

DARFON Quality Policy

"To deliver Defect-free, Competitive Products and Services to our Customers on time."

MLCC Introduction

Multi-layer ceramic capacitors (MLCC) are manufactured by suspending ceramic powders in liquid and casting into a thin green sheet from 20 um in thickness to 5 um or thinner.

Metal electrodes are sieved printed onto green sheets, which are later stacked to form a laminated structure. The metal electrodes are arranged so that the termination alternates from one edge to another of the capacitor.

Upon sintering at high temperature the part becomes a monolithic block, which can provide an extremely high capacitance in small mechanical volumes.

Finally, the termination electrodes are formed by composite of outer metal-glass electrode and followed by a barrier layer and pure-tin plating to permit MLCC to be soldered directly onto printed circuit board.

DARFON MLCC 1 Version:C1007

(SELECTION GUIDE OF MULTILAYER CERAMIC CAPACITOR	3
•	ORDERING INFORMATION	6
(STRUCTURE AND DIMENSIONS	7
a	PRODUCT RANGE AND THICKNESS	8
(ELECTRICAL SPECIFICATIONS	
	General PurposeNP0 High Frequency Type	13 16
(TYPICAL CHARACTERISTICS CURVES	17
a	RF CHARACTERISTICS OF NPO Q series	19
a	PACKAGING	22
•	APPLICATION NOTES	26
•	ENVIRONMENTAL CONCERNS	34

DARFON MLCC 2 Version:C1007

Darfon's series of Multilayer Ceramic Chip Capacitors are designed to meet a wide variety of needs. We offer a complete range of products for both general and specialized applications in the industry. We suggest your selection of capacitors based on consideration of the following items:

1. DIELECTRIC TYPE

The choice of dielectric is usually determined by the required capacitance-temperature stability. Darfon offers four types, NP0, X7R, X5R and Y5V for your choice. The features and applications of these four types are specified as follows:

Dielectric	NP0	X7R/X5R	Y5V
Features	 Ultra-stable Tight tolerance available Low ESR Good frequency performance No aging of capacitance 	Semi-stable and High K High volumetric efficiency Highly reliable in high temperature application High insulation resistance	High volumetric efficiency Non-polar construction General purpose, High K
Applications	1. LC and RC tuned circuit 2. Filtering 3. Timing	Blocking Coupling Timing Bypassing Frequency discriminating Filtering	Bypassing De-coupling Filtering

2. CAPACITANCE AND TOLERANCE

Capacitance and its tolerance are determined by circuit requirement and cost consideration.

■ E Standard Number

E	∃3		1.0				2.2					4.7													
E	E 6	1.0				1.	.5 2			2 3.3			4.7 6.8			.8									
Е	12	1.	0	1.	2	1.	.5	1	.8	2.	2	2.	.7	3	.3	3.	.9	4	.7	5.	.6	6	.8	8	.2
Е	24	1.0	1.1	1.2	1.3	1.5	1.6	1.8	2.0	2.2	2.4	2.7	3.0	3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1

^{*} Non-standard capacitance is available on request.

DARFON MLCC 3 Version:C1007

Available Tolerance

T. C.	Capacitance *	Standard Tolerance	Available Tolerance on Request
		0 .005 5	•
	Cap < 5pF	C = ± 0.25pF	B = ± 0.1pF
		D = ± 0.5pF	B = 2 0.1pi
NP0 (C0G)	5pF ≦ Cap < 10pF	D = ± 0.5pF	B = ± 0.1pF
		В = 1 0.0рг	C = ± 0.25pF
	Cap ≧ 10pF	J = ± 5%	F = ± 1%
	σαρ ≦ τορι	K = ±10%	G = ± 2%
X5R	All	K = ± 10%	J = ± 5%
X7R	, w	M = ± 20%	0 = 2070
Y5V	All	Z = -20% to +80%	M = ± 20%

^{*} Non-standard capacitance or tolerance is available on request.

3. RATED VOLTAGE

Rated voltage is determined by circuit requirement.

4. PACKAGING

Specify the packaging of capacitors as bulk or tape and reeled.

5. PRODUCT RANGE AND SIZE

• NP0 (Class I)

Т	уре				Size	
T.C.	RV	0603 (0201)	1005 (0402)	1608 (0603)	2012 (0805)	3216 (1206)
	16V			2.7nF~3.3nF		12nF~39nF
NP0	25V	0.20pF~100pF	0.20pF~22pF			
Class I	50V	0.20pF~18pF	0.20pF~470pF/1nF	0.20pF~2.2nF	0.50pF~10nF	1.50pF~10nF
	100V		0.20pF~220pF	0.20pF~1nF	0.50pF~3.3nF	1.50pF~4.7nF

DARFON MLCC 4 Version:C1007

• X7R (Class II)

	Туре				Size		
T.C.	RV	0603 (0201)	1005 (0402)	1608 (0603)	2012 (0805)	3216 (1206)	3225 (1210)
6.3V					4.7uF~10uF		
X7R	10V	3.3nF/4.7nF/10nF	100pF~100nF	100pF~1uF	1uF/2.2uF/4.7uF/10uF	2.2uF	
Class	16V		100pF~100nF	100pF~1uF	330nF/470nF/1uF/ 2.2uF	470nF~10uF	10uF
II	25V	100pF~2.2nF	100pF~22nF	100pF~1uF	1nF~1uF	220nF~4.7uF	4.7uF/10uF
50V		100pF~2.2nF	100pF~10nF	100pF~100nF	150pF~470nF	1nF~1uF	
	100V			100pF~10nF	150pF~22nF	1nF~100nF	

• X5R (Class II)

Тур	ре			Size			
T.C.	RV	0603 (0201)	1005 (0402)	1608 (0603)	2012 (0805)	3216 (1206)	3225 (1210)
	6.3V	2.2nF~220nF	470nF~4.7uF	2.2uF/ 4.7uF/10uF	4.7uF~22uF	22uF/47uF	47uF/100uF
X5R	10V	2.2nF~100nF	15nF~1uF	220nF~4.7uF	2.2uF~10uF	2.2uF~10uF	22uF
Class	16V		15nF~1uF	220nF~2.2uF	1uF~10uF	2.2uF~10uF	4.7uF~22uF
II	25V		100nF	220nF/1uF	1uF~4.7uF	2.2uF~10uF	4.7uF/ 10uF

Y5V (Class II)

Турс	е	Size									
T.C.	RV	0603 (0201)	1005 (0402)	1608 (0603)	2012 (0805)						
	6.3V	22nF~100nF	10nF∼1uF	10nF~2.2uF							
	10V		10nF~1uF	10nF~2.2uF							
Y5V	16V		10nF~220nF	10nF~2.2uF	100nF~2.2uF						
Class II	25V		10nF~100nF	10nF~330nF	100nF ~2.2uF						
	50V		10nF~33nF	10nF~220nF	100nF~1uF						

Note: (1) Other size, capacitance, and voltage are available upon customer's request.

- (2) Product range might be extended due to technology improvement or new product released: for up-to-date information, please contact our sales.
- (3) Part of Y5V product will be phased out.

DARFON MLCC 5 Version:C1007

DARFON Part Number

C 1005 NP0 101 J G T S

PRODUCT CODE _

C = Capacitor SMD

SIZE in mm (EIA CODE, in inch)

0402(01005) 0603(0201) 1005 (0402) 1608 (0603) 2012 (0805)

3216 (1206) 3225(1210) 4520 (1808) 4532 (1812)

T. C. —

CAPACITANCE CODE -

Expressed in pico-farads and identified by a three-digit number.

First two digits represent significant figures.

Last digit specifies the number of zeros.

(Use 9 for 1.0 through 9.9pF; Use 8 for 0.2 through 0.99pF)

(Example: 2.2pF=229 or 0.47pF=478)

TOLERANCE CODE -

A: $\pm 0.05 pF$ B: $\pm 0.1 pF$ C: $\pm 0.25 pF$ D: $\pm 0.5 pF$ F: $\pm 1\%$ G: $\pm 2\%$

J: ±5% K: ±10% M: ±20% Z: +80/-20%

VOLTAGE CODE

B: 4V C: 6.3V D: 10V E: 16V F: 25V N: 35V G: 50V H: 100V J: 200V K: 250V L: 500V M: 630V P: 1KV R: 3KV S: 4KV Q: 2KV

PACKAGING CODE _

T: Paper tape reel Ø180mm (7") P: Embossed tape reel Ø180mm (7")

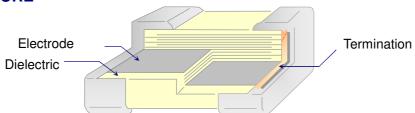
N: Paper tape reel Ø250mm (10") D: Embossed tape reel Ø250mm (10")

A: Paper tape reel Ø330mm (13") E: Embossed tape reel Ø330mm (13")

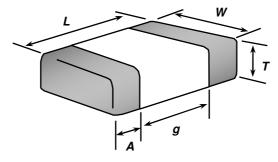
B: Bulk, loosed in bag C: Bulk cassette W: Special Packing

Product Type

S: Standard Ceramic Capacitor


Q: High Q/Low ESR

DARFON MLCC 6 Version:C1007



STRUCTURE AND DIMENSIONS

MLCC STRUCTURE

DIMENSIONS

TYPICAL TOLERANCE

SIZE CODE	L	W	Т	g	Α	UNIT
(EIA)	(Length)	(Width)	(Max Thickness)	(Min)	(Termination Min/Max)	ONIT
0603	0.6+/-0.03	0.3+/-0.03	0.33	0.15	0.10/0.20	mm
(0201)	(0.024+/-0.001)	(0.012+/-0.001)	(0.013)	(0.006)	(0.004/0.008)	(inch)
1005	1.0 +/- 0.05	0.5 +/- 0.05	0.55	0.30	0.10 / 0.30	mm
(0402)	(0.040 +/- 0.002)	(0.020 +/- 0.002)	(0.022)	(0.012)	(0.004 / 0.012)	(inch)
1608	1.6 +/- 0.10	0.8 +/- 0.10	0.90	0.50	0.25 / 0.65	mm
(0603)	(0.063 +/- 0.004)	(0.031 +/- 0.004)	(0.035)	(0.020)	(0.010 / 0.026)	(inch)
2012	2.0 +/- 0.15	1.25 +/- 0.20	1.45	0.70	0.25 / 0.75	mm
(0805)	(0.079 +/- 0.006)	(0.049 +/- 0.008)	(0.057)	(0.028)	(0.010 / 0.030)	(inch)
3216	3.2 +/- 0.15	1.6 +/- 0.20	1.80	1.50	0.25 / 0.75	mm
(1206)	(0.126 +/- 0.006)	(0.063 +/- 0.008)	(0.069)	(0.060)	(0.010 / 0.030)	(inch)
3225	3.2 +/- 0.20	2.5 +/- 0.20	2.70	1.50	0.25 / 0.75	mm
(1210)	(0.126 +/- 0.008)	(0.098 +/- 0.008)	(0.106)	(0.060)	(0.010 / 0.030)	(inch)

SPECIAL TOLERANCE

SIZE CODE	L	W	Т	g	Α	UNIT
(EIA)	(Length)	(Width)	(Max Thickness)	(Min)	(Termination Min/Max)	ONIT
1005*	1.0 +/- 0.15	0.5 +/- 0.15	0.65	0.30	0.10 / 0.30	mm
(0402)	(0.040 +/- 0.006)	(0.020 +/- 0.006)	(0.026)	(0.012)	(0.004 / 0.012)	(inch)
1608*	1.6 + 0.15/-0.1	0.8 + 0.15/-0.1	0.95	0.50	0.25 / 0.65	mm
(0603)	(0.063 +0.006/- 0.004)	(0.031 +0.006/-0.004)	(0.037)	(0.020)	(0.010 / 0.026)	(inch)
2012*	2.0 +/- 0.20	1.25 +0.30/-0.20	1.55	0.70	0.25 / 0.75	mm
(0805)	(0.079 +/- 0.008)	(0.049 +0.012/ -0.008)	(0.061)	(0.028)	(0.010 / 0.030)	(inch)
3216*	3.2 +/- 0.20	1.6 +0.30/-0.20	1.90	1.50	0.25 / 0.75	mm
(1206)	(0.126 +/- 0.008)	(0.063 +0.012/ -0.008)	(0.075)	(0.060)	(0.010 / 0.030)	(inch)
3225*	3.2 +/- 0.30	2.5 +/- 0.30	2.80	1.50	0.25 / 0.75	mm
(1210)	(0.126 +/- 0.012)	(0.098 +/- 0.012)	(0.11)	(0.060)	(0.010 / 0.030)	(inch)

DARFON MLCC 7 Version:C1007

■ NP0 - General Purpose

CLASS							lass I					
TYPE							andard					
T.C. SIZE	06	03		005		1608	G (NP0)	2	012		3216	
(EIA)	00			402		0603			805		1206	
RV	25V	50V	50V	100V	16V	50V	100V	50V	100V	16V	50V	100V
0.20 p	231	30 V	B	B	100	D	D	30 V	100 V	100	30 V	100 V
0.50 p	Α	Α	В	В		D	D	С	С			
0.75 p	A	A	В	В		D	D	C	C			
1.0 p	Α	Α	В	В		D	D	С	С			
1.2 p	Α	Α	В	В		D	D	С	С			
1.5 p	Α	Α	В	В		D	D	С	С		Е	E
1.8 p	Α	Α	В	В		D	D	С	С		E	Е
2.2 p	Α	Α	В	В		D	D	С	С		Е	Е
2.7 p	Α	Α	В	В		D	D	С	С		E	E
3.3 p	Α	Α	В	В		D	D	С	С		E	Е
3.9 p	Α	Α	В	В		D	D	С	С		E	E
4.7 p	A	A	В	В		D	D	С	С		E	E
5.6 p	A	A	В	В		D	D	С	С		E	E
6.8 p	A	Α Λ	В	В		D	D	С	С		E	E
8.2 p	Α Λ	Α Λ	B B	B B		D D	D D	C	С		E E	E E
10 p 12 p	A A	A A	В	В		D	D	C	C		E	E
12 p	A	A	В	В		D	D	С	С		E	E
18 p	A	A	В	В		D	D	С	С		E	E
22 p	A	-,	В	В		D	D	C	C		E	E
27 p	A		В	В		D	D	С	С		E	E
33 p	Α		В	В		D	D	С	С		Е	Е
39 p	Α		В	В		D	D	С	С		Е	Е
47 p	Α		В	В		D	D	С	С		Е	Е
56 p	Α		В	В		D	D	С	С		E	E
68 p	Α		В	В		D	D	С	С		E	Е
82 p	Α		В	В		D	D	С	С		Е	Е
100 p	Α		В	В		D	D	С	С		Е	Е
120 p			В	В		D	D	С	С		E	E
150 p			В	В		D	D	С	С		E	E
180 p			B B	B B		D D	D D	C	C		E	E E
220 p 270 p			В	В		D	D	С	С		E E	E
330 p			В			D	D	C	C		E	E
390 p			В			D	D	C	E		E	E
470 p			В			D	D	С	E		E	E
560 p						D	D	С	Е		Е	Е
680 p						D	D	С	E		E	E
820 p						D	D	С	Е		Е	Е
1.0 n			В			D	D	С	E		E	E
1.2 n						<u>D</u> *		Е	E		E	Е
1.5 n						<u>D</u> *		E	E		E	E
1.8 n						<u>D</u> *		E	E		E	E
2.2 n					F.	<u>D</u> *		E	E	<u> </u>	E	E
2.7 n					<u>D</u> *			G	G		E	E
3.3 n					<u>D</u> *			G G	G		E E	E E
3.9 n 4.7 n								G			E	E
4.7 n 5.6 n								G			E	E
6.8 n								G			F	
8.2 n								G			F	
10 n								G	1		G	
12 n								\vdash		G		
15 n										G		
18 n										G		
22 n								1	Ì	G		
27 n										G		
33 n										G		
39 n										L		

Note: Thickness might be changed due to technology improvement.

DARFON MLCC 8 Version:C1007

■NP0 – Low ESR/ High Q (Q Series)

CLASS			Cla	ss I								
TYPE		Class I Low ESR/High Q										
T.C.		NP0(C0G)										
SIZE	06	03	100		1608							
(EIA)	02	01	040	2	06	03						
RV	25V	50V	25V	50V	25V	50V						
* 0.20 p	Α	Α	В	В	D	D						
* 0.50 p	Α	Α	В	В	D	D						
* 0.75 p	Α	Α	В	В	D	D						
1.0 p	Α	Α	В	В	D	D						
1.2 p	Α	Α	В	В	D	D						
1.5 p	Α	Α	В	В	D	D						
1.8 p	Α	Α	В	В	D	D						
2.2 p	Α	Α	В	В	D	D						
2.7 p	Α	Α	В	В	D	D						
3.3 p	Α	Α	В	В	D	D						
3.9 p	Α	Α	В	В	D	D						
4.7 p	Α	Α	В	В	D	D						
5.6 p	Α	Α	В	В	D	D						
6.8 p	Α	Α	В	В	D	D						
8.2 p	Α	Α	В	В	D	D						
10 p	Α	Α	В	В	D	D						
12 p	Α	Α	В	В	D	D						
15 p	Α	Α	В	В	D	D						
18 p	Α	Α	В	В	D	D						
22 p			В	В	D	D						
27 p												
33 p												
39 p												
47 p												
56 p												
68 p												
82 p												
100 p												
120 p												
150 p												
180 p												
220 p												
270 p												
330 p												

Note: Thickness might be changed due to technology improvement.

Thickness Tolerance

Thick	kness (mm)	Thick	kness (mm)	Thick	(ness (mm)	Thick	(ness (mm)	Thick	(ness (mm)	Thic	ckness (mm)
Code	Class	Code	Class	Code	Class	Code	Class	Code	Code	Code	Code
Α	0.30+/-0.03	С	0.60+/-0.15	Е	0.85+/-0.15	<u>G</u>	1.25+0.3/-0.20	L	1.60+0.3/-0.20	Р	2.50+/-0.20
В	0.50+/-0.05	D	0.80+/-0.10	F	1.15+/-0.20	I	0.95+/-0.15	N	2.00+/-0.20	Q	0.45+/-0.05
<u>B</u>	0.50+/-0.15	<u>D</u>	0.8+0.15/-0.1	G	1.25+/-0.20	L	1.60+/-0.20	<u>N</u>	2.00+/-0.30		

Special Length/Width Tolerance

S	Size Code(EIA)	1005(0402)	1608(0603)	2012(0805)	3216(1206)	3225(1210)
	Length(mm)	1.0 ± 0.15	1.6 ± 0.15	2.0 ± 0.20	3.2 ± 0.20	3.2 ± 0.30
	Width(mm)	0.5 ± 0.15	0.8 ± 0.15	1.25 ± 0.30	1.6 ± 0.30	2.5 ± 0.30

DARFON MLCC 9 Version:C1007

PRODUCT RANGE X5R

X5R - General Purpose

CLAS												C	lass II									
TYPE													andard									
T.C.													X5R									
SIZE	060	03		100	5			16	08				2012			32	16			32	225	
(EIA)	020			040				06					0805	<u> </u>			206				210	
RV	6.3V		6.3V		16V	25V	6.3V	10V	16V	25V	6.3V	10V	16V	25V	6.3V	10V	16V	25V	6.3V	10V	16V	25V
2.2 n	Α	Α													'							
3.3 n	Α	Α																				
4.7 n	Α	Α																				
5.6 n	Α	Α																				
6.8 n	Α	Α																				
8.2 n	Α	Α																				
10 n	Α	Α											-							_	-	
15 n				В	В															1		
22 n	Α	Α		В	В																	
33 n				В	В																	
47 n	Α	Α		В	В																	
56 n				В	В																	
68 n				В	В																	
82 n				В	В																	
100 n	Α	Α		В	В	В																
120 n				В	В																	
150 n				В	В																	
180 n				В	В																	
220 n	Α			В	В			D	D	D												
270 n																						
330 n								D	D													
390 n																						
470 n			В	В				D	D													
560 n																						
680 n								D	D													
820 n																						
1.0 u			В	В	В			Q D	Q D	Q D			E G	E G								
1.5 u																						
1.8 u																						
2.2 u			В				D	D	D			Е	G	G		L	<u>L</u>	L				
2.7 u																						
3.3 u																						
3.9 u																						
4.7 u			<u>B</u> *				D	D			G	G	G	G		L	L	L			<u>N</u>	<u>N</u>
6.8 u					<u> </u>					ļ											<u> </u>	
10 u							<u>D</u> *				G	G	Ğ			L	<u>L</u>	<u>L</u>			N	<u>N</u>
22 u											G				<u>L</u>					<u>N</u> <u>P</u>	<u>N</u> <u>P</u>	
47 u															L				<u>P</u>			
100 u																			<u>P</u>			

- Non-standard capacitance or thickness is available on request
- The thickness might be changed due to technology improvement.
- * Special length/width tolerance

Thickness Tolerance

Thick	kness (mm)	Thick	(ness (mm)	Thick	(ness (mm)	Thick	(ness (mm)	Thick	(ness (mm)	Thi	ckness (mm)
Code	Class	Code	Class	Code	Class	Code	Class	Code	Code	Code	Code
Α	0.30+/-0.03	O	0.60+/-0.15	Е	0.85+/-0.15	<u>G</u>	1.25+0.3/-0.20	Ш	1.60+0.3/-0.20	Р	2.50+/-0.20
В	0.50+/-0.05	D	0.80+/-0.10	F	1.15+/-0.20		0.95+/-0.15	N	2.00+/-0.20	Q	0.45+/-0.05
<u>B</u>	0.50+/-0.15	<u>D</u>	0.8+0.15/-0.1	G	1.25+/-0.20	L	1.60+/-0.20	<u>N</u>	2.00+/-0.30		

Special Length/Width Tolerance

	,				
Size Code(EIA)	1005(0402)	1608(0603)	2012(0805)	3216(1206)	3225(1210)
Length(mm)	1.0 ± 0.15	1.6 ± 0.15	2.0 ± 0.20	3.2 ± 0.20	3.2 ± 0.30
Width(mm)	0.5 ± 0.15	0.8 ± 0.15	1.25 ± 0.30	1.6 ± 0.30	2.5 ± 0.30

DARFON MLCC 10 Version:C1007

PRODUCT RANGE X7R

CLASS													Class	П											
TYPE													Standa	ırd											
T.C.													X7R												
SIZE		0603				005				1608						2012						216		32	
(EIA)	10V	0201 25V	50V	10V	16V	102 25V	50V	10V	16V	0603	50V	100V	6.3V	10V		0805 25V	50V	100V	10\/	16\/		206 50V	100V	12 16V	10 25V
100 p	100	A	A	B	В	B	B	D	D	D	D	D	0.5 V	100	101	251	30 V	1001	100	100	250	30 V	100 V	10 V	257
120 p		Α	Α	В	В	В	В	D	D	D	D	D													
150 p		Α	Α	В	В	В	В	D	D	D	D	D					C E	Е							
180 p		Α	Α	В	В	В	В	D	D	D	D	D					C E	Е							
220 p		A	A	В	В	В	В	D	D	D D	D	D					CE	E							
270 p 330 p		A	A	B B	B B	B B	B B	D D	D D	D	D D	D D					C E	E							
390 p		A	A	В	В	В	В	D	D	D	D	D					CE	E							
470 p		Α	Α	В	В	В	В	D	D	D	D	D					C E	Е							
560 p		Α	Α	В	В	В	В	D	D	D	D	D					C E	Е							
680 p		A	A	В	В	В	В	D	D	D	D	D					CE	E							
820 p		A	A	В	В	B	В	D	D	D	D	D D				CLE	CE	E				F	E		
1.0 n 1.2 n		A	A	B B	B B	В	B	D D	D D	D D	D D	D				C E	C E	E				E	E E		
1.5 n		A	A	В	В	В	В	D	D	D	D	D				CE	CE	E				E	E		
1.8 n		Α	Α	В	В	В	В	D	D	D	D	D				C E		E				E	E		
2.2 n		Α	Α	В	В	В	В	D	D	D	D	D				C E	C E	E				E	E		
2.7 n	^			В	В	В	В	D	D	D	D	D				C E	CE	E				E	E		
3.3 n 3.9 n	Α			B	B B	B	B B	D D	D D	D D	D D	D D				C E	C E	E				E	E E		
4.7 n	Α			В	В	В	В	D	D	D	D	D				CE	CE	E				E	E		
5.6 n				В	В	В	В	D	D	D	D	D				C E		Е				Е	Е		
6.8 n				В	В	В	В	D	D	D	D	D				C E	C E	Е				Е	Е		
8.2 n				В	В	В	В	D	D	D	D	D				C E		Е				E	Е		
10 n	Α			В	В	В	В	D	D	D	D	D				CE		E				E	E		
12 n 15 n				B B	B B	B B		D D	D D	D D	D D					C E		E				E E	E E		
18 n				В	В	В		D	D	D	D					CE		E				E	E		
22 n				В	В	В		D	D	D	D					C E		Е				Е	Е		
27 n				В	В			D	D	D	D					C E	C E					Е	Е		
33 n				В	В			D	D	D	<u>D</u> *					CE	CE					E	E		
39 n 47 n				B B	B B			D D	D D	D D	<u>D</u> *					C E	C E					E	E E		
56 n				В	В			D	D	D	D*					E	E					E	E		
68 n				В	В			D	D	D	<u>D</u> *					Е	Е					Е	Е		
82 n				В	В			D	D	D	<u>D</u> *					E	E					E	E G		
100 n				В	В			D	D	D	<u>D</u> *					E	E					Е	E G		
120 n 150 n						-	-									E E	E E	1							
180 n										-						E	E								
220 n								D	D	<u>D</u> *						E	E	1			Ι	I			
270 n																									
330 n								<u>D</u> *	<u>D</u> *						G	G	G				-	G			
390 n 470 n						-	-	D*	D*						G	G	G	1		G	G	,			
560 n								ㅁ	닏	 					u	u	G	1		u	u	<u> </u>			
680 n																									
820 n																									
1.0 u								<u>D</u> *	<u>D</u> *	<u>D</u> *				G	G	G				G	G	G <u>L</u>			
1.2 u																									
1.5 u 1.8 u										-								1							
2.2 u										-				G	G				1	L	L				
2.7 u																		1		_=	=				
3.3 u																									
3.9 u																									
4.7 u										<u> </u>			G	G				1		<u>L</u>	L			N.	N
10 u						1	<u> </u>		<u> </u>	<u> </u>			G			<u> </u>		<u> </u>	<u> </u>	L	<u> </u>			N	N

- Non-standard capacitance or thickness is available on request
- The thickness might be changed due to technology improvement.
- * Special length/width tolerance

Thickness Tolerance

Thick	ness (mm)	Thick	(ness (mm)	Thick	(ness (mm)	Thick	(ness (mm)	Thick	kness (mm)	Thic	ckness (mm)
Code	Class	Code	Class	Code	Class	Code	Class	Code	Code	Code	Code
Α	0.30+/-0.03	С	0.60+/-0.15	Е	0.85+/-0.15	<u>G</u>	1.25+0.3/-0.20	L	1.60+0.3/-0.20	Р	2.50+/-0.20
В	0.50+/-0.05	D	0.80+/-0.10	F	1.15+/-0.20		0.95+/-0.15	N	2.00+/-0.20	Q	0.45+/-0.05
В	0.50+/-0.15	D	0.8+0.15/-0.1	G	1.25+/-0.20	L	1.60+/-0.20	N	2.00+/-0.30		

Special Length/Width Tolerance

Size Code(EIA)	1005(0402)	1608(0603)	2012(0805)	3216(1206)	3225(1210)
Length(mm)	1.0 ± 0.15	1.6 ± 0.15	2.0 ± 0.20	3.2 ± 0.20	3.2 ± 0.30
Width(mm)	0.5 ± 0.15	0.8 ± 0.15	1.25 ± 0.30	1.6 ± 0.30	2.5 ± 0.30

DARFON MLCC 11 Version:C1007

■ Y5V – General Purpose

CLASS								Class II							
TYPE								Standard	1						
T.C.								Y5V							
SIZE	060	03			1005				1	608				2012	
(EIA)	020	01			0402				0	603				0805	
RV	6.3V	10V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	16V	25V	50V
10 n			В	В	В	В	В	D	D	D	D	D			
12 n			В	В	В	В	В	D	D	D	D	D			
15 n			В	В	В	В	В	D	D	D	D	D			
18 n			В	В	В	В	В	D	D	D	D	D			
22 n	Α	Α	В	В	В	В	В	D	D	D	D	D			
27 n			В	В	В	В	В	D	D	D	D	D			
33 n	Α	Α	В	В	В	В	В	D	D	D	D	D			
39 n			В	В	В	В		D	D	D	D	D			
47 n	Α	Α	В	В	В	В		D	D	D	D	D			
56 n			В	В	В			D	D	D	D	D			
68 n			В	В	В			D	D	D	D	D			
82 n			В	В	В			D	D	D	D	D			
100 n	Α	Α	В	В	В	В		D	D	D	D	D	С	С	С
120 n															
150 n															
180 n															
220 n			В	В	В			D	D	D	D	D	Е	Е	Е
270 n															
330 n			В	В				D	D	D	D				
390 n															
470 n			В	В				D	D	D			Е	Е	Е
560 n															
680 n															
820 n															
1.0 u			В	В				<u>D</u> *	<u>D</u> *	<u>D</u> *			Е	G	G
1.2 u															
1.5 u															
1.8 u															
2.2 u								D	D	D			Е	G	
2.7 u															
3.3 u															
3.9 u															
4.7 u															
5.6 u															
6.8 u															
8.2 u															
10 u															

- Non-standard capacitance or thickness is available on request
- The thickness might be changed due to technology improvement.
- * Special length/width tolerance
- Part of Y5V product will be phased out.

Thickness Tolerance

Thick	(ness (mm)	Thick	(ness (mm)	Thick	(ness (mm)	Thick	kness (mm)	Thick	kness (mm)	Thic	ckness (mm)
Code	Class	Code	Class	Code	Class	Code	Class	Code	Code	Code	Code
Α	0.30+/-0.03	С	0.60+/-0.15	Е	0.85+/-0.15	<u>G</u>	1.25+0.3/-0.20	<u>L</u>	1.60+0.3/-0.20	Р	2.50+/-0.20
В	0.50+/-0.05	D	0.80+/-0.10	F	1.15+/-0.20		0.95+/-0.15	N	2.00+/-0.20	Q	0.45+/-0.05
В	0.50+/-0.15	D	0.8+0.15/-0.1	G	1.25+/-0.20	L	1.60+/-0.20	N	2.00+/-0.30		

Special Length/Width Tolerance

Size Code(EIA)	1005(0402)	1608(0603)	2012(0805)	3216(1206)	3225(1210)
Length(mm)	1.0 ± 0.15	1.6 ± 0.15	2.0 ± 0.20	3.2 ± 0.20	3.2 ± 0.30
Width(mm)	0.5 ± 0.15	0.8 ± 0.15	1.25 ± 0.30	1.6 ± 0.30	2.5 ± 0.30

DARFON MLCC 12 Version:C1007

General Purpose

	nerai Purpose	Spe	cif	ication							
	Item	Temp. compensating ty			ectric co	nstant type		Test	Method		
1	Operating Temperature Range	NP0: -55 to 125 degree C		X7R: -55 t	o 85 degi	ee C					
2	Rated Voltage	4VDC, 6.3VDC, 10VDC, 16V 200VDC, 250VDC, 500VD 3000VDC			/DC, 50VE	C, 100VDC,		tage is defined d continuously t		n voltage, which	
3	Appearance	No defects or abnormalities	S.				Visual inspecti	on			
4	Dimensions	Within the specified dimens	sion.				Using calipers				
5	Dielectric Strength	No defects or abnormalities	S.				(150% for 500	OV, 120% for ab or 1 to 5 seco	ove 1KV) is app	the rated voltage blied between the e and discharge	
6	Insulation Resistance (I.R.)	vo	ltag	oly rated e. oly 500V.	I.R. ≥ 10 R _i C _R ≥ 50 (whichever)	00Ω-F		the rated voltage		vith a DC voltage '5%RH max, and	
7	Capacitance	Within the specified tolerar * X7R, X5R and Y5V at 10		ours	Smaller)			nce / D.F. shall voltage shown		at 25℃ at the	
8	Q/Dissipation Factor (D.F.)	NP0: If C \leq 30pF, DF \leq 1/(400+2 C in pF If C >30pF, DF \leq 0.1%.	0C),	I. X5R, X7 See X5R, II. Y5V: See Y5V [X7R DF ta	able	Item Frequency Voltage	Class I C≦1,000pF 1.0±0.2MHz 1.0±0.2Vrms	Class I >1,000pF 1.0±0.2kHz 1.0±0.2Vrms		
		Table 1 Size Thickness 0603 0.3 mm 1005 0.5 mm 1608 0.8 mm	X	(5R 4\	RV 6.3V //6.3V //6.3V	Cap 104 475 106	Frequency Voltage	ClassII (≦10 uF) 1.0±0.2kHz 1.0±0.2Vrms	ClassII (>10 uF) 120Hz±24Hz 0.5±0.1Vrms	* For item in Table1 1.0±0.2kHz 0.5±0.1Vrms	
9	Capacitance Temperature Characteristics	Capacitance change NP0 within 0±30ppm/°C ur operating temperature rang		Capacitan X7R/X5R v Y5V: -82 to	within ±1		The capac measured a T.C.=(C ₈₅ -C 2. High dielect The ranges	and calculated for $C_{25}/C_{25}^* \triangle T^*10^6$ ric constant types of capacitance the temperature	at 25 °C and rom the formula of (PPM/°C) e:	85 ℃ shall be given below. Ted with the 25℃ II be within the	
10	Termination Strength	No removal of the terminat	ions	or marking	defect.		Apply a paralle		a PCB mounted 201).	sample for	
11	Deflection (Bending Strength)	No cracking or marking det Capacitance change: NP0: within ±5% or ± 0.5pf X7R, X5R:within ±12.5% Y5V: within ±20%					in Fig.a using sit for 48±4 h Then apply a soldering shal	a SAC305(Sn96) hours for X7R X5 ha force in the I be done with h care so that the	5.5Ag3.0Cu0.5) s 5R and Y5V). direction show the reflow meth	y boards) shown solder (then let n in Fig.b. The nod and shall be hiform and free of	
		(Unit in mm) b c c d f 100 t:1.6mm(0.8mm for 0603) Fig. a.	Ó	04.5 40 005 size)	Size 0603 1005 1608 2012 3216 4520 4532	0.3 0.4 0.4 1.3 1.0 3.4 1.2 4.4 2.2 5.4 3.5 7.4	b C 0.9 0.3 1.5 0.5 3.0 1.2 4.0 1.65 5.0 2.0 7.0 2.5 7.0 3.7				
12	Solderability of Termination	90% of the terminations are to be soldered evenly and continuously. Immerse the test capacitor into a methanol solution contain rosin for 3 to 5 seconds, preheat it 150 to 180℃ for 2 to minutes and immerse it into SAC305(Sn96.5Ag3.0Cu0 solder of 245 ± 5℃ for 3±1seconds.							180℃ for 2 to 3		

DARFON MLCC 13 Version:C1007

			Specif	ication		
	Ite	m	Temp. compensating type	High dielectric constant type	Test Method	
13	Resistance to	Appearance	No marking defects		*Preheat the capacitor at 120 to 150℃ for 1 minute.	
	Soldering Heat	Cap. Change	NP0 within ±2.5% or 0.25pF (whichever is larger)	X7R/X5R within ±7.5% Y5V within ±20%	Immerse the capacitor in a SAC305(Sn96.5Ag3.0Cu0.5) solder solution at 270±5°C for 10±1 seconds. Let sit at room	
		Q/D.F.	If C ≤30pF, DF ≤1/(400+20C) If C >30pF, DF ≤0.1%	To satisfy the specified initial spec.	temperature for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type), then measure.	
		I.R.	I.R. \geq 10,000M Ω or R _i C _R \geq 500 Ω -F. (whichever is smaller)	I.R. \geq 10,000MΩ or R _i C _R \geq 500Ω-F. (whichever is smaller)	* Preheat 150 to 200℃ for size ≧3216. *High dielectric constant type: Initial measurement : perform a heat treatment at 150+0/-10℃ for one hour and then let sit for 48±4 hours at room temperature. Perform the initial	
					measurement.	
14	Temperature cycle	Appearance	No marking defects		Solder the capacitor to supporting jig (glass epoxy board) and	
	(Thermal shock)	Cap. Change	NP0 within ±2.5% or 0.25pF (whichever is larger)	X7R/X5R within ±7.5% Y5V within ±20%	perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2hrs at room	
		Q/D.F.	If C \leq 30pF, DF \leq 1/(400+20C)	To satisfy the specified initial	temperature, then measure.	
			If C >30pF, DF ≦0.1%	spec.	Step 1: Minimum operating temperature 30±3min	
		I.R.	I.R. \geq 10,000M Ω or $R_iC_R \geq$ 500 Ω -F.	I.R. \geq 10,000M Ω or $R_iC_R \geq$ 500 Ω -F.	Step 2: Room temperature 2~3 min Step 3: Maximum operating temperature 30±3min	
			(whichever is smaller)	(whichever is smaller)	Step 4: Room temperature 2~3min *High dielectric constant type: Initial measurement: perform a heat treatment at 150+/-10°C for one hour and then let sit for	
15	Humidity lood	Annogranos	No marking defeate		48±4 hours at room temp. Perform the initial measurement.	
15	Humidity load	Appearance Cap. Change	No marking defects NP0 within ±7.5% or 0.75pF (whichever is larger)	X7R/X5R within ±12.5% Y5V within ±30%	Apply the rated voltage at 40±2°C and 90 to 95% humidity fo 500±12 hours. Remove and let sit for 24±2 hours (temperatu compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure.	
		Q/D.F.	If C>30pF, DF \leq 0.5% If C \leq 30pF,D \leq 1/(100+10xC/3) C in pF	· ·	The charge / discharge current is less than 50mA.	
		I.R.	I.R. \ge 500MΩ or R _i C _R \ge 25Ω-F.	X5R 200% max of initial spec. I.R. ≥ 500 MΩ or R _i C _R ≥ 25 Ω-F.	*High dielectric constant type: Initial measurement: perform a heat treatment at 150+/-10℃ for one hour and then let sit for 48±4hours at room temperature. Perform the initial	
			(whichever is smaller)	(whichever is smaller) * some of the parts are RiCr ≥ 12.5Ω-F,please refer to table 2	measurement.	
16	High temperature	Appearance	No marking defects		Apply 200%(150% for ≥500V; 120% for ≥1000V) of the rated	
	load life test	Cap. Change	NP0 within ±7.5% or 0.75pF (whichever is larger)	X7R/X5R within ±12.5% Y5V within ±30%	voltage for 1000±12 hours at the maximum operating temperature ± 3°C. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant	
		Q/D.F.	If C>30pF, DF ≦0.3% If 10pF <c th="" ≦30pf,<=""><th>X7R 200% max of initial value Y5V 150% max of initial value</th><th>type) at room temperature, then measure. The charge/discharge current is less than 50mA.</th></c>	X7R 200% max of initial value Y5V 150% max of initial value	type) at room temperature, then measure. The charge/discharge current is less than 50mA.	
			DF≦1/(275+5xC/2)	X5R 200% max of initial value	*High dielectric constant type: Initial measurement: perform a	
			If $C \le 10pF$, $DF \le 1/(200+10C)$,		heat treatment at 150+/-10℃ for one hour and then let sit for 48±4hours at room temperature. Perform the initial measurement.	
		I.R.	C in pF More than $1G \Omega$ or $R_iC_r \ge 50$ Ω -F (whichever is less.)	More than $1G \Omega$ or $R_iC_r \ge 50$ Ω -F (whichever is less.)	BS: Blacco refer to table 1 for items applying 150% voltage	
				* some of the parts are RiCr≧	* 150% for high dielectric constant type ≧ 500V.	
				25Ω-F,please refer to table 2	* 120% for voltage ≧ 1000V.	
					* some of the parts are applicable in rated voltage *1.5. please refer to table 2	
			1	1	reiei to table 2	

■ Table 2

TC	Product Range				
	0603 (EIA 0201): C > 10 nF				
	1005 (EIA 0402): C > 0.1 uF				
	1608 (EIA 0603): C ≥ 1.0 uF				
X5R	2012 (EIA 0805): C ≥ 2.2 uF				
	3216 (EIA 1206): C ≧ 10 uF				
	3225 (EIA 1210): C ≧ 22 uF				
	1005 (EIA 0402): C > 0.47 uF				
	1608 (EIA 0603): C > 1.0 uF				
Y5V	2012 (EIA 0805): C > 4.7 uF				
	3216 (EIA 1206): C > 10 uF				
	3225 (EIA 1210): C > 22 uF				

DARFON MLCC 14 Version:C1007

■ X5R/X7R DF (tan δ) Table

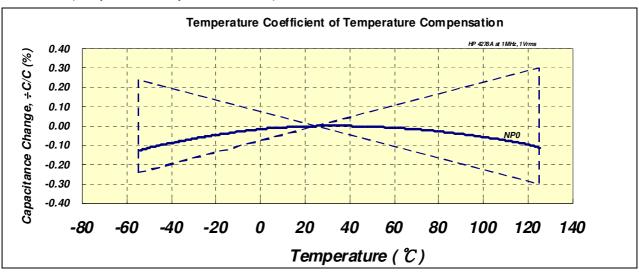
Rated Voltage	Size	Capacitance	D.F Max.		
nateu voitage	Size	Capacitance	X5R	X7R	
4V	All	All	15.0%		
6.3V	All	cap ≦1.0uF	10.0%	7.5%	
	All	1.0uF< cap <4.7uF	10.0%	10.0%	
	All	4.7uF≦ cap ≦100uF	15.0%	15.0%	
	0603/3216/3225	All	7.5%	5.0%	
	0603	100nF≦ cap	10.0%		
		cap ≦100nF	7.5%	5.0%	
	1005	100nF< cap <330nF	7.5%		
		330nF≦ cap	10.0%		
10V		cap ≦1.0uF	7.5%	5.0%	
100	1608	1.0uF< cap <2.2uF	7.5%		
		2.2uF≦ cap	10.0%		
	2012	cap <2.2uF	7.5%	5.0%	
	2012	2.2uF≦ cap	10.0%		
	3216	10uF	10.0%	10.0%	
	3225	10uF< cap ≦22uF	10.0%	10.0%	
	0603/3216/3225	All	5.0%	5.0%	
	1005	cap ≦100nF	5.0%	5.0%	
		100nF< cap ≦220nF	7.5%		
		cap ≦470nF	5.0%	5.0%	
	1608	470nF< cap <1.0uF	7.5%	5.0%	
16V		1.0uF≦ cap	10.0%	10.0%	
		cap ≦2.2uF	5.0%	5.0%	
	2012	2.2uF< cap ≦4.7uF	7.5%		
		4.7uF< cap ≦10uF	10.0%		
	3216	4.7uF< cap	10.0%	10.0%	
	3225	10uF< cap ≦22uF	15.0%		
	All	All	5.0%	3.5%	
	All	1.0uF≦ cap	10.0%		
25V	1608	470nF		10.0%	
20 V	3216	1.0uF< cap ≦4.7u	5.0%	5.0%	
	3210	4.7uF< cap	10.0%		
	3225	4.7uF< cap ≦10u	10.0%		
≧50V	All	All but below	2.5%	3.0%	
≦ JU V	3216/3225	cap ≦1.0uF	3.5%	3.5%	

■ Y5V DF (tan δ) Table

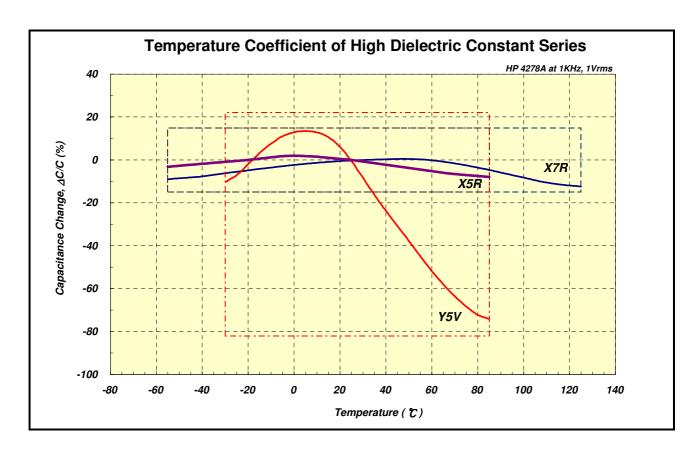
T.C	Rated Voltage	Size	Capacitance			D.F Max
	4V	0603		ALL		16.0%
	44	1005		ALL		20.0%
		0603		ALL		16.0%
		1005		cap	≦220nF	12.5%
	6.3V	1005	220nF <	cap		16.0%
		1608		ALL		12.5%
		2012		ALL		16.0%
		1005/1608		ALL		12.5%
	10V	1005	220nF <	cap		16.0%
	100	2012		cap	<10uF	12.5%
				10uF		20.0%
	16V	1005		cap	≦220nF	9.0%
Y5V			220nF <	cap		12.5%
		1608		cap	≦100nF	7.0%
			100nF <	cap	≦220nF	9.0%
			220nF <	cap		12.5%
		2012		cap	<2.2uF	9.0%
		2012	2.2uF≦	cap		12.5%
		1005		cap	≦100nF	9.0%
				cap	<100nF	5.0%
		1608		100nF		7.0%
	25V/50V		100nF <	cap		9.0%
				cap	<330nF	5.0%
		2012		330nF		7.0%
			330nF <	cap		9.0%

DARFON MLCC 15 Version:C1007

NP0 High Frequency Type (Q Series)


	Item		Specification	Test Method	
1	Operating Temperatu	ıre Range	NP0: -55 to 125 degree C		
2	Rated Voltage		16VDC, 25VDC, and 50VDC	The rated voltage is defined as the maximum voltage, which	
3	Appearance		No defects or abnormalities.	may be applied continuously to the capacitor. Visual inspection	
4	Dimensions		Within the specified dimension.	Using calipers	
5	Dielectric Strength (F	Flash)	No defects or abnormalities.	No failure shall be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds. The charge and discharge current is less than 50mA.	
6	Insulation Resistance	e (I.R.)	I.R.≥10GΩ	The insulation resistance shall be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max, and within 1 minute of charging.	
7	Capacitance		Within the specified tolerance	The capacitance / D.F. shall be measured at $25^\circ\!$	
8	Quality Factor (Q)		30pF min.: Q ≥ 1000	5 4000000	
			30pF max.: Q≥400+20C C: Nominal Capacitance (pF)	Frequency 1.0±0.2MHz Voltage 1.0±0.2Vrms	
9	Capacitance Tempera Characteristics	ature	Capacitance change within 0±30ppm/°C under operating temperature range.	The capacitance value at 25 $^{\circ}$ C and 85 $^{\circ}$ C shall be measured and calculated from the formula given below. T.C.=(C ₈₅ -C ₂₅)/C ₂₅ * Δ T*10 ⁶ (PPM/ $^{\circ}$ C)	
10	Termination Strength	1	No removal of the terminations or marking defect.	Apply a parallel force of 5N to a PCB mounted sample for 10±1sec. *2N for 0603 (EIA 0201).	
11	Deflection (Bending	Strength)	Appearance: No cracking or marking defects shall occur at 1mm deflection.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig.a. Using a SAC305(Sn96.5Ag3.0Cu0.5) solder.	
			Capacitance change: within $\pm 2.5\%$ or \pm 0.25pF. (whichever is larger)	Then apply a force in the direction shown in Fig.b. The soldering shall be done with the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock.	
			100 t:1.6mm(0.8mm for 0603&1005 size) Fig. a.	5 0.5	
12	Solderability of Term	ination	90% of the terminations are to be soldered evenly and continuously.	rosin for 3 to 5 seconds, preheat it 150 to 180 $^{\circ}$ C for 2 to minutes and immerse it into SAC305(Sn96.5Ag3.0Cu0.5 solder of 245 \pm 5 $^{\circ}$ C for 3 \pm 1seconds.	
13	Resistance to	Appearance	No marking defects	Immerse the capacitor in a SAC305(Sn96.5Ag3.0Cu0.5) solder solution at 270±5℃ for 10±1 seconds. Let sit at room	
	Soldering Heat	Cap. Change	NP0 within ±2.5% or ±0.25pF (whichever is larger)	temperature for 24±2 hours, then measure.	
		Q I.R.	Initial spec.		
14	Temperature cycle (Thermal shock)	Appearance Cap. Change	No marking defects NP0 within ±2.5% or 0.25pF (whichever is larger)	Solder the capacitor to supporting jig (glass epoxy board) and perform the five cycles according to the four heat treatments	
		Q	Initial spec.	listed in the following table. Let sit for 24±2hrs at room	
		I.R.	Initial spec.	temperature, then measure. Step 1: Minimum operating temperature 30±3min Step 2: Room temperature 2~3 min Step 3: Maximum operating temperature 30±3min Step 4: Room temperature 2~3min	
15	Humidity load	Appearance	No marking defects	Apply the rated voltage at 40±2° and 90 to 95% humidity for	
	Cap. Change		NP0 within ±5% or ±0.5pF (whichever is larger)	500±12 hours. Remove and let sit for 24±2 hours at room temperature, then measure.	
				The charge / discharge current is less than 50mA.	
16	High temperature	I.R.	I.R. ≥500MΩ	Apply 2009/ of the rated valters for 1000 110 haves at the	
10	High temperature Appearance Ioad life test Cap. Change		No marking defects NP0 within ±5% or ±0.5pF (whichever is larger)	Apply 200% of the rated voltage for 1000±12 hours at the maximum operating temperature \pm 3°C. Let sit for 24± 2 hours	
	Cap. Change		350 min.	at room temperature, then measure. The charge/discharge current is less than 50mA.	
		I.R.	I.R. ≧1GΩ	The charge/discharge current is less than summ.	
17	RF Characteristics	Q	See RF Characteristics of NP0 Q series P:19~21	Measurements performed on a HP4287A with fixture 16196 and represent the typical capacitor performance.	
		ESR			
			1	1	

DARFON MLCC 16 Version:C1007

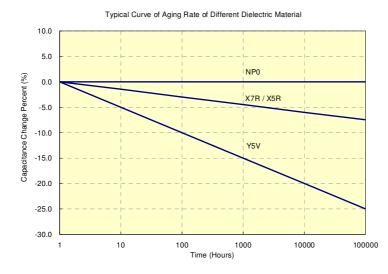


TEMPERATURE COEFFICIENT

Class 1 (Temperature Compensation series)


Class 2 (High Dielectric Constant Series)

DARFON MLCC 17 Version:C1007


TYPICAL CHARACTERISTICS CURVES

DC VOLTAGE COEFFICIENT

AGING RATE

The capacitance and dissipation factor of class 2 capacitors decreases with time. It is known as 'aging' that follows a logarithmic low and expressed in terms of an aging constant. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic. The aging constant is defined as the percentage loss of capacitance at a 'time decade'. The law of capacitance aging is expressed as following equation:

$$C_{t2} = C_{t1} \times (1 - k \times \log_{10}(t_2/t_1))$$

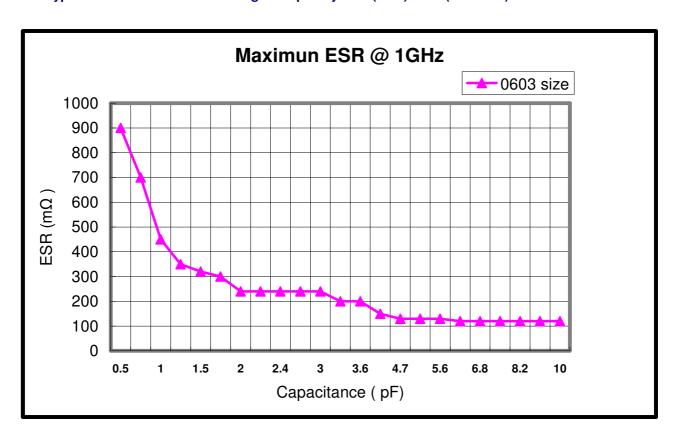
 C_{t1} : Capacitance after t1 hours of start aging.

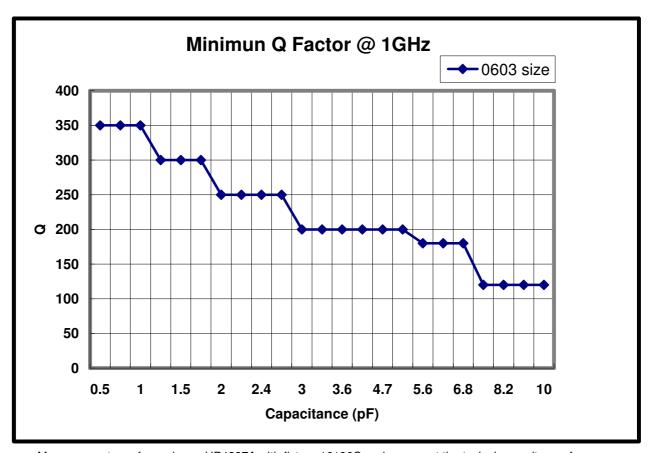
C₁₂: Capacitance after t2 hours of start aging.

k: aging constant (capacitance decrease per decade)

t1, t2: time in hours from start of aging.

A typical curve of aging rate is shown in following figure.

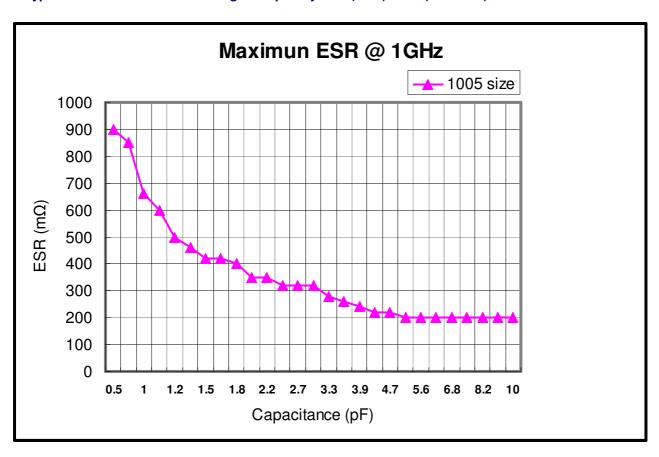

When heating the capacitors above Curie temperature $(130^{\circ}\text{C} \sim 150^{\circ}\text{C})$ the capacitance can be re-new. So capacitance of class 2 capacitors will be complete de-aged by soldering process; subsequently a new aging process begins.

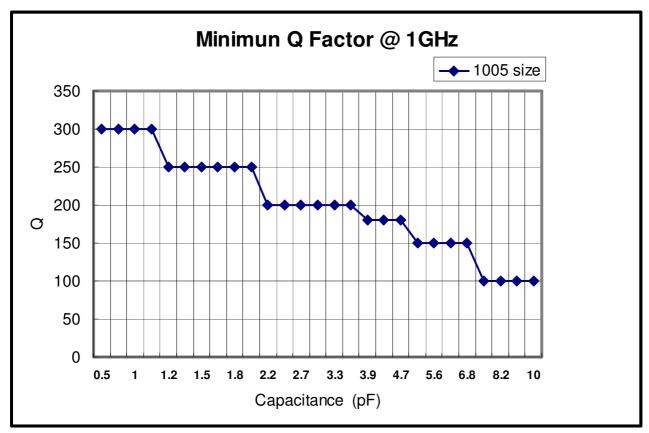

Because of aging, it is specified an age for measurement to meet the prescribed tolerance for class 2 capacitors. Normally, 1000 hours (t_2 =1000 hrs) is defined.

DARFON MLCC 18 Version:C1007

RF CHARACTERISTICS OF NPO Q series

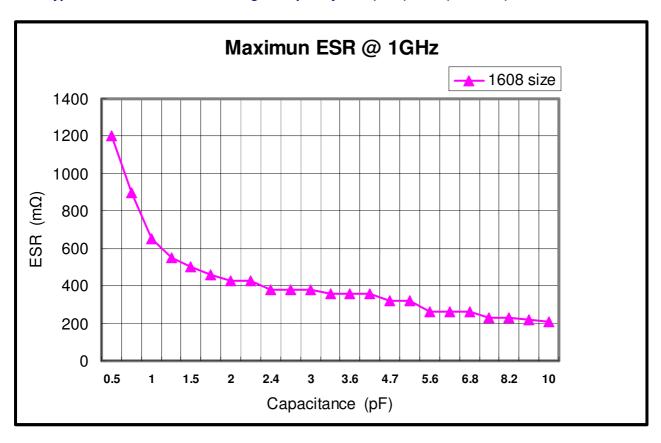
■ Typical RF Characteristics for High Frequency NP0 (C0G) 0603 (EIA 0201) at 1GHz.

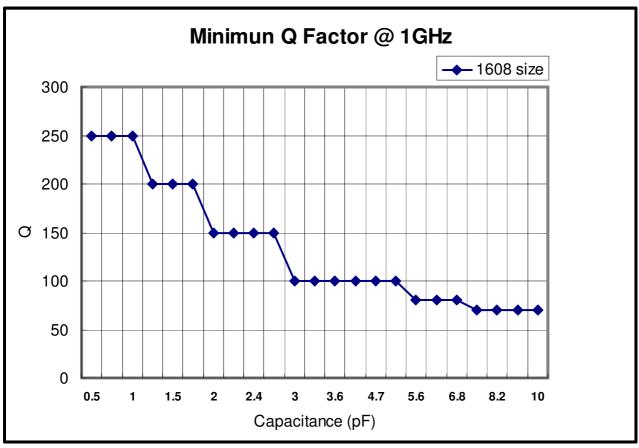



Measurements performed on a HP4287A with fixture 16196C and represent the typical capacitor performance.

DARFON MLCC 19 Version:C1007

■ Typical RF Characteristics for High Frequency NP0 (C0G) 1005 (EIA 0402) at 1GHz.




Measurements performed on a HP4287A with fixture 16196B and represent the typical capacitor performance.

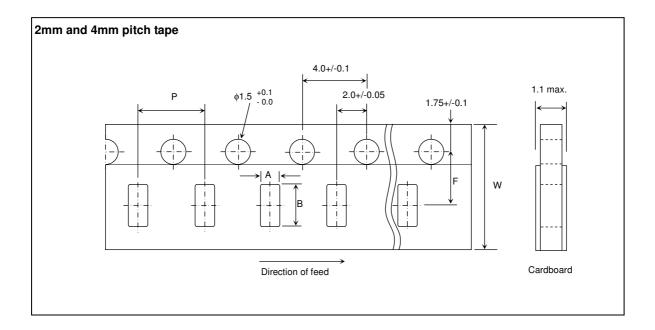
DARFON MLCC 20 Version:C1007

RF CHARACTERISTICS OF NPO Q series

■ Typical RF Characteristics for High Frequency NP0 (C0G) 1608 (EIA 0603) at 1GHz.

Measurements performed on a HP4287A with fixture 16196A and represent the typical capacitor performance.

DARFON MLCC 21 Version:C1007

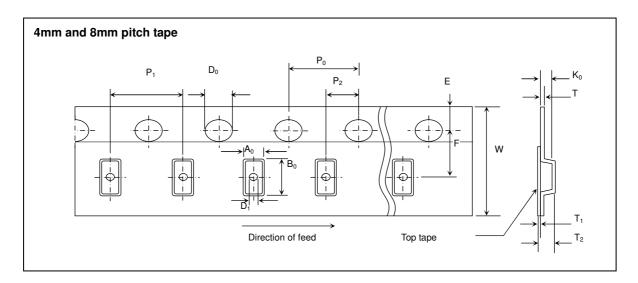


Packing

Tape and reel packaging

Tape and reel packaging is currently the most promising system for high-speed production. A typical 180mm (7 inch) diameter reel contains 1,500 to 15,000 capacitors, 250mm (10 inch) contains 10,000 capacitors, and 330mm(13 inch) contains 10,000 to 50,000 capacitors. Three standard sizes are available in taped and reeled package either with paper carrier tapes or embossed tapes.

Paper tape specifications



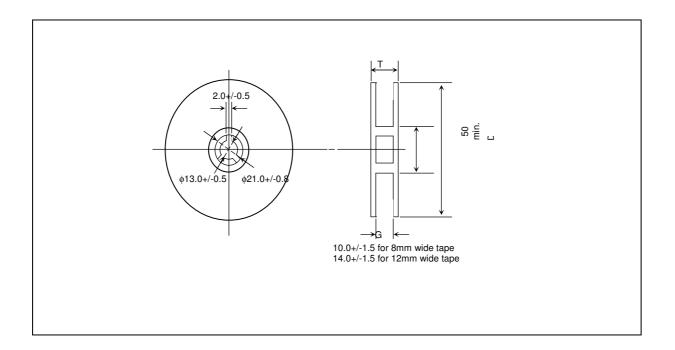
SYMBOL				PRODUCT SIZE CODE						UNIT	
0603(0201)		1005	1608(0603)		2012(0805)		3216(1206)		UNIT		
	SIZE	TOL.	SIZE	TOL.	SIZE	TOL.	SIZE	TOL.	SIZE	TOL.	
Α	0.38	+/- 0.04	0.60	+/- 0.04	1.0	+/- 0.2	1.5	+/- 0.2	1.9	+/- 0.2	mm
В	0.68	+/- 0.04	1.12	+/- 0.04	1.8	+/- 0.2	2.3	+/- 0.2	3.6	+/- 0.2	mm
F	3.50	+/- 0.05	3.50	+/- 0.05	3.5	+/- 0.05	3.5	+/- 0.05	3.5	+/- 0.05	mm
Р	2.00	+/- 0.10	2.00	+/- 0.10	4.0	+/- 0.1	4.0	+/- 0.1	4.0	+/- 0.1	mm
W	8.00	+/- 0.20	8.00	+/- 0.20	8.0	+/- 0.2	8.0	+/- 0.2	8.0	+/- 0.2	mm

DARFON MLCC 22 Version:C1007

• Embossed tape specifications

 $\ensuremath{k_{\scriptscriptstyle{0}}}\!\!:$ so chosen that the orientation of the component cannot change.

For W= 8mm: T_2 =2.5mm max. For W= 12mm: T_2 = 4.5mm


		PRODUCT SIZE CODE					
DIMENSION	4 mm tape			8 mm	TOLERANCE		
(mm)	2012 (0805)	3216 (1206)	3225 (1210)	4520 (1808)	4532 (1812)	(mm)	
P ₁	4	4	4	8	8	+/- 0.10	
Po	4	4	4	4	4	+/- 0.10	
P ₂	2	2	2	2	2	+/- 0.05	
A ₀ nominal clearance*	0.2	0.3	0.3	0.4	0.4	-	
B ₀ nominal clearance*	0.2	0.3	0.3	0.4	0.4	-	
K ₀ minimum clearance*	0.05	0.05	0.05	0.05	0.05	-	
W	8.0	8.0	8.0	12.0	12.0	+/- 0.20	
E	1.75	1.75	1.75	1.75	1.75	+/- 0.10	
F	3.5	3.5	3.5	5.5	5.5	+/- 0.05	
D ₀	1.5	1.5	1.5	1.5	1.5	+0.1/-0.0	
D ₁	1 min	1 min	1 min	1.5 min	1.5 min	+0.1/-0.0	
Т	0.25	0.25	0.25	0.25	0.25	+/- 0.10	
T ₁	0.05	0.05	0.05	0.05	0.05	+/- 0.01	
T ₂	2.5 max.	2.5 max.	2.5 max.	4.5	4.5	-	

^{*} Typical capacitors displace in pocket.

DARFON MLCC 23 Version:C1007

• Reel specifications

TAPE WIDTH (mm)	G (mm)	T max. (mm)	D (mm)
8	10.0 +/- 1.5	14.5	180
8	10.0 +/- 1.5	14.5	250
8	10.0 +/- 1.5	14.5	330
12	14.0 +/- 1.5	18.5	180

DARFON MLCC 24 Version:C1007

■ Thickness and Packing Amount

Thickness		Amount per reel						
			180 mm (7")		250 mm (10")		330 mm (13")	
Code	Spec	Size(EIA)	Paper	Embossed	Paper	Embossed	Paper	Embossed
Α	0.30+/-0.03	0603 (0201)	15K					
В	0.50+/-0.05	1005 (0402)	10K				50K	
<u>B</u>	0.50+/-0.15	1005 (0402)	10K				50K	
Q	0.45+/-0.05	1005 (0402)	10K				50K	
С	0.60+/-0.15	2012 (0805)	4K		10K		15K	
		3216(1206)	4K		10K		15K	
Q	0.45+/-0.05	1608(0603)	4K		10K		15K	
D	0.80+/-0.10	1608(0603)	4K		10K		15K	
<u>D</u>	0.80+0.15/ -0.10	1608 (0603)	4K		10K		15K	
		2012 (0805)	4K		10K		15K	
Е	0.85 1/-0.15	3216 (1206)	4K		10K		15K	
_	0.85+/-0.15	3225 (1210)		3K				10K
		4532 (1812)		1K				
	0.95+/-0.15	2012(0805)		3K				
	0.95+/-0.15	3216(1206)		3K				
F	1.15+/-0.20	3216 (1206)		3K				10K
	1.15+/-0.20	4520 (1808)		3K				
		2012 (0805)		2K/3K				10K
	1.25 +/-0.20	3216 (1206)		3K				10K
G		3225 (1210)		3K				
		4520(1808)		3K				
		4532(1812)		1K				
		2012(0805)		2K/3K				10K
<u>G</u>	1.25+0.3/-0.2	3216(1206)		3K				10K
		3225(1210)		3K				
		3216(1206)		2K				
	1.60+/-0.20	3225(1210)		2K				
L	1.00+/-0.20	4520(1808)		2K				
		4532(1812)		1K				
		3216(1206)		2K				
	1 60 . 0 20/ 0 20	3225(1210)		2K				
<u>L</u>	1.60+0.30/-0.20	4520(1808)		2K				
		45321812)		1K				
		3216 (1206)		2K/3K				
NI	2.00./0.20	3225 (1210)		2K				
N	2.00+/-0.20	4520 (1808)		1K				
		4532(1812)		1K				
N	2.00+/-0.30	3225 (1210)		2K				
P	2.50+/-0.20	3225(1210)		500pcs/1K				
<u>P</u>	2.50+/-0.30	3225(1210)		500pcs/1K				

DARFON MLCC 25 Version:C1007

Storage

- 1. The chip capacitors shall be packaged in carrier tapes or bulk cases.
- 2. Keep storage place temperatures from $+5^{\circ}$ C to $+35^{\circ}$ C, humidity from 45 to 70% RH.
- 3. The storage atmosphere must be free of gas containing sulfur and chlorine. Also, avoid exposing the product to saline moisture. If the product is exposed to such atmospheres, the terminations will oxidize and solderability will be affected.
- 4. The solderability is assured for 12 months from our final inspection date if the above storage condition is followed.

Circuit Design

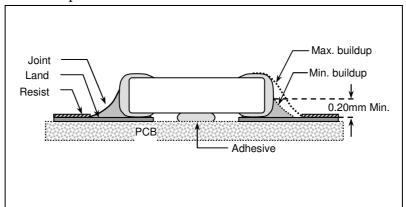
- Once application and assembly environments have been checked, the capacitor
 may be used in conformance with the rating and performance, which are provided
 in both the catalog and the specifications. Exceeding the specifications listed may
 result in inferior performance. It may also cause a short, open, smoking, or flaming
 to occur, etc.
- 2. Please use the capacitors in conformance with the operating temperature provided in both the catalog and the specifications. Be especially cautious not to exceed the maximum temperature. In the situation the maximum temperature set forth in both the catalog and specifications is exceeded, the capacitor's insulation resistance may deteriorate, power may suddenly surge and short-circuit may occur. The loss of capacitance will occur, and may self-heat due to equivalent series resistance when alternating electric current is passed through. As this effect becomes critical in high frequency circuits, please exercise with caution. When using the capacitor in a (self-heating) circuit, please make sure the surface of the capacitor remains under the maximum temperature for usage. Also, please make certain temperature rise remain below 20°C.
- 3. Please keep voltage under the rated voltage, which is applied to the capacitor. Also, please make certain the peak voltage remains below the rated voltage when AC voltage is super-imposed to the DC voltage. In the situation where AC or pulse voltage is employed, ensure average peak voltage does not exceed the rated voltage. Exceeding the rated voltage provided in both catalog and specifications may lead to defective withstanding voltage or, in worse case situations, may cause the capacitor to burn out.
- 4. It's is a common phenomenon of high-dielectric products to have a deteriorated amount of static electricity due to the application of DC voltage.

DARFON MLCC 26 Version:C1007

Handling

Chip capacitors should be handled with care to avoid contamination or damage. The use of vacuum pick-up or plastic tweezers is recommended for manual placement. Tape and reeled packages are suitable for automatic pick and placement machine.

Flux

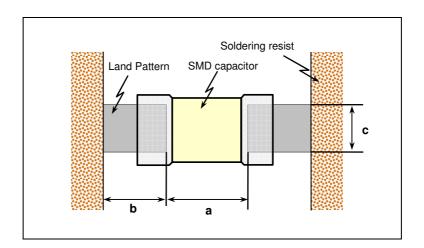

- 1. An excessive amount of flux or too rapid temperature rise can causes solvent burst, solder can generate a large quantity of gas. The gas can spreads small solder particles to cause solder balling effect or bridging problem.
- 2. Flux containing too high of a percentage of halide may cause corrosion of termination unless sufficient cleaning is applied.
- 3. Use rosin-type flux. Highly acidic flux (halide content less than 0.2wt%) is not recommended.
- 4. The water soluble flux causes deteriorated insulation resistance between outer terminations unless sufficiently cleaned.

Component Spacing

For wave soldering components, the spacing must be sufficient far apart to prevent bridging or shadowing. This is not so important for reflow process but enough space for rework should be considered. The suggested spacing for reflow soldering and wave soldering is 0.5mm and 1.0mm, respectively.

Solder Fillet

Too much solder amount may increase solder stress and cause crack risk. Insufficient solder amount may reduce adhesive strength and cause parts falling off PCB. When soldering, confirm that the solder is placed over 0.2mm of the surface of the terminations.


DARFON MLCC 27 Version:C1007

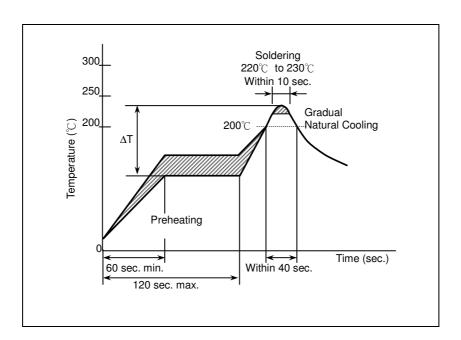
Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

- 1. The greater the amount of solder, the greater the stress to the elements, as this may cause the substrate to break or crack.
- 2. In the situation where two or more devices are mounted onto a common land, separate the device into exclusive pads by using soldering resist.
- 3. Land width equal to or less than component. It is permissible to reduce land width to 80% of component width.

Size mm (EIA)	L x W (mm)	a (mm)	b (mm)	c (mm)
0603 (0201)	0.6*0.3	0.15 to 0.35	0.2 to 0.3	0.25 to 0.3
1005 (0402)	1.0*0.5	0.3 to 0.5	0.35 to 0.45	0.4 to 0.5
1608 (0603)	1.6*0.8	0.7 to 1.0	0.6 to 0.8	0.7 to 0.8
2012 (0805)	2.0*1.25	1.0 to 1.3	0.7 to 0.9	1.0 to 1.2
3216 (1206)	3.2*1.6	2.1 to 2.5	1.0 to 1.2	1.3 to 1.6
3225 (1210)	3.2*2.5	2.1 to 2.5	1.0 to 1.2	2.0 to 2.5
4520 (1808)	4.5*2.0	3.2 to 3.8	1.2 to 1.4	1.7 to 2.0
4532 (1812)	4.5*3.2	3.2 to 3.8	1.2 to 1.4	2.7 to 3.2

DARFON MLCC 28 Version:C1007

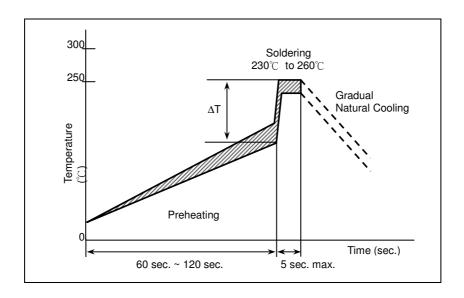


Resin Mold

If a large amount of resin is used for molding the chip, cracks may occur due to contraction stress during curing. To avoid such cracks, use a low shrinkage resin. The insulation resistance of the chip will degrade due to moisture absorption. Use a low moisture absorption resin. Check carefully that the resin does not generate a decomposition gas or reaction gas during the curing process or during normal storage. Such gases may crack the chip capacitor or damage the device itself.

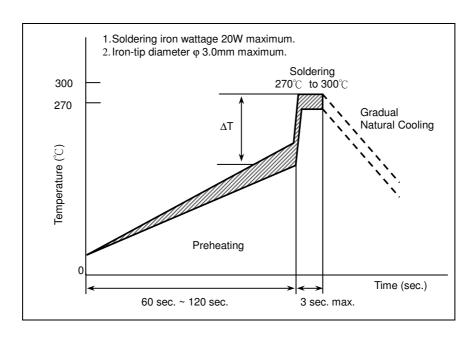
Soldering Profile for SMT Process with SnPb Solder Paste

Reflow Soldering


The difference between solder and chip surface should be controlled as following table. The rate of preheat should not exceed 4° C/sec and a target of 2° C/sec is preferred.

Chip Size	3216 and smaller	3225 and above
Preheating	ΔT≤150°C	ΔT≤130°C

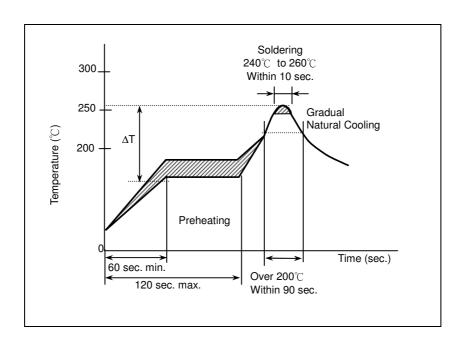
DARFON MLCC 29 Version:C1007



• Wave Soldering

Chip Size	3216 and smaller	3225 and above
Preheating	ΔΤ≤150°C	-

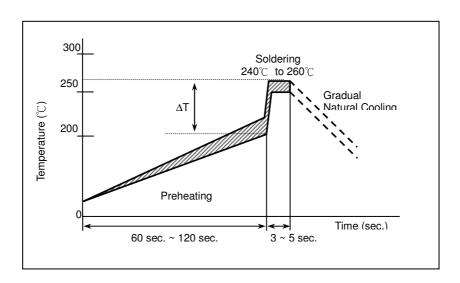
Soldering Iron


Chip Size	3216 and smaller	3225 and above
Preheating	ΔΤ≤190°C	Δ Τ≤130℃

DARFON MLCC 30 Version:C1007

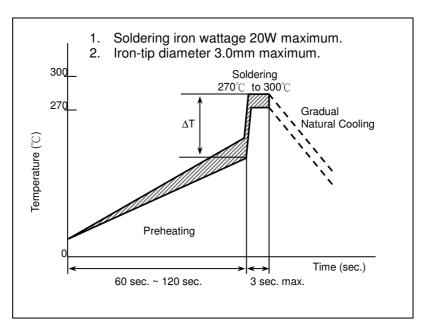
Soldering

• Reflow Soldering for Lead free Termination


The difference between solder and chip surface should be controlled as following table. The rate of preheat should not exceed 4° C/sec and a target of 2° C/sec is preferred.

Chip Size	3216 and smaller	3225 and above
Preheating	ΔΤ≤150℃	ΔΤ≤130°C

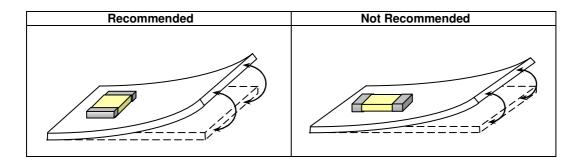
DARFON MLCC 31 Version:C1007



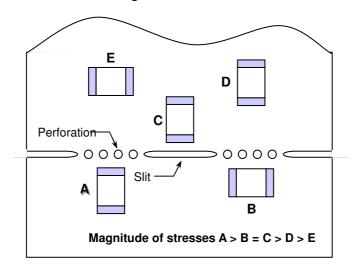
• Flow Soldering for Lead free Termination

Chip Size	3216 and smaller	3225 and above
Preheating	ΔT≤150°C	-

• Soldering Iron


Chip Size	3216 and smaller	3225 and above
Preheating	ΔT≤190°C	ΔT≤130°C

DARFON MLCC 32 Version:C1007



Chip Layout and Breaking PCB

 To layout the SMD capacitors for reducing bend stress from board deflection of PCB. The following are examples of good and bad layout.


2. When breaking PCB, the layout should be noted that the mechanical stresses are depending on the position of capacitors. The following example shows recommendation for better design.

Peeling Off Force

Peeling off force: 0.1N to 1.0N in the direction shown below.

The peeling speed: 300+/-10 mm/min

- 1. The taped tape on reel is wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- 2. There are minimum 150 mm as the leader and minimum 40 mm empty tape as the tail is attached to the end of the tape.

DARFON MLCC 33 Version:C1007

DARFON ENVIRONMENTAL POLICY

- KEEP ENVIRONMENTAL REGULATION
- ALL MEMBER MUST JOIN THE ENVIRONMENTAL PROTECTION
- KEEP PREVENTION AND TREATMENT
- PROTECT THE NATURAL RESOURCES

CERTIFICATE TONORD

Management system as per ISO 14001: 2004

In accordance with TÜV NORD CERT procedures, it is hereby certified that

DARFON ELECTRONICS CORP.

No. 21, Industry 2nd Road, Tainan 709, Taiwan, R.O.C.

DARFON

with the plants in Tainan, ShenZhen, SuZhou and Huaian according to the annex

applies a management system in line with the above standard for the following scope

Design, Manufacturing, Marketing, Sales and Testing of Ceramic Components, Electrical Materials, Ceramic Components Substrates, and Modules

Packing of Ceramic Components Substrates and Modules

Manufacturing of MLCC(multi-layer ceramic capacitors), MLCI(multi-layer chip inductor), Magnetic Inductors, Transformers, Coil Components Lips, Power Boards, Bobbins, Keyboards, and Metal Stamping

Production of Computer Input Facilities, Poncer Devices and **Integrated Devices**

Design and Manufacturing of Mould, Injection/Painting and **Assembly of Plastic Parts**

Certificate Registration No. 44 104 102016 Audit Report No. 2.5-8619/2010

Valid until 2013-01-18 Initial Certification 2010-01-19

Killa Certification Body at TÜV NORD CERT GmbH

Hong Kong, 2010-01-19

This certification was conducted in accordance with the TÜV NORD CERT auditing and certification procedures and is subject to regular surveillance audits

TÜV NORD CERT GmbH

Langemarckstrasse 20 45141 Essen

www.tuev-nord-cert.com

ROC, FE8619, CA 0190-B

DARFON MLCC 34 Version:C1007

CERTIFICATE

TÜV ASIA PACIFIC LIMITED

hereby certifies that

DARF⊛N

DARFON ELECTRONICS CORP.

No. 21, Industry 2nd Road, Tainan 709, Taiwan, R.O.C.

With the plants Tainan Plant, ShenZhen Plants, SuZhou Plants, SuZhou Precisions Plant, and Huaian Plant according to the annex

has established and applies an Occupational Health & Safety

Management System for

Design, Manufacturing, Marketing, Sales and Testing of Ceramic Components, and Electrical Materials

Manufacturing of MLCC(multi-layer ceramic capacitors),
MLCI(multi-layer chip inductor), Magnetic Inductors, Transformers,
Coil Components Lips, Power Boards, Bobbins, Keyboards, and
Metal Stamping

Production of Computer Input Facilities, Poncer Devices and Integrated Devices

Design and Manufacturing of Mould, Injection/Painting and Assembly of Plastic Parts

An audit was performed, Report No. : **2.5-8619/2010**Proof has been furnished that the requirements according to

OHSAS 18001: 2007

are fulfilled.

The certificate is valid until 27 January **2013**Certificate Registration No: **2010001**

Taipei, 28.01.2010

Certification Body TUV Asia Pacific Ltd.

ENVIRONMENTAL CONCERNS

Certificate Number

TW-HSPM-1221

Issued: 11/23/2007 Revision: N/A

Expiration: 11/22/2010

IECQ Certificate of Hazardous Substance Process Management (HSPM) applicable to the European Directive 2002/95/EC ("RoHS") requirements and other identified Hazardous Substances.

The Supervising Inspectorate (Underwriters Laboratories Inc.), sponsored by the United States National Authorized Institution, ECCB certify that

Darfon Electronics Corp.

21, Industry II Road, Annan Tainan 709, Taiwan, R.O.C.

Has developed and implemented Hazardous Substance Process Management procedures and related processes in compliance with the applicable requirements for HSPM organization approval which is in accordance with the Basic Rules IECQ-01 and Rules of Procedure QC 001002-5 "IECQ Hazardous Substances Process Management" of the IEC Quality Assessment System for Electronic Components (IECQ), and with respect to specification of QC 080000 IECQ HSPM

This certification is applicable to all electronic components and related materials and processes for the

Design and manufacture of multi-layer ceramic capacitors (MLCC).

Approved by American National Authorized Institute

Electronic Component Certification Board

Signed:

Stanley H. Salot Jr. - President, ECCC

Issued by Certification Authorities:

UL File No. A16512 Underwriters Laboratories Inc.

Signed:

John A Schot

John H. Schmidt - Sr. Vice President, Chief Development Officer

The validity of this certificate is maintained through on-going surveillance inspections.

Note This certificate is valid only in conjunction with the approval document(s). This approval and this certificate may be suspended or withdrawn in accordance with the Rules of Procedure of the IECQ. This certificate remains the properly of Underwriters Laboratories Inc. and the body which granted it.

DARFON MLCC 36 Version:C1007

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Darfon manufacturer:

Other Similar products are found below:

M39014/01-1467 M39014/02-1218V M39014/02-1225V M39014/02-1262V M39014/02-1301 M39014/22-0631 1210J5000102JCT

1210J2K00102KXT 1210J5000103KXT 1210J5000223KXT D55342E07B379BR-TR D55342E07B523DR-T/R 1812J1K00103KXT

1812J1K00473KXT 1812J2K00680JCT 1812J4K00102MXT 1812J5000102JCT 1812J5000103JCT 1812J5000682JCT NIN-FB391JTRF

NIN-FC2R7JTRF NPIS27H102MTRF C1206C101J1GAC C1608C0G1E472JT000N C2012C0G2A472J 2220J2K00101JCT

KHC201E225M76N0T00 LRC-LRF1206LF-01R025FTR1K 1812J1K00222JCT 1812J2K00102KXT 1812J2K00222KXT

1812J2K00472KXT 2-1622820-7-CUT-TAPE 2220J3K00102KXT 2225J2500824KXT CCR07CG103KM CGA2B2C0G1H010C

CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H151J CGA2B2C0G1H1R5C

CGA2B2C0G1H2R2C CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2X8R1H221K CGA2B2X8R1H472K

CGA3E1X7R1C474K