

Surge-Arrestor Negative Temperature Coefficient Thermistor

SCNxxD-9 Series

Outline

This is a Negative Temperature Coefficient Resistor Whose resistance changes with ambient temperature changes.Thermistor comprises 2 or 4 kinds of metal oxides of iron,nickel,cobalt, manganese and copper, being shaped and sintered at high temperature(1200 \degree C to 1500 \degree C).

Features

- Small in size, high-powered, and very capable of bringing down the surge current;
- Quick in reaction;
- High in B value and low in residual current;Long service life and high reliability;High coefficient of safety and wide range of application.

Applications

Conversion power supply, switch power, UPS power, Kinds of electric heater, electronic energy-saving lamps, electronic ballast etc all kinds of power circuit protection of electronic equipments, filament protection of CRT, bulb and other lighting lamps.

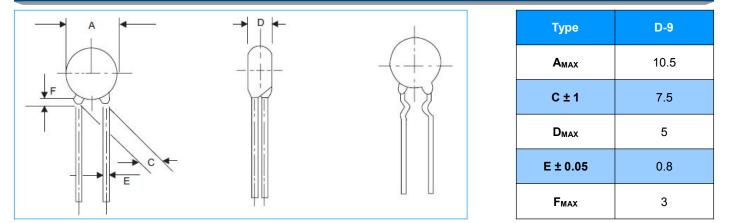
Part Number Code

SCN	10	D - 9	
(1)	(2)	(3)	

- (1) SCN: Socay Negative Temperature Cofficient Resistor.
- (2) 10: Resistance Value:10Ω.
- (3) D-9: Diameter of Chip: Φ9.

SOCAY Electronics Corp., Ltd.

@ SOCAY Electronics Corp., Ltd. 2016 Specifications are subject to change without notice. Please refer to www.socay.com for current information.


Surge-Arrestor Negative Temperature Coefficient Thermistor

SCNxxD-9 Series

Electrical Characteristics

	R25℃	Max	Approx R	Power	Time
Part Number	±20%	Steady Current	Of Max Current	Dissipation Coefficient	Constant
	(Ω)	(A)	(Ω)	(m₩/℃)	(s)
SCN2.5D-9	2.5	4	0.128	11	35
SCN3D-9	3	4	0.133	11	35
SCN5D-9	5	3	0.236	11	35
SCN8D-9	8	2	0.382	11	34
SCN10D-9	10	2	0.476	11	34
SCN16D-9	16	1	0.688	11	32
SCN22D-9	22	1	0.899	11	30
SCN25D-9	25	1	0.914	12	30
SCN35D-9	35	1	1.103	12	30
SCN50D-9	50	1	1.265	11	30
SCN60D-9	60	1	1.521	11	30
SCN80D-9	80	0.8	2.108	11	30
SCN100D-9	100	0.8	2.576	11	30
SCN120D-9	120	0.8	3.115	11	30
SCN200D-9	200	0.5	5.900	10	32
SCN300D-9	300	0.5	9.150	10	32

Dimensions (Unit: mm)

Note: "E" value may be 0.6 for resistors for which the chip's diameter is \leq 13 and the working current is \leq 2A.

SOCAY Electronics Corp., Ltd.

www.socay.com

Surge-Arrestor Negative Temperature Coefficient Thermistor

SCNxxD-9 Series

Critical Technical Parameters of NTC Thermistor

Rt---Resistance Value at Zero-power

It's a resistance which is got at a fixed temperature on a basis of a testing power which causes resistance to Vary in a range which can be ignored in relation to the total testing eror.

R₂₅---Resistance Value at Rated Zero-power

The design resistance of the thermistor usually refers to the resistance value got at Zero-power at 25 $^{\circ}$ C , which is usually indicated on the thermistor.

B Value

B value stands for the thermal exponent at a negative temperature coefficient. It's defined as a ratio of the balance between the natural logarithms of resistance values at zero-power to the balance between the reciprocals of the two temperatures. The formula is as below:

$$B = \ln \frac{R_{T_1}}{R_{T_2}} / \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \neq \frac{T_1 T_2}{T_2} \ln \frac{R_{T_1}}{R_{T_2}}$$

In this formula: R_{T1} is the resistance at Zero-power when the temperature is T_1 , R_{T2} is the resistance at Zero-power when the temperature is T_2 Unless otherwise specified,B value is got by calculating the Zero-power resistances at 25°C (298.15K) and 50 °C (323.15K). It's not a firm constant within the range of working temperature.

Resistance-to-Temperature Coefficient at Zero-power. It refers to the ratio of changes of a thermistor. Resistance value at Zero-powerwhen The temperature, to the resistance value at Zero-power The formula is as below:

$$\alpha_{\tau} = \frac{1}{R_{\tau}} \frac{DR_{\tau}}{DT} = -\frac{B}{T_{2}}$$

In this formula, " α " stands for the resistance-temperature coefficient at Zero-power when the temperature is T:

 R_T stands for the resistance value at Zero-power when the temperature is T.

T stands for the temperature(in K).

B stands for B value.

Max steady state current.

The maximum allowable continuous current passing through thermistor at $25^\circ\!\mathrm{C}$.

Dissipation Coefficient δ

It's the ratio of the changes with a thermistor dissipation power, in a pre-set ambient temperature, to the changes with the temperature. The formula is as below: $\delta = \triangle P / \triangle T \delta$ changes in response when the ambient temperature changes, within the ranges of the working temperature.

Thermal Time Constant

At Zero-power and when amutatio occurs with the temperature, the time "t", which is-spent for finishing 63.2% of the gap between the beginning temperature and the ending temperature in the thermistor. is directly proportional to "C", the heat capacity of the thermistor, and is inversely proportional to δ , the dissip ation constant. That is " $\tau = C/\delta$ ".

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for NTC (Negative Temperature Coefficient) Thermistors category:

Click to view products by SOCAY manufacturer:

Other Similar products are found below :

 B57364S2509A002
 526-31AA19-104
 526-31AN12-202
 11028414-00
 112-104KBF-F01
 526-31AA79-102
 PTCLL05P131TBE
 144

 101FAG-001
 521-53AW02-104
 1-1423022-3
 MF0916001M4BP0FPT0
 MF58-5.91KF3820-B1
 04M5002SFA4
 NCG18WF104F0SRB

 NXFT15WF104FEAB035
 NXFT15WF104FEAB040
 NXFT15XV103FEAB030
 NXFT15XV103FEAB025
 NXFT15XV103FEAB040

 NXFT15XH103FEAB050
 NXFT15XH103FEAB040
 NCG18XH103F0SRB
 USUR1000-502G-06
 NXFT15XH103FEAB045

 B57864S0502F040
 NTCALUG01A103G611
 GA50K6A11A
 GA10K3MR11
 NXFT15XV103FEAB035
 NXFT15XV103FEAB045

 NXFT15XV103FEAB045
 GA50K6A11B
 GA30K5A1A
 GA10K4A11A
 A1004SS22P63
 11031964-00
 NXFT15XH103FEAB035

 NXFT15WF104FEAB021
 GA100K6A11B
 11026149-00
 TCTR0805F10K0F4460T
 TCTR0603F100KF4460T
 TCTR0603F100KF4300T
 TCTR0603F100KF4460T

 TCTR0603F100KF4390T
 TCTR0603F100KF4050T
 TCTR0603F100KF3980T
 TCTR0603F10K0F3900T
 TCTR0603F10K0F3960T

 TCTR0603F100KF4460T
 TCTR0603F100KF4460T
 TCTR0603F10K0F3900T
 TCTR0603F10K0F3980T
 TCTR0603F10K0F3900T