

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

Key Features

- Industry standard Quarter-brick 57.9 x 36.8 x 20.3 mm (2.28 x 1.45 x 0.80 in)
- 780 W at 39 Vin, 960 W at 48 Vin, 1080 W at 54 Vin
- High efficiency, typ. 98.8% at 780 W
- 15 A output current at 86°C, 2 m/s (300 LFM) airflow
- Low EMI design for CISPR Class B
- Monitoring via I2C
- 2000 Vdc input to management power output isolation
- Optimized for ATCA applications and PICMG 3.7 (up to 800 W input power)
- Basic insulation according to IEC 62368-1
- MTBF 2.66 Mh

General Characteristics

- Dual input power feeds and enable
- Input transient suppression (IEC & ANSI standards)
- Reverse polarity protection
- Input under voltage shutdown
- Over temperature protection
- Output current protection
- A/B Feed loss alarm
- Inrush protection and hot swap functionality
- Hold-up charge and management
- 3.3 V / up to 7 A management power output
- Highly automated manufacturing ensures quality
- ISO 9001/14001 certified supplier

Safety Approvals

Design for Environment

Meets requirements in hightemperature lead-free soldering processes.

Contents

Ordering Information		. 2
General Information		. 2
Safety Specification		. 3
Absolute Maximum Ratings		. 4
Electrical Specification		
16A/ 3.3V, 3.6A - 7.0A	PIM 4610	. 5
20A/ 3.3V, 3.6A - 7.0A	PIM 4710	
EMC Charification		11
EMC Specification		
Operating Information		18
Thermal Consideration		21
Connections		22
Mechanical Information		23
Soldering Information		24
Delivery Package Information		24
Product Qualification Specification		 25
Appendix - PMBus Commands		26 26
Appendix - 1 Mibus Communius		ںء

PIM 4710 series Power Interface Modules
Input 36-75V, Output up to 20A / 780-1080 W

28701-BMR 455 40 Rev.B December 2016
© Ericsson AB

Ordering Information

Product program	Output
PIM 4610	16 A & 3.3V, 3.6 A (7 A)
PIM 4710	20 A & 3.3V, 3.6 A (7 A)

Product number and Packaging

PIM 4X10 n ₁ n ₂ n ₃ n ₄						
Options	n ₁	n ₂	nз	n ₄		
Mounting	О					
Function		О				
Lead length			О			
Delivery package				О		

Options	Descr	ption
n_1	Р	Through hole
n_2	D DA DG DAG	Standard config. PMBus Limited I ² C (Industry standard) PMBus and Power good pin Limited I ² C and Power good pin
n_3	LA LB	3.69 mm 4.57 mm
n ₄	/B	Soft tray*

Example: A through-hole mounted, PMBus logic, 3.69 mm pin length product with tray packaging would be PIM 4710 PDLA.

General Information

Reliability

The failure rate (λ) and mean time between failures (MTBF= $1/\lambda$) is calculated at max output power and an operating ambient temperature (T_A) of +40°C. Ericsson Power Modules uses Telcordia SR-332 Issue 2 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ) .

Telcordia SR-332 Issue 2 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

Mean steady-state failure rate, λ	Std. deviation, σ
377 nFailures/h	15.6 nFailures/h

MTBF (mean value) for the PIM 4x10 series = 2.66 Mh. MTBF at 90% confidence level = 2.53 Mh

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Ericsson Power Modules products are found in the Statement of Compliance document.

Ericsson Power Modules fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, Six Sigma, and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of the products.

Warranty

Warranty period and conditions are defined in Ericsson Power Modules General Terms and Conditions of Sale.

Limitation of Liability

Ericsson Power Modules does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

© Ericsson AB 2016

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Ericsson AB reserves the right to change the contents of this technical specification at any time without prior notice.

^{*} Standard variant (i.e. no option selected).

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

Safety Specification

General information

PIM 4610 and PIM 4710 are designed in accordance with the safety standards IEC 62368-1, EN 62368-1 and UL 62368-1, *Audio/video, information and communication technology equipment - Part 1: Safety requirements* IEC/EN/UL 62368-1 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- · Energy hazards
- Fire
- · Mechanical and heat hazards
- · Radiation hazards
- · Chemical hazards

On-board DC/DC converters, Power interface modules and DC/DC regulators are defined as component power supplies. As components they cannot fully comply with the provisions of any safety requirements without "conditions of acceptability". Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable safety standards and regulations for the final product.

Component power supplies for general use shall comply with the requirements in IEC/EN/UL 62368-1 or IEC/EN/UL 60950-1. Product related standards, e.g. IEEE 802.3af Power over Ethernet, and ETS-300132-2 Power interface at the input to telecom equipment, operated by direct current (dc) are based on IEC/EN/UL 60950-1 with regards to safety.

Safety Certification

PIM 4610 and PIM 4710 are UL 62368-1 recognized and certified in accordance with EN 62368-1. The flammability rating for all construction parts of the products meet requirements for V-0 class material according to IEC 60695-11-10, *Fire hazard testing, test flames* – 50 W horizontal and vertical flame test methods.

PIM 4610 and PIM 4710 meet all requirements for basic insulation according to IEC/EN/UL 62368-1:

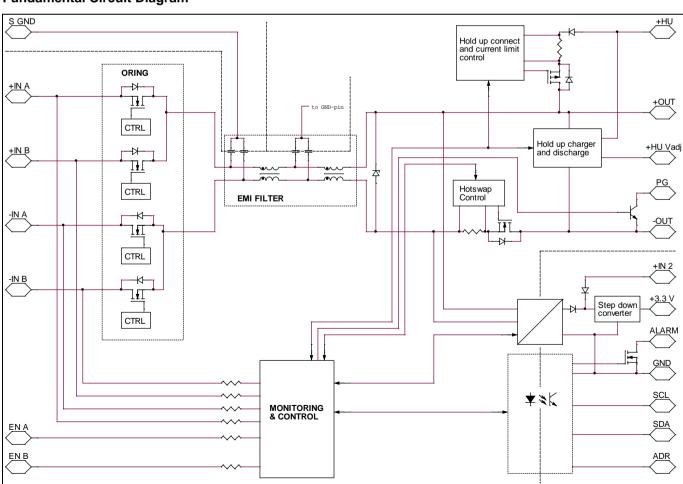
- · between input and management power output
- · between input and shelf ground
- between management power output and shelf ground

The conditions of acceptability are described in the following sub document: 1/09830-BMR 455 40

© Ericsson AB

28701-BMR 455 40 Rev.B December 2016

PIM 4710 series Power Interface Modules Input 36-75V, Output up to 20A / 780-1080 W


Absolute Maximum Ratings

Characteristics		min	typ	max	Unit
T _{P2}	Operating Temperature (see Thermal Consideration section)	-40		+105	°C
Ts	Storage temperature	-40		+125	°C
V _I	Input voltage	-75		75	V
V _I	Input voltage, reverse polarity. See Note 1.			75	V
Vı	Input voltage transient ANSI T1.315-2001 (R2006)			100	V
V _I	Common mode surge pulses (1.2/50 µs) IEC 61000-4-5			500	V
	Isolation voltage, shelf ground to main unit			2000	
V_{ISO}	Isolation voltage, shelf ground to management power			2000	Vdc
	Isolation voltage, main unit to management power			2000	
V _{HU}	Hold up capacitor voltage			100	V
Сни	Hold up capacitor capacitance			6600	μF
V _{IN2}	External supply voltage			16	V
I _{ALARM}	Alarm sink current			135	mA
V_{ALARM}	Alarm open drain voltage			100	V
I _{PG}	Power good sink current			100	mA
V_{PG}	Power good, open collector voltage			120	V
V _{SCL} , V _{SDA}	SCL and SDA voltage	-0.5		6	V

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits in the Electrical Specification. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Note 1: The voltage between +IN A and +IN B must be less than 100 V and the voltage between -IN A and -IN B must be less than 120 V.

Fundamental Circuit Diagram

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

Main Unit (Output 1), Electrical Specification

PIM 4610 / PIM 4710

 $T_{P1} = -40$ to 90 °C, $V_1 = 36$ to 72 V, $C_{O1} = 470 \mu F/38 m\Omega$ electrolytic + 15 μF ceramic, $C_{O2} = 2 \times 100 \mu F$ ceramic (see Note 5), unless otherwise specified under Conditions.

 C_{O2} = 2 x 100 µF ceramic (see Note 5), unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25 °C, V_1 = 53 V, max I_{O1} , I_{O2} = 3.6 A, unless otherwise specified under Conditions.

Charact	eristics	Conditions		min	typ	max	Unit
Vı	Input voltage range			36	53	72	V
V _{I A/B off}	Turn-off threshold voltage	Decreasing feed A and B voltage		32	33		V
V _{I A/B on}	Turn-on threshold voltage	Increasing feed A or B voltage			35	36	V
I _{EN A/B}	Enable input current				120	200	μΑ
Cı	Internal input capacitance	$V_1 = 0V$			40		μF
		P _{O1} = 600 W, I _{O2} = 0 A			98.8		
		I _{O1} = 16 A, I _{O2} = 0 A PIM 4610	PIM 4610		98.5		
-	E# days	I _{O1} = 16 A, I _{O2} = 3.6 A			98.2		0/
η	Efficiency	P _{O1} = 780 W, I _{O2} = 0 A			98.8		- %
		I _{O1} = 20 A, I _{O2} = 0 A	PIM 4710		98.5		
		I _{O1} = 20 A, I _{O2} = 3.6 A			98.2		
5.	5 5::	I _{O1} = 16 A, I _{O2} = 3.6 A	PIM 4610		16	21	101
Pd	Power Dissipation	I _{O1} = 20 A, I _{O2} = 3.6 A	PIM 4710		20	27	W
P _{li}	Input idling power	$V_1 = 53 \text{ V}, I_{O1} = I_{O2} = 0 \text{ A}$	I		1.8		W
I _{UVLO}	Input standby current	$V_{I} < V_{I \text{ A/B off}}$				24	mA
t _r	Ramp-up time		PIM 4610		70		ms
۲r	(from 10–90 % of V _{Oi})	$I_{O1} = I_{O2} = 0 \text{ A}.$	PIM 4710		45		1115
+	Start-up time	101 - 102 - 0 A.	PIM 4610		250	435	ms
ts	(from V _I connection to 90 % of V _{Oi})		PIM 4710		225	360	1115
1	Output current	see Note 2	PIM 4610	0		16	Α
I _{O1}	Output current	See Note 2	PIM 4710	0		20	
	Current limit threshold	PIM 4610	PIM 4610		20	20.5	Α
l _{lim}	Current limit threshold	$T_{P1} < max T_{P1}$	PIM 4710		24.5	25	_ ^
l ² t	E-Fuse rating	$I_{O1} > I_{lim}$	•			100	A ² s
I _{sc}	Short circuit current	T _{P1} = 25 °C, see Note 3			0.1		Α
C _{O1}	Recommended Capacitive Load	T _{P1} = 25 °C, see Note 4		100		600	μF
I _{PK}	Inrush current transient	T _{P1} = 25 °C				7	Α

Note 2: No load allowed at start-up, see Hot Swap Functionality section

Note 3: Average current, hiccup mode over current protection

Note 4: See Hold Up Event Voltage section

Note 5: The stated value is the rated capacitance. With 3.3 V bias applied and with the particular frequency and amplitude of the ripple voltage the capacitance of the ceramic capacitors is approximately 50% lower than the rated value.

PIM 4710 series Power Interface Modules	28701-BMR 455 40 Rev.B De	ecember 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB	

Hold up, Electrical Specification

PIM 4610 / PIM 4710

 T_{P1} = -40 to 90 °C, V_{I} = 36 to 72 V, C_{O1} = 470 $\mu F/38$ m Ω electrolytic + 15 μF ceramic, C_{O2} = 2 x 100 μ F ceramic (see Note 5), unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25 °C, V_1 = 53 V_2 , max I_{O1} , I_{O2} = 3.6 A, unless otherwise specified under Conditions.

Characte	ristics	Conditions		min	typ	max	Unit
C _{HU}	Hold up capacitance	See Hold Up Safe Operating Area				6600	μF
f _{HU}	Hold up generator switching frequency				500		kHz
V _{HU}	Hold up capacitor voltage adjust range			40		95	V
t _{HU}	Hold up time	$C_{HU} = 3340 \ \mu F, V_{HU} = 75 \ V,$ $P_{O1} = 600 \ W, I_{O2} = 3.6 \ A$			10		ms
V_{HU_TRIG}	Input / output voltage threshold for hold up event				36.8		V
V_{HU_OVP}	Hold up over voltage protection				100		V
	Hold up charger current	V _{HU} = 75 V			10		
I _{HU}	Hold up charger short circuit current				80		mA
	Hold up dump current	$V_{HU} > V_{O1}$	PIM 4610		50		Α
	noid up dump current	VHU / VO1	PIM 4710	80			

Alarm and Power Good, Electrical Specification

 T_{P1} = -40 to 90 °C, V_{I} = 36 to 72 V, C_{O1} = 470 μF/38 mΩ electrolytic + 15 μF ceramic, C_{O2} = 2 x 100 μF ceramic (see Note 5), unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25 °C, V_{I} = 53 V, max I_{O1} , I_{O2} = 3.6 A, unless otherwise specified under Conditions.

Characteris	stics	Conditions	min	typ	max	Unit
		Normal conditions, increasing feed A and B voltages		38.4		V
	, ,	Fault conditions, decreasing feed A or B voltages		36.9		
V _{ALARM_OL}	Alarm low level output voltage	I _{ALARM} = 20 mA. Referenced to GND.			0.4	V
I _{ALARM_OH}	Alarm high level output current	V _{ALARM} = 5.0 V. Referenced to GND.			10	μA
V_{PG_OL}	Power good low level output voltage	I _{PG} = 8 mA. Referenced to -OUT.			0.4	V
I _{PG_OH}	Power good high level output current	V _{PG} = 5.0 V. Referenced to -OUT.			10	μΑ

PIM 4710 series Power Interface Modules	28701-BMR 455 40 Rev.B December 2	2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB	

Management Power (Output 2), Electrical Specification

PIM 4610 / PIM 4710

 T_{P3} = -40 to 90 °C, V_1 = 36 to 72 V, C_{O1} = 470 μF/38 mΩ electrolytic + 15 μF ceramic, C_{O2} = 2 x 100 μF ceramic (see Note 5), unless otherwise specified under Conditions. Typical values given at: T_{P3} = +25 °C, V_1 = 53 V, max I_{O1} , I_{O2} = 3.6 A, unless otherwise specified under Conditions.

Charact	eristics	Conditions	min	typ	max	Unit
$V_{IA/Boff}$	Turn-off threshold voltage	Decreasing feed A and B voltage	32	33		V
V _{I A/B on}	Turn-on threshold voltage	Increasing feed A or B voltage		35	36	V
V _{IN2}	External supply voltage		9	12	13.2	V
		No external supply, $I_{O1} = 0$ A, $I_{O2} = 3.6$ A, see Note 6		71.9		
η	Efficiency	$V_{IN2} = 12 \text{ V}, I_{O1} = 0 \text{ A}, I_{O2} = 3.6 \text{ A}, \text{ see Note 7}$		88.9		%
		V _{IN2} = 12 V, I _{O1} = 0 A, I _{O2} = 7 A, see Note 7		85.2		
п	Power Discipation	No external supply, $I_{O1} = 0$ A, $I_{O2} = 3.6$ A, see Note 6		4.7	5.9	w
P_d	Power Dissipation	$V_{IN2} = 12 \text{ V}, I_{O1} = 0 \text{ A}, I_{O2} = 3.6 \text{ A}, \text{ see Note 7}$		1.5	1.7	T VV
		$V_{IN2} = 12 \text{ V}, I_{O1} = 0 \text{ A}, I_{O2} = 7 \text{ A}, \text{ see Note 7}$		4.0	4.9	
V _{Oi}	Output voltage initial setting and accuracy	$T_{P1} = +25 ^{\circ}\text{C}, \ V_{I} = 53 \text{V}, \ I_{O2} = 1.8 \text{A}$	3.27	3.33	3.38	V
	Output voltage tolerance band	no external supply, I_{O2} = 0 to 3.6 A or V_{IN2} = 9 to 13.2 V, I_{O2} = 0 to 7 A	3.2		3.4	V
	Idling voltage	I _{O2} = 0 A	3.27	3.33	3.4	V
Vo	Line regulation	V ₁ = 36 to 72 V, I _{O2} = 3.6 A		1		mV
		$V_1 = 53 \text{ V}$, no external supply, $I_{O2} = 03.6 \text{ A}$		11		
	Load regulation	V _I = 53 V, V _{IN2} = 12 V, I _{O2} = 07 A		15		mV
.,	Load transient	V_1 = 53 V, no external supply, Load step I_{O2} = 0.75-2.25-0.75 A, di/dt = 1 A/ μ s, C_{O2} = 6 x 100 μ F ceramic, see Note 5		±75		
V_{tr}	voltage deviation	V_1 = 53 V, V_{IN2} = 12 V, Load step I_{O2} = 1.75-5.25-1.75 A, di/dt = 1 A/μs, C_{O2} = 470 μF/10 m Ω OS-CON + 4 x 100 μF ceramic, see Note 5		±100		- mV
t _{tr}	Load transient recovery time			75		μs
t _r	Ramp-up time (from 10-90 % of V _{Oi})			3		ms
t _s	Start-up time (from V _I connection to 90 % of V _{Oi})			70		ms
Io	Output current	Continuous output current, without external supply	0		3.6	Α
		Continuous output current, with external supply	0		7	
	Command limit the sale and	T _{P3} < max T _{P3} , no external supply		4.5	5.5	_
l _{lim}	Current limit threshold	$T_{P3} < max T_{P3}, V_{IN2} = 12 V$		10	11.5	A
I _{sc}	Short circuit current	T _{P3} = 25 °C		10	12.5	Α
C _{O2}	Recommended Capacitive Load		100		4700	μF
V _{Oac}	Output ripple & noise	See Output ripple & noise section, I _O = 3.6 A		6		mV _{p-p}
f _s	Switching frequency	First stage Second stage		510 480		kHz
	1					

Note 6: Idling losses in main unit are included

Note 7: Idling losses in main unit are not included

PIM 4710 series Power Interface Modules	28701-BMR 455 40 F	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

Functional Description

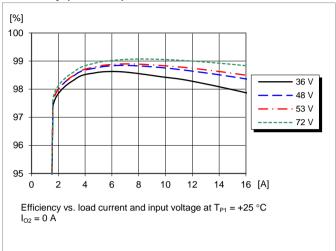
PIM 4610, PIM 4710

 T_{P1} = -40 to 90 °C, V_{I} = 36 to 72 V, C_{O1} = 470 μF/38 mΩ electrolytic + 15 μF ceramic, C_{O2} = 2 x 100 μF ceramic (see Note 5), unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25 °C, V_{I} = 53 V, max I_{O1} , I_{O2} = 3.6 A, unless otherwise specified under Conditions.

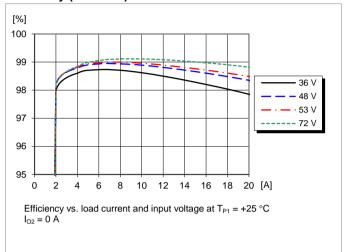
Characteristics		Comments		min	typ	max	Unit
PMBus monitoring accura	су						
READ_VIN MFR READ VINA	OR'ed input voltage \ Feed A input voltage \	V _I = 36 V to 75 V	V _I = 36 V to 75 V		±0.25	1.5	%
MFR_READ_VINB	Feed B input voltage	$V_I = 0 V \text{ to } 36 V$		-0.5		0.5	V
READ_VCAP	Hold up capacitor voltage	V _{HU} = 50 V to 95 V		-3	±1	3	%
READ_IIN	OR'ed input current	$I_{O1} = 0 \text{ A to } 16 \text{ A}$ $I_{O2} = 0 \text{ A to } 3.6 \text{ A}$	PIM 4610	-0.3	±0.1	0.3	- A
READ_IOUT	Output 1 current	I _{O1} = 0 A to 20 A I _{O2} = 0 A to 3.6 A	PIM 4710	-0.4	±0.1	0.4	A
		P _I = 300 W to 600 W	PIM 4610	-3.5	±1	3.5	%
READ PIN	Input power	P _I = 0 W to 300 W	- PIIVI 4610	-11	±3	11	W
KLAD_FIN	Input power	P _I = 390 W to 780 W	PIM 4710	-3.5	±1	3.5	%
		P _I = 0 W to 390 W	F 1101 47 10	-14	±4	14	W
READ_TEMPERATURE_1	P3 temperature	T _{P3} = 25 to 90 °C		-5	±3	5	°C
Fault Protection Character	istics						
UVLO, input under voltage lockout	Delay				100		ms
OCP, over current	Fault response time	I _{O1} = 25 A			95		ms
protection	•	I _{O1} = 32 A			2		
OTD over temperature	Trip limit				105		°C
OTP, over temperature protection, position P2	Hysteresis				10		°C
, , ,	Fault response time					1	s

Logic Input/Output Characteristics					
PMBus frequency			10	400	kHz
Logic input low (V _{IL})				0.96	
Logic input high (V _{IH})	SCL, SDA		2.38		V
Logic output low (V _{OL})				0.4	
Setup time, SMBus			460		no
Hold time, SMBus			210		ns
Due free time (T	Note 8	After read access	1.3		
Bus free time (T _{BUF})	Note o	After write access	30		μs

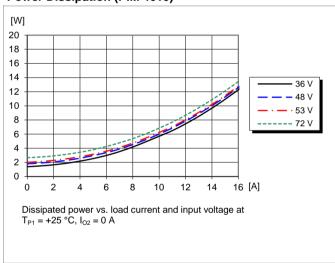
Note 8: It is recommended that a PMBus master reads back written data for verification.

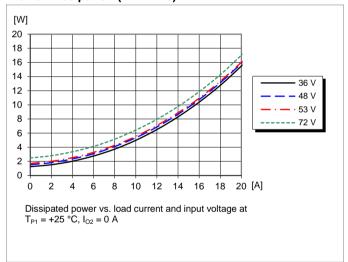

28701-BMR 455 40 Rev.B December 2016

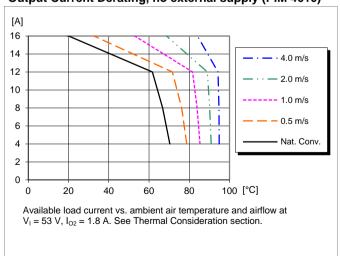
PIM 4710 series Power Interface Modules Input 36-75V, Output up to 20A / 780-1080 W

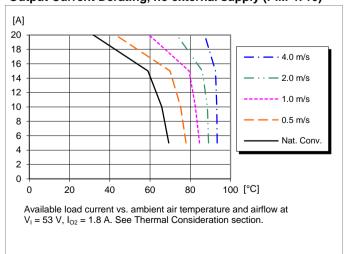

© Ericsson AB

Main Unit (Output 1), Typical Characteristics


Efficiency (PIM 4610)


Efficiency (PIM 4710)

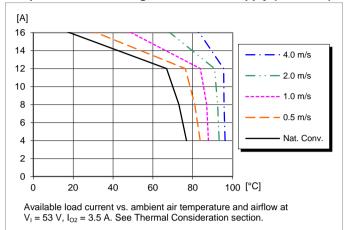

Power Dissipation (PIM 4610)


Power Dissipation (PIM 4710)

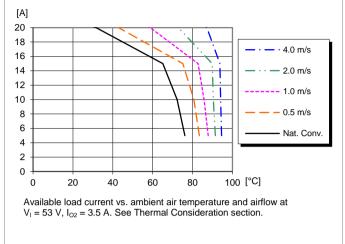
Output Current Derating, no external supply (PIM 4610)

Output Current Derating, no external supply (PIM 4710)

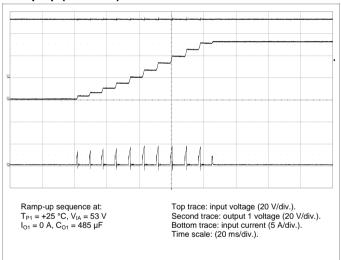
PIM 4710 series Power Interface Modules Input 36-75V, Output up to 20A / 780-1080 W

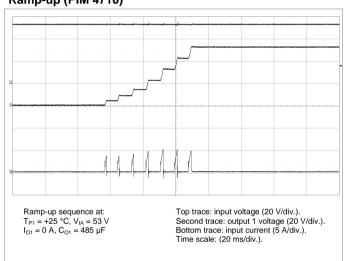

28701-BMR 455 40 Rev.B

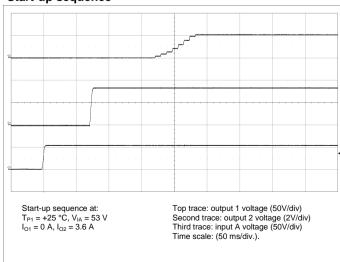
December 2016

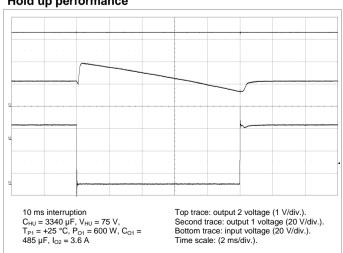

© Ericsson AB

Main Unit (Output 1), Typical Characteristics


Output Current Derating, external 12 V supply (PIM 4610)


Output Current Derating, external 12 V supply (PIM 4710)


Ramp-up (PIM 4610)

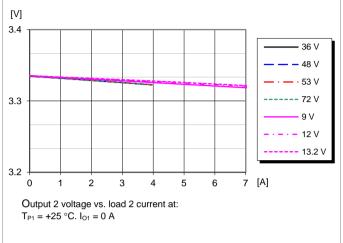

Ramp-up (PIM 4710)

Start-up sequence

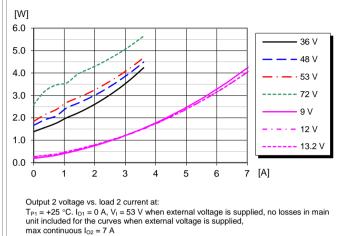
Hold up performance

PIM 4710 series Power Interface Modules Input 36-75V, Output up to 20A / 780-1080 W

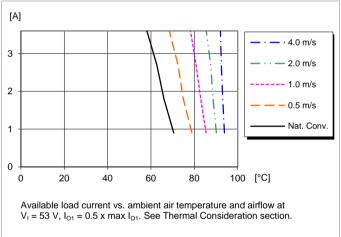
28701-BMR 455 40 Rev.B De

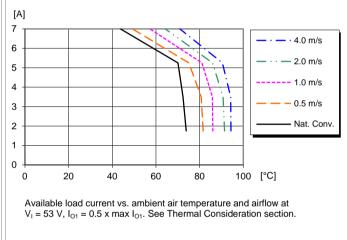

December 2016

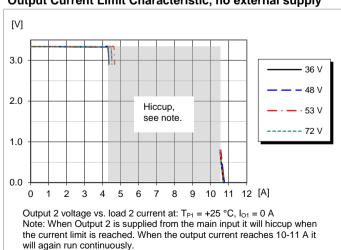
© Ericsson AB

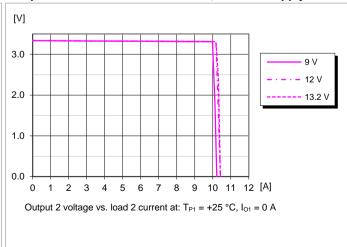

Management Power (Output 2), Typical Characteristics

PIM 4610, PIM 4710


Output Characteristics

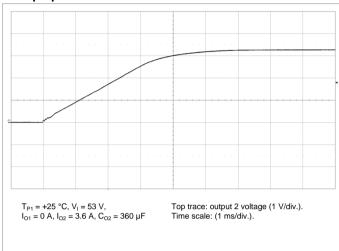

Power Dissipation

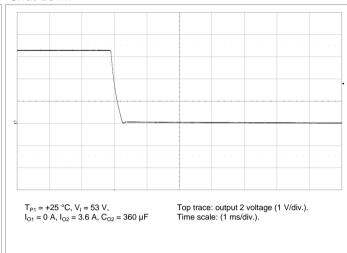

Output Current Derating, no external supply


Output Current Derating, external 12 V supply

Output Current Limit Characteristic, no external supply

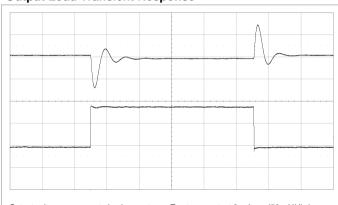
Output Current Limit Characteristic, external supply




PIM 4710 series Power Interface Modules Input 36-75V, Output up to 20A / 780-1080 W

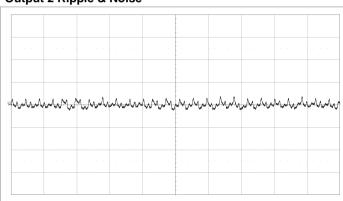
28701-BMR 455 40 Rev.B December 2016

Ramp-up



Shut-down

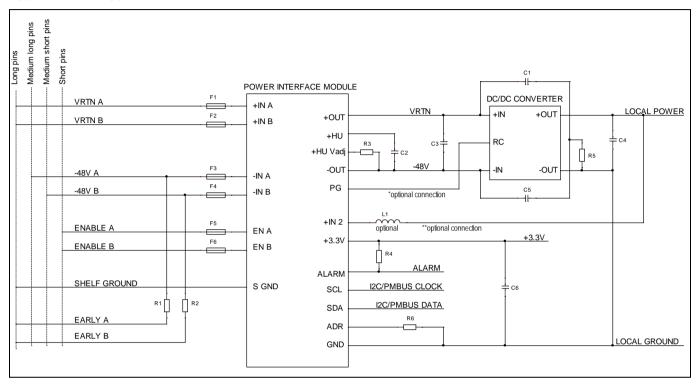
© Ericsson AB


Output Load Transient Response

Output voltage response to load current step-change, output 2 (0.9-2.7-0.9 A) at: $T_{P1} = +25$ °C, $V_1 = 53$ V $I_{01} = 0$ A, electronic load, $C_{02} = 6$ x 100 μ F (see Note 5)

Top trace: output 2 voltage (50 mV/div.). Bottom trace: output 2 current (1 A/div.). Time scale: (0.2 ms/div.).

Output 2 Ripple & Noise


Output voltage ripple at: T_{P1} = +25 °C, V_{I} = 53 V, I_{O1} = 0 A, I_{O2} = 3.6 A, resistive load

Output 2 voltage (10 mV/div.). Time scale: (100 μ s/div.).

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

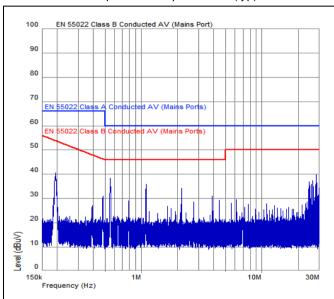
Typical ATCA Application Circuit

External components

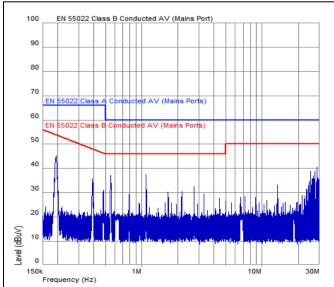
- C1, C5 = EMI suppression capacitor (recommended 30 nF)
- C2 = hold up capacitor, C_{HU} (max 6600 μ F)
- C3 = DC/DC converter input capacitor, C_{O1} (see technical specification of the DC/DC converter)
- C4 = DC/DC converter output capacitor (see technical specification of the DC/DC converter)
- C6 = management power output capacitor, C_{O2} (recommended 360 μ F)
- F1 = fuse (recommended >25 A)
- F2 = fuse (recommended > 25 A)
- F3 = fuse (recommended >25 A)
- F4 = fuse (recommended > 25 A)
- F5 = fuse (recommended 0.5 A)
- F6 = fuse (recommended 0.5 A)
- L1 = optional filter inductor (recommended 1 μH to comply with class B when supplying +IN 2 from LOCAL_POWER)
- R1, R2 = pre-charge resistor (recommended 50 Ω , max 1 A, max 50 ms)
- R3 = hold up voltage adjust resistor, R_{HU} (see Hold Up Capacitor Charge section)
- R4 = alarm pull-up resistor (recommended 3.3 k Ω)
- R5 = EMI suppression resistor (recommended 0 Ω)
- R6 = PMBus Address configuration resistor (see PMBus Addressing section)

^{*} The RC-pin of the DC/DC Converter may be controlled by an IPM in which case the connection to the PG-pin of the PIM shall be removed. (IPM = Intelligent Platform Management (see ATCA specification PICM 3.7)). The DC/DC must be kept off during start-up to allow the PIM to charge the capacitance, C3.

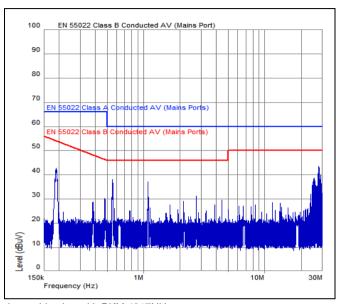
^{**} The connection between LOCAL_POWER and +IN 2 is optional. With this connection the +3.3 V output can deliver higher current.



PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

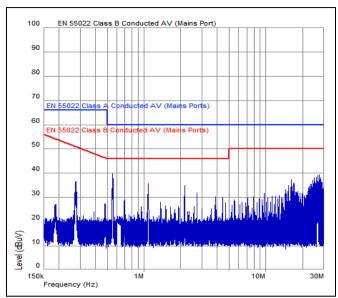

EMC Specification

The product contains an EMI filter which is designed to meet the requirements according to EN 55022, CISPR 22 and FCC part 15J class B (see test set up), when used in conjunction with Ericsson PKM 4613ANH DC/DC converter, PKM 4817NH DC/DC converter and two BMR 456 0004 DC/DC converters in parallel. PIM 4710 and PIM 4610 have the same filter.

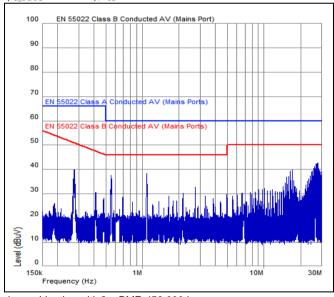

Conducted EMI Input terminal peak value (typ)

in combination with PKM 4613ANH $V_I=48~V,~C_{O1}=330~\mu F$ electrolytic // 130 μF ceramic, $I_{O1}\approx 13~A$ ($I_{O_DC/DC}=50~A$), $I_{O2}=3.6~A$

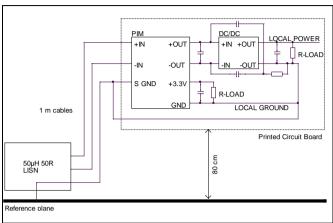
in combination with PKM 4613ANH $V_I = 60~V,~C_{O1} = 330~\mu\text{F}$ electrolytic // 130 μF ceramic, $I_{O1} \approx 10.5~\text{A}$ ($I_{O_DC/DC} = 50~\text{A}$), $I_{O2} = 3.6~\text{A}$



in combination with PKM 4817NH $V_I=53~V,~C_{O1}=330~\mu\mathrm{F}$ electrolytic // 130 $\mu\mathrm{F}$ ceramic, $I_{O1}\approx$ 17 A $(I_{O_DC/DC}\approx75~A),~I_{O2}=3.6~A$



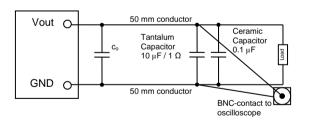
PIM 4710 series Power Interface Modules Input 36-75V, Output up to 20A / 780-1080 W


28701-BMR 455 40	Rev.B	December 2016
© Ericsson AB		

in combination with 2 x BMR 456 0004 $V_I=48$ V, $C_{01}=470$ μF electrolytic // 30 μF ceramic, $I_{01}\approx 17$ A ($I_{0_DC/DC}=2$ x 32 A), $I_{02}=3.6$ A

in combination with 2 x BMR 456 0004 $V_I=60~V,~C_{O1}=470~\mu\text{F}$ electrolytic // 30 μF ceramic, $I_{O1}\approx$ 14 A ($I_{O~DC/DC}=2~x~32~A$), $I_{O2}=3.6~A$

Conducted EMI Test set-up.


Layout recommendations

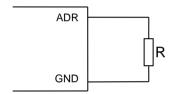
The radiated EMI performance of the product will depend on the PCB layout and ground layer design. It is also important to consider the stand-off of the product.

A ground layer will increase the stray capacitance in the PCB and improve the high frequency EMC performance. For more information, see the technical specification of the downstream DC/DC converter.

Output Ripple and Noise

Output ripple and noise are measured according to figure below. A 50 mm conductor works as a small inductor forming together with the two capacitances a damped filter.

Output ripple and noise test set-up.


PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

I²C / PMBus Interface

This product provides an I²C/PMBus digital interface that enables the user to monitor the input and hold up voltages, output current and device temperature. The product is available in a PMBus-version (PD-suffix) and an I2C-version (PDA-suffix). The product can be used with any standard two-wire I²C or SMBus host device. In addition, the PMBus-version of the module is compatible with PMBus version 1.2. The product supports bus clock frequencies from 10 to 400 kHz. External pull-up resistors must be added to the I²C/PMBus.

I²C / PMBus Addressing

The I²C / PMBus address should be configured with a resistor connected between ADR (pin 10) and GND (pin 13), as shown in the figure below. Recommended resistor values for hard-wiring I²C / PMBus addresses are shown in the table. 1% tolerance resistors are required.

Schematic of connection of address resistor.

I ² C Address	R (Ω)
2Fh	open
2Eh	100 000
2Dh	40200
2Ch	20000
2Bh	10000
2Ah	4020
29h	2000
28h	short

The user can configure up to 8 unique PMBus addresses.

PMBus-version (PD-suffix)

The product is PMBus compliant. A detailed description of each command is provided in the appendix at the end of this specification.

The Ericsson Power Designer software suite can be used to configure and monitor this product via the PMBus interface. For more information, please contact your local Ericsson sales representative.

Monitoring via PMBus

It is possible to continuously monitor a wide variety of parameters through the PMBus interface. These include, but are not limited to, the parameters listed in the table below.

Parameter	PMBus Command
Input voltage	READ_VIN
Total input current	READ_IIN
Output 1 current	READ_IOUT
Hold up capacitor voltage	READ_VCAP
Total input power	READ_PIN
Controller temperature	READ_TEMPERATURE_1
Feed A Input voltage	MFR_READ_VINA
Feed B Input voltage	MFR_READ_VINB

Monitoring Faults

Fault conditions can be monitored by reading a number of status commands.

Fault & Warning Status	PMBus Command
Overview, Power Good	STATUS_WORD STATUS_BYTE
Output voltage level	STATUS_VOUT
Output current level	STATUS_IOUT
Input voltage level	STATUS_INPUT
Temperature level	STATUS_TEMPERATURE
PMBus communication	STATUS_CML
Miscellaneous	STATUS_MFR_SPECIFIC

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

I²C-version (PDA-suffix)

Monitoring via I²C

Via the I 2 C interface five analog measurements and six status bits can be read. The 8-bit values read via I 2 C must be multiplied by the scaling factors to get the measurement value. For the temperature reading an offset of 50 $^\circ$ C must be subtracted after multiplying with the scaling factor.

Designation	Data pointer	Description	Scaling factor
StatusBits	1Eh	See table StatusBits	Bit field
HU_CAP	1Fh	Hold-up capacitor voltage	0.398 V/bit
-48V_Current	21h	Output1 current	0.094 A/bit
-48V_A	22h	Feed A input voltage	0.325 V/bit
-48V_B	23h	Feed B input voltage	0.325 V/bit
Temperature	28h	Module temperature	1.961 °C/bit - 50 °C

StatusBits

A read only register that displays current status.

Designation	Bit	Function
ENABLE_A	0	Enable A signal state. 0 = Disabled. 1 = Enabled.
ENABLE_B	1	Enable B signal state. 0 = Disabled. 1 = Enabled.
ALARM	2	Alarm signal state. 0 = Feed loss alarm ceased. 1 = Feed loss alarm raised.
N/A	3	Reserved
HOLDUP	4	Hold up switch state. 0 = Hold up Capacitor is not connected to Output 1. 1 = Hold up Capacitor is connected to Output 1.
HOTSWAP	5	Hot swap switch state. 0 = Switch is off. Output 1 is off. 1 = Switch is on. Output 1 is on.
VOUT_LOW	6	Output 1 Under-Voltage Alarm. 0 = Output voltage is below threshold. 1 = Output voltage is above threshold.
N/A	7	Reserved

I²C Protocol

To read data through the I²C interface the Data pointer must first be written.

S Address Wr A Data pointer A P			
From master to slave			
From slave to master			
S START condition			
P STOP condition			
A Acknowledge / No acknowledge			
If more bytes are written after the Data pointer they will be discarded but the Data pointer will be advanced the number obytes written.			
After the Data pointer has been written data can be read.			
S Address Rd A Data _i A Data _{i+1} A			

The first byte read will be the value referenced by the Data pointer. Several bytes may be read in one access. For each byte read the Data pointer will be incremented. Reading from an undefined location returns 00h.

Data_{i+n} A P

The Data pointer is initiated to 00h at power-on and does not overflow when it reaches FFh.

A write may end with a repeat START followed by a read.

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

Operating information

Input Voltage

The input voltage range 36 to 72 Vdc meets the requirements of the European Telecom Standard ETS 300 132-2 for normal input voltage range in -48 and -60 Vdc systems, -40.5 to -57.0 V and -50.0 to -72 V respectively.

Input Enable

The product has two Enable inputs which shall be connected to feed A and feed B supply of the backplane. The enable pins of the ATCA board are the last to be connected during board insertion and the first to be disconnected during board exertion. The product is switched off until one enable input is connected to the supply (EN A connected to +IN A or EN B connected to +IN B).

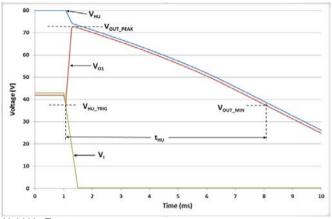
A/B Feed OR'ing

Four MOSFETs provide OR'ing of the input feeds. If a short is detected on one of the feeds a control circuit will detect reverse current and quickly turn the MOSFETs off. This feature will also protect the product against reverse polarity of up to 75 V. At high load operation the MOSFETs are operated at a low Rdson condition and at zero load they are turned off.

A/B Feed Alarm

The input feeds A and B are monitored. In case of a feed loss the alarm pin will indicate a fault condition which is provided by an opto isolated signal. Under normal conditions the ALARM output goes low (low resistance to GND) and in case of a feed loss the ALARM output goes open drain (high voltage with a pull-up).

Management Power


The product provides one isolated DC output, 3.3 V referred to GND. The management power is available as soon as the input voltage level is within 36 V to 72 V. The output is short circuit protected. In a short circuit condition the 3.3 V output will operate in a constant current mode. A 360 μF ceramic capacitor on the 3.3 V output is recommended to reduce switching noise and improve transient characteristics. Management power will be on for max 100 ms after enable A and B have dropped below enable turn-off threshold voltage.

Hot Swap Functionality

The hot swap function is designed to control the inrush current to the downstream DC/DC converter. The level and duration of the inrush current complies with the PICMG 3.7 ATCA base specification Inrush transient specifications. Note: The hot swap circuit limits the output 1 current during start up. Hence, output 1 cannot be loaded before its external filter capacitor has been charged.

Hold Up Function

If the voltage on both feed A and B falls below V_{HU_TRIG} (default 36.8 V) or if the output voltage (V_{O1}) falls below the same threshold a hold up event will be triggered.

Hold Up Event

During the hold up event the external hold up capacitor C_{HU} will be connected across the output capacitor C_{O1} by a current limiter switch. During the first phase of the event the output capacitor will be charged with current from the hold up capacitor until the voltage of the two capacitors evens out (at $V_{\text{OUT_PEAK}}$). During the second phase of the event the two capacitors together works as an energy reservoir to provide power to downstream consumers.

If hold up is not used pin 17 and 19 can be left open.

Hold Up Voltage and Capacitor Selection

Expressions used in this section:

 V_{HU} = Hold up capacitor charge voltage

C_{HU} = External hold up capacitor capacitance

C_{O1} = External capacitance on output 1

 P_{OUT} = Total output power on output 1 and 2

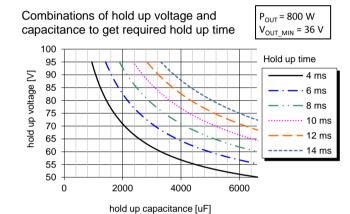
 t_{HU} = Hold up time

 $V_{\text{HU_TRIG}}$ = This is the input/output voltage threshold that triggers the hold up event.

V_{OUT_PEAK} = This is the highest voltage that the downstream consumers will be exposed to during a hold up event.

 $V_{\text{OUT_MIN}}$ = This is the minimum voltage that the downstream consumers need.

 $m V_{O1_MAX} = This$ is the highest possible voltage on output 1 when the hold up event starts. Since a hold up event can be triggered either by low voltage on input or output this voltage can be as low as $\rm V_{HU_TRIG}$ or as high as the highest normal operating voltage on feed A and B.


PIM 4710 series Power Interface Modules	28701-BMR 455 40 Rev.B Dece	ember 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB	

Hold up voltage and capacitor selection:

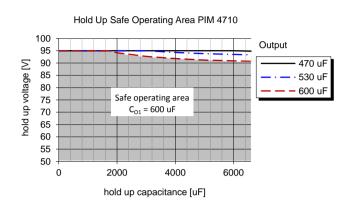
The hold up time is roughly proportional to the square of V_{HU} . A high V_{HU} voltage will result in a smaller hold up capacitor. Start by selecting a preliminary value for V_{HU} that is the same or a few Volts higher than the maximum allowed voltage for the downstream consumers.

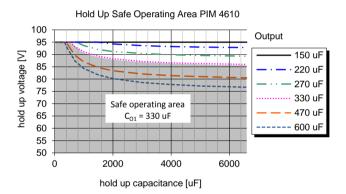
Use equation 1 or diagram 1 to select a preliminary value for $C_{\mbox{\scriptsize HU}}.$

Diagram 1:

Equation 1.

$$C_{HU} \ge \frac{2.2 \times P_{OUT} \times t_{HU}}{(V_{HU} - 1.5)^2 - V_{OUT_MIN}^2} \quad [F]$$


Use equation 2 to verify that the peak voltage ($V_{\text{OUT_PEAK}}$) during the hold up event is lower than the maximum allowed voltage for the downstream consumers.


Equation 2.

$$V_{OUT_PEAK} = V_{O1_MAX} + (V_{HU} - V_{O1_MAX})x \frac{C_{HU}}{C_{HU} + C_{O1}} \quad [V]$$

If the $V_{\text{OUT_PEAK}}$ voltage is too high select a lower V_{HU} voltage and reselect C_{HU} with equation 1 or diagram 1.

When V_{OUT_PEAK} voltage is acceptable, verify that the selected combination of values for V_{HU} , C_{HU} and C_{O1} is within the safe operating area (SOA) for the current limiter switch in the hold up circuit. If not, start from beginning and select a lower value for C_{O1} or lower V_{HU} voltage.

Hold Up Safe Operating Area

The current limiter switch in the hold up circuit is protected from over stress by a safe operating area limiting network. If the current limiter switch is operated outside its safe operating area the hold up event will be aborted.

Hold Up Capacitor Charge

An internal DC/DC converter charges the hold up capacitor to a voltage of 40 V - 95 V. The charge level is set by an external resistor.

Resistor connected between +HU Vadj and -OUT for hold up voltages from 50.4 to 95 V:

$$R_{HU} = \frac{480}{V_{HU} - 50.4} - 10 \quad [k\Omega]$$

where V_{HU} is the hold up voltage.

Resistor connected between +HU Vadj and +HU for hold up voltages from 40 to 50.4 V:

$$R_{HU} = \frac{191 \times V_{HU} - 480}{50.4 - V_{HU}} - 10 \quad [k\Omega]$$

No trim resistor results in 50.4 V hold up voltage.

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

Capacitor Discharge

When the enable inputs are disconnected the hold up and output capacitor will be discharged to less than 60 V within 1 s, conditions: V_{HU} = 75 V, C_{HU} = 6600 μ F, V_{I} = 60 V, C_{O1} = 470 μ F.

Over Temperature Protection (OTP)

The product is protected from thermal overload by an internal over temperature shutdown circuit.

When P2 as defined in thermal consideration section exceeds 105 °C the product will shut down. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically when the temperature has dropped > 10 °C below the temperature threshold. In an over temperature situation the management power is still available.

Input Transient Over Voltage Protection

The product incorporates a transient voltage protector which will protect the product and the downstream DC/DC converter against over voltage transients exceeding 75 V. The transient voltage protector is rated for 1.5 kW (10/1000 μ s) peak pulse power with a breakdown voltage of 83.3 V. The product also handles transients of up to 100 V for 10 μ s.

Over Current Protection (OCP)

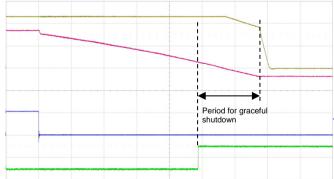
Both the main unit (Output 1) and the management power (Output 2) of the product include current limiting circuitry for protection at continuous overload. The load distribution should be designed for the maximum output short circuit current specified.

The main unit (Output 1) will abruptly be interrupted if the output over current or an internal component overpower thresholds are exceeded for a time longer than the stated fault response time.

The output 2 voltage will decrease towards zero for output currents in excess of max output current. The product will resume normal operation after removal of the overload.

Power Good

The product has a Power Good output that by default is intended to drive the Remote Control-pin of a downstream DC/DC converter, see Typical ATCA Application Circuit. During start-up the Power Good will remain de-asserted while C_{01} is being charged. When C_{01} is fully charged it will assert to enable a downstream DC/DC converter. At shut down the Power Good will remain asserted.


Yellow trace: DC/DC output voltage (5 V/div).

Red trace: hold up voltage (20 V/div). Blue trace: input voltage (50 V/div). Green trace: Power Good (5 V/div).

Time scale: (2 ms/div).

Shutdown with default configuration for Power Good.

The Power Good output can alternatively be configured to give an advance alert of a potential shutdown. This function can be used by systems that require a graceful shutdown. In this mode the Power Good will typically de-assert before the DC/DC converter has reach its under-voltage lockout. When used in this mode the Power Good shall be connected to an IPM.

Yellow trace: DC/DC output voltage (5 V/div).

Red trace: hold up voltage (20 V/div) Blue trace: input voltage (50 V/div). Green trace: Power Good (5 V/div).

Time scale: (2 ms/div).

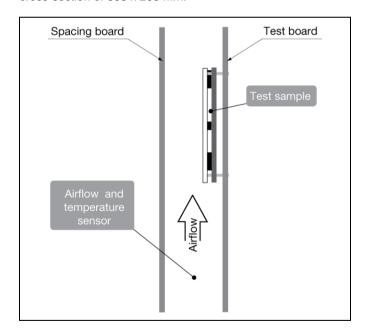
Shutdown with Power Good in advance alert mode.

To configure the Power Good to the advance alert mode set MFR_PG_DEASSERT_TRIP_LEVEL to a non-zero value. When set to a non-zero value it will define a hold up voltage level at which the Power Good de-asserts. Refer to equation 1 to calculate remaining on-time.

PIM 4710 series Power Interface Modules
Input 36-75V, Output up to 20A / 780-1080 W

28701-BMR 455 40 Rev.B December 2016 © Ericsson AB

Thermal Consideration

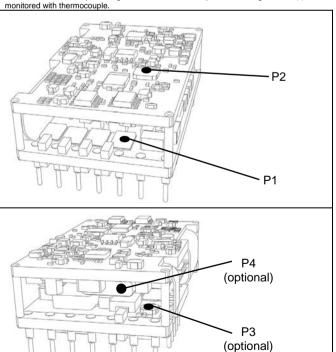

General

The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

For products mounted on a PCB without a heat sink attached, cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependent on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Current De-rating graph found in the Output section for each model provides the available output current vs. ambient air temperature and air velocity at $V_1 = 53 \text{ V}.$

A guardband of 5 °C is applied to the maximum recorded component temperatures when calculating output current derating curves.

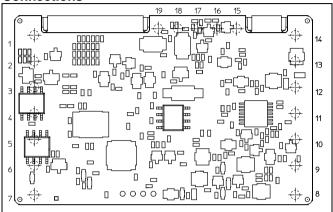
The product is tested on a 254 x 254 mm, 35 µm (1 oz), 16-layer test board mounted vertically in a wind tunnel with a cross-section of 608 x 203 mm.



Definition of product operating temperature

The product operating temperature is used to monitor the temperature of the product, and proper thermal conditions can be verified by measuring the temperature at position P1, P2, P3 and P4. The temperature at these positions (T_{P1}, T_{P2}, T_{P3} and T_{P4}) should not exceed the maximum temperature in the table below. Temperature above maximum T_{P1}, T_{P2}, T_{P3} and T_{P4} measured at the reference points P1, P2, P3 and P4 is not allowed and may cause permanent damage. On PIM 4610 position P1 is not populated; use the pad to measure temperature.

Position	Description	Max Temp.
P1	РСВ	T _{P1} = 130 °C
P2	Controller	T _{P2} = 105 °C
P3 (Only when I _{O2} > 3.6A)	Buck-IC	T _{P3} = 130 °C
P4*	Transformer	T _{P4} = 100 °C

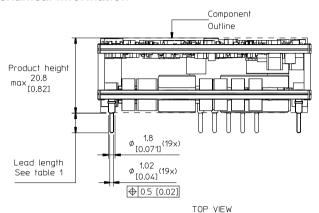

 * The Output Current Derating plots are for functional insulation only. T_{P4} must be monitored if basic insulation is required, a guardband of 10 $^{\circ}$ C is required according to UL if T_{P4} is

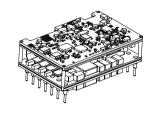
PIM 4710 series Power Interface Modules	28701-BMR 455 40 Re	Rev.B December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB	

Connections

Pin	Designation	Function
1	-IN A	Input A negative feed
2	-IN B	Input B negative feed
3	+IN A	Input A positive feed
4	+IN B	Input B positive feed
5	EN A	Input A enable
6	EN B	Input B enable
7	S GND	Shelf ground
8	+IN 2	External management power supply. May be left open if not needed.
9	+3.3V	Management power, positive output 3.3 V. May be left open if not needed.
10	ADR	I ² C/PMBus address
11	SDA	I ² C/PMBus data
12	SCL	I ² C/PMBus clock
13	GND	Management power, negative output
14	ALARM	Feed loss alarm
15	PG	Power Good
16	-OUT	Main unit, negative output
17	+HU Vadj	Hold up voltage adjust. May be left open if not needed.
18	+OUT	Main unit, positive output
19	+HU	Hold up capacitor bank, positive side. May be left open if not needed.

PIM 4710 series Power Interface Modules Input 36-75V, Output up to 20A / 780-1080 W


28701-BMR 455 40


Rev.B

December 2016

© Ericsson AB

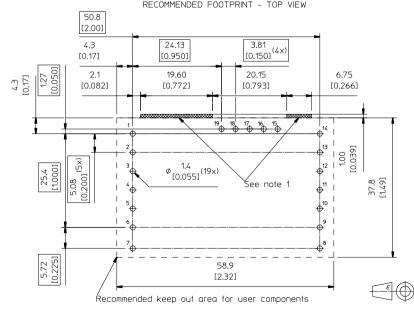
Mechanical Information

3.81 Pin positions according to recommended footprint [0.15]

6.2 [0.245] See note 1 See note 1 87.1 See Note 1 89.1 See Not

	57.9 ±0.50 [2.28 ±0.02]	l		
DECOMMENDED	COOTDDI	NIT	TOD 1/1	

 Table 1


 Pin option
 Lead length

 Standard
 5.33 [0.21]

 LA
 3.69 [0.145]

 LB
 4.57 [0.18]

 LC
 2.79 [0.11]

Pins:

Material: Copper alloy

Plating: Min 0.1µm Au over 1-3µm Nickel Pin position 15 is optional

Notes:

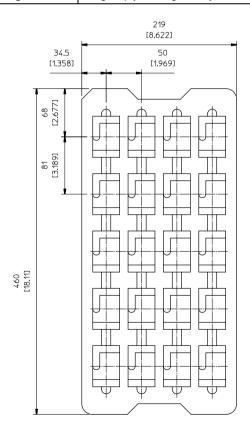
1-Keep out areas for component in level with flexible PWB height 6.2-16.2 [0.245-0.638]

Weight: Typical 70 g
All dimensions in mm [inch].
Tolerances unless specified
x.x mm ±0.50 mm [0.02], x.xx mm ±0.25 mm [0.01]
(not applied on footprint or typical values)

PIM 4710 series Power Interface Modules	28701-BMR 455 40 Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB	

Soldering Information - Hole Mounting

The hole mounted product is intended for plated through hole mounting by wave or manual soldering. The pin temperature is specified to maximum to 270°C for maximum 10 seconds.


A maximum preheat rate of 4°C/s and maximum preheat temperature of 150°C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery Package Information

The products are delivered in antistatic trays.

Tray Specifications		
Material	Antistatic PE Foam	
Surface resistance	10 ⁵ < Ohm/square < 10 ¹¹	
Bakeability	The trays are not bakeable	
Tray thickness	38 mm [1.5 inch]	
Box capacity	20 products (1 full tray/box)	
Tray weight	63 g empty, 1463 g full tray	

PIM 4710 series Power Interface Modules	28701-BMR 455 40 Rev.B December 201
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB

Product Qualification Specification

Characteristics			
External visual inspection	IPC-A-610		
Change of temperature (Temperature cycling)	IEC 60068-2-14 Na	Temperature range Number of cycles Dwell/transfer time	-40 to 100°C 1000 15 min/0-1 min
Cold (in operation)	IEC 60068-2-1 Ad	Temperature T _A Duration	-45°C 72 h
Damp heat	IEC 60068-2-67 Cy	Temperature Humidity Duration	85°C 85 % RH 1000 hours
Dry heat	IEC 60068-2-2 Bd	Temperature Duration	125°C 1000 h
Electrostatic discharge susceptibility	IEC 61340-3-1, JESD 22-A114 IEC 61340-3-2, JESD 22-A115	Human body model (HBM) Machine Model (MM)	Class 2, 2000 V Class 3, 200 V
Immersion in cleaning solvents	IEC 60068-2-45 XA, method 2	Water Glycol ether Isopropyl alcohol	55°C 35°C 35°C
Mechanical shock	IEC 60068-2-27 Ea	Peak acceleration Duration	100 g 6 ms
Moisture reflow sensitivity 1	J-STD-020E	Level 1 (SnPb-eutectic) Level 3 (Pb Free)	225°C 260°C
Operational life test	MIL-STD-202G, method 108A	Duration	1000 h
Resistance to soldering heat ²	IEC 60068-2-20 Tb, method 1A	Solder temperature Duration	270°C 10-13 s
Robustness of terminations	IEC 60068-2-21 Test Ua1 IEC 60068-2-21 Test Ue1	Through hole mount products Surface mount products	All leads All leads
Solderability	IEC 60068-2-58 test Td ¹	Preconditioning Temperature, SnPb Eutectic Temperature, Pb-free	150°C dry bake 16 h 215°C 235°C
Constability	IEC 60068-2-20 test Ta ²	Preconditioning Temperature, SnPb Eutectic Temperature, Pb-free	Steam ageing 235°C 245°C
Vibration, broad band random	IEC 60068-2-64 Fh, method 1	Frequency Spectral density Duration	10 to 500 Hz 0.07 g ² /Hz 10 min in each direction

Notes

¹ Only for products intended for reflow soldering (surface mount products)

² Only for products intended for wave soldering (plated through hole products)

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

Appendix - PMBus Commands

This appendix contains a detailed reference of the PMBus commands supported by the product.

Data Formats

The products make use of a few standardized numerical formats, along with custom data formats. A detailed walkthrough of the above formats is provided in AN304, as well as in sections 7 and 8 of the PMBus Specification Part II. The custom data formats vary depending on the command, and are detailed in the command description.

Standard Commands

The functionality of commands with code 0x00 to 0xCF is usually based on the corresponding command specification provided in the PMBus Standard Specification Part II (see Power System Management Bus Protocol Documents below). However there might be different interpretations of the PMBus Standard Specification or only parts of the Standard Specification applied, thus the detailed command description below should always be consulted.

Forum Websites

The System Management Interface Forum (SMIF)

http://www.powersig.org/

The System Management Interface Forum (SMIF) supports the rapid advancement of an efficient and compatible technology base that promotes power management and systems technology implementations. The SMIF provides a membership path for any company or individual to be active participants in any or all of the various working groups established by the implementer forums.

Power Management Bus Implementers Forum (PMBUS-IF)

http://pmbus.org/

The PMBus-IF supports the advancement and early adoption of the PMBus protocol for power management. This website offers recent PMBus specification documents, PMBus articles, as well as upcoming PMBus presentations and seminars, PMBus Document Review Board (DRB) meeting notes, and other PMBus related news.

PMBus - Power System Management Bus Protocol Documents

These specification documents may be obtained from the PMBus-IF website described above. These are required reading for complete understanding of the PMBus implementation. This appendix will not re-address all of the details contained within the two PMBus Specification documents.

Specification Part I - General Requirements Transport And Electrical Interface

Includes the general requirements, defines the transport and electrical interface and timing requirements of hard wired signals.

Specification Part II - Command Language

Describes the operation of commands, data formats, fault management and defines the command language used with the PMBus.

SMBus - System Management Bus Documents

System Management Bus Specification, Version 2.0, August 3, 2000

This specification specifies the version of the SMBus on which Revision 1.2 of the PMBus Specification is based. This specification is freely available from the System Management Interface Forum Web site at: http://www.smbus.org/specs/

	<u>-</u>		
PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

PMBus Command Summary and Factory Default Values of Standard Configuration

The factory default values provided in the table below are valid for the Standard configuration. Factory default values for other configurations can be found using the Ericsson Power Designer tool.

Code	Name	Data Format	Factory Defa Standard Cor	
0x03	CLEAR_FAULTS	Send Byte	PIIVI 4010 PL	7/ PIWI 4/ TO PD KT
0x03 0x11	STORE_DEFAULT_ALL	Send Byte		+
0x11	RESTORE_DEFAULT_ALL	Send Byte		+
0x12 0x78	STATUS_BYTE	Read Byte		+
0x78	STATUS_WORD	Read Word		+
0x79 0x7A	STATUS_WORD	R/W Byte		-
0x7A 0x7B	STATUS_VOUT	R/W Byte		-
0x7C	STATUS_IOUT	R/W Byte		+
0x7C 0x7D	STATUS_INFUT	R/W Byte		+
0x7E	STATUS_CML	R/W Byte		+
0x7E	STATUS_GME STATUS_MFR_SPECIFIC	R/W Byte		
0x88	READ_VIN	Read Word		
0x89	READ_IIN	Read Word		+
0x89 0x8A	READ_VCAP	Read Word		+
0x8C	READ_IOUT	Read Word		-
0x8D	READ_TEMPERATURE_1	Read Word		+
0x8D 0x97	READ_IEMFERATORE_I	Read Word		+
0x97 0x98	PMBUS_REVISION			-
0x99	MFR_ID	Read Byte R/W Block (8)	Unit Specific	
0x99 0x9A	MFR MODEL	R/W Block (18)	Unit Specific Unit Specific	
0x9A 0x9B	MFR_REVISION	R/W Block (3)	Unit Specific Unit Specific	
0x9C	MFR LOCATION	R/W Block (3)	Unit Specific	
0x9C 0x9D	MFR DATE	R/W Block (6)	Unit Specific Unit Specific	
0x9E	MFR_SERIAL	R/W Block (13)	Unit Specific	
0x9L 0xD3	MFR_READ_VINA	Read Word	Offic Specific	
0xD3	MFR_READ_VINB	Read Word		
0xD5	MFR_STATUS_BITS	Read Byte		
0xE0	MFR_PG_DEASSERT_TRIP_LEVEL	R/W Word	0x0000	0 V
0xE1	MFR_OUT1_START_DELAY	R/W Word	0x0064	100 ms
0xE2	MFR_OUT2_START_DELAY	R/W Word	0x0000	0 ms
0xE3	MFR_CONFIG	R/W Word	0x0001	0 1110
0xE4	MFR_HU_TRIG_LEVEL	R/W Word	0x0935	36.8 V
0xE5	MFR_ENABLE_OFF_LEVEL	R/W Word	0x0840	33.0 V
0xE6	MFR_ENABLE_ON_LEVEL	R/W Word	0x08C0	35.0 V
0xE7	MFR_FEED_ALARM_RAISE_LEVEL	R/W Word	0x0939	36.9 V
0xE8	MFR_FEED_ALARM_CEASE_LEVEL	R/W Word	0x0999	38.4 V
0xE9	MFR_VINAP_SLOPE	R/W Word	Unit Specific	1 00
0xEA	MFR_VINA_OFFSET	R/W Word	Unit Specific	
0xEB	MFR_IOUT1_SLOPE	R/W Word	Unit Specific	
0xEC	MFR_IOUT1_OFFSET	R/W Word	Unit Specific	
0xED	MFR_VINAN_SLOPE	R/W Word	Unit Specific	
0xEE	MFR_VINBP_SLOPE	R/W Word	Unit Specific	
0xEF	MFR_VINB_OFFSET	R/W Word	Unit Specific	
0xF0	MFR_VINBN_SLOPE	R/W Word	Unit Specific	
0xFD	MFR_FIRMWARE_DATA	Read Block (20)	2 0,000	

PIM 4710 series Power Interface Modules	28701-BMR 455 40 Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB	

PMBus Command Details

CLEAR_FAULTS (0x03)

Transfer Type: Send Byte

Description: Clears all fault status bits

STORE_DEFAULT_ALL (0x11)

Transfer Type: Send Byte

Description: Commands the device to store its configuration into the Default Store.

RESTORE_DEFAULT_ALL (0x12)

Transfer Type: Send Byte

Description: Commands the device to restore its configuration into the Default Store.

STATUS_BYTE (0x78)

Transfer Type: Read Byte

Description: Returns a brief fault/warning status byte.

Bit	Function	Description	Value	Description
4	Iout Overcurrent Fault	An output overcurrent fault has occurred.	0	No fault
			1	Fault
3	Vin Undervoltage	An input undervoltage fault has occurred.	0	No fault
	Fault		1	Fault
2	Temperature	A temperature fault or warning has occurred.	0	No fault
			1	Fault
1	Communication/Logic	A communications, memory or logic fault has	0	No fault
		occurred.	1	Fault

STATUS_WORD (0x79)

Transfer Type: Read Word

Description: Returns an extended fault/warning status byte.

Bit	Function	Description	Value	Description
15	Vout	An output voltage fault or warning has occurred.	0	No fault
			1	Fault
14	lout/Pout	An output current or output power fault or warning	0	No Fault
		has occurred.	1	Fault
13	Input	An input voltage, input current, or input power fault	0	No Fault
		or warning has occurred.	1	Fault
12	Mfr Specific	A manufacturer specific fault or warning has	0	No Fault
		occurred.	1	Fault
11	Power-Good	Indicates if output 1 of the PIM is ok and ready to	0	Good
		deliver current.	1	Not good
4	lout Overcurrent Fault	An output overcurrent fault has occurred.	0	No Fault
			1	Fault
3	Vin Undervoltage	An input undervoltage fault has occurred.	0	No Fault
	Fault		1	Fault
2	Temperature	A temperature fault or warning has occurred.	0	No Fault
		_	1	Fault
1	Communication/Logic	A communications, memory or logic fault has	0	No fault
		occurred.	1	Fault

STATUS_VOUT (0x7A)

Transfer Type: R/W Byte

Description: Returns Vout-related fault/warning status bits.

Bit	Description	Value	Description
4	Vout Undervoltage Fault.	0	No Fault
		1	Fault

PIM 4710 series Power Interface Modules	28701-BMR 455 40 Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB	

STATUS_IOUT (0x7B)

Transfer Type: R/W Byte

Description: Returns lout-related fault/warning status bits.

Bit	Description	Value	Description
7	lout Overcurrent Fault.	0	No Fault
		1	Fault

STATUS_INPUT (0x7C)

Transfer Type: R/W Byte

Description: Returns Vin/lin-related fault/warning status bits.

Bit	Description	Value	Description
4	Vin Undervoltage Fault.	0	No Fault
		1	Fault

STATUS_TEMPERATURE (0x7D)

Transfer Type: R/W Byte

Description: Returns the temperature-related fault/warning status bits

Bit	Function	Description	Value	Description
7	Overtemperature	Overtemperature Fault. Set when the temperature	0	No Fault
	Fault	of the controller (P2) is above 105°C	1	Fault
6	Overtemperature	Overtemperature Warning. Set when the	0	No Warning
	Warning	temperature of the controller (P2) is above 95°C	1	Warning

STATUS_CML (0x7E)

Transfer Type: R/W Byte

Description: Returns Communication/Logic/Memory-related fault/warning status bits.

Bit	Function	Description	Value	Description
7	Invalid Or Unsupported	Invalid Or Unsupported Command Received.	0	No Invalid Command Received
	Command Received		1	Invalid Command Received
6	Invalid Or	Invalid Or Unsupported Data Received.	0	No Invalid Data Received
	Unsupported Data Received		1	Invalid Data Received
5	Packet Error Check	Packet Error Check Failed.	0	No Failure
	Failed		1	Failure
1	Other Communication	A communication fault other than the ones listed in	0	No Fault
	Fault	this table has occurred.	1	Fault

STATUS_MFR_SPECIFIC (0x80)

Transfer Type: R/W Byte

Description: Returns manufacturer specific status information.

Bit	Function	Description	Value	Description
4	Hold up	Hold up event has occurred.	0	Not Occurred
			1	Occurred
3	Feed B disabled	Feed B disabled. This status bit is set when the feed	0	Feed B enabled
		B voltage drops below the threshold defined by command MFR_ENABLE_OFF_LEVEL or the enable B pin (EN B) is unplugged.	1	Feed B disabled
2	Feed A disabled	Feed A disabled. This status bit is set when the feed	0	Feed A enabled
		A voltage drops below the threshold defined by command MFR_ENABLE_OFF_LEVEL or the enable A pin (EN A) is unplugged.	1	Feed A disabled

EKIC330IA

Technical Specification 30

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

Bit	Function	Description	Value	Description
1	Feed B input under	Set when feed B voltage goes below the threshold	0	No Fault
	voltage fault	defined by command MFR_FEED_ALARM_RAISE_LEVEL. Must return above the threshold defined by command MFR_FEED_ALARM_CEASE_LEVEL before it can be cleared.	1	Fault
0	Feed A input under	Set when feed A voltage goes below the threshold	0	No Fault
	voltage fault	defined by command MFR_FEED_ALARM_RAISE_LEVEL. Must return above the threshold defined by command MFR_FEED_ALARM_CEASE_LEVEL before it can be cleared.	1	Fault

READ_VIN (0x88)

Transfer Type: Read Word

Description: Returns the measured input voltage. This is the ORed input voltage and will typically be the highest of feed A and feed B input voltages.

	Bit	Description	Format	Unit
Ī	15:0	Returns the input voltage reading.	Linear	V

READ_IIN (0x89)

Transfer Type: Read Word

Description: Returns the measured input current.

I	Bit	Description	Format	Unit
Ī	15:0	Returns the input current reading.	Linear	Α

READ_VCAP (0x8A)

Transfer Type: Read Word

Description: Returns hold-up capacitor voltage of the module

Bit	Description	Format	Unit
15:0	Returns the hold-up capacitor voltage reading.	Linear	V

READ_IOUT (0x8C)

Transfer Type: Read Word

Description: Returns output current of the module

	3it	Description	Format	Unit
1	15:0	Returns the output current reading.	Linear	Α

READ_TEMPERATURE_1 (0x8D)

Transfer Type: Read Word

Description: Returns the measured temperature (internal).

Bit	Description	Format	Unit
15:0	Returns the measured temperature (internal).	Linear	°C

READ_PIN (0x97)

Transfer Type: Read Word

Description: Returns the measured input power.

I	Bit	Description	Format	Unit
Ī	15:0	Returns the input power reading.	Linear	W

EKIC330I4

Technical Specification 31

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

PMBUS_REVISION (0x98)

Transfer Type: Read Byte

Description: PMBus revision 1.2, hard coded

Bit	Function	Description	Value	Function	Description
7:4	Part I Revision	Part I Revision.	0x2	1.2	Part I Revision 1.2.
3:0	Part II	Part II Revision.	0x2	1.2	Part II Revision 1.2.
	Revision				

MFR_ID (0x99)

Transfer Type: R/W Block (8 bytes)

Description: Returns the manufacturer ID String.

Bit	Description	Format
63:0	Maximum of 8 characters.	ASCII fixed length

MFR_MODEL (0x9A)

Transfer Type: R/W Block (18 bytes)

Description: Returns the manufacturer model string.

Bit	Description	Format
143:0	Maximum of 18 characters.	ASCII fixed length

MFR_REVISION (0x9B)

Transfer Type: R/W Block (3 bytes)

Description: Returns the manufacturer revision string.

Bit	Description	Format
23:0	Maximum of 3 characters.	ASCII fixed length

MFR_LOCATION (0x9C)

Transfer Type: R/W Block (3 bytes)

Description: Returns the manufacturer location string.

Bit	Description	Format
23:0	Maximum of 3 characters.	ASCII fixed length

MFR_DATE (0x9D)

Transfer Type: R/W Block (6 bytes)

Description: Returns the manufacturer date at YYMMDD.

Bit	Description	Format
47:0	Maximum of 6 characters.	ASCII fixed length

MFR_SERIAL (0x9E)

Transfer Type: R/W Block (13 bytes)

Description: Returns the manufacturer serial string.

Bit	Description	Format
103:0	Maximum of 13 characters.	ASCII fixed length

MFR_READ_VINA (0xD3)

Transfer Type: Read Word

Description: Returns the measured input voltage on feed A.

Bit	Description	Format	Unit
15:0	Returns the input voltage reading on feed A.	Linear	V

EKIC330IA

Technical Specification 32

PIM 4710 series Power Interface Modules	28701-BMR 455 40 Rev.B December	er 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB	

MFR_READ_VINB (0xD4)

Transfer Type: Read Word

Description: Returns the measured input voltage on feed B.

	Bit	Description	Format	Unit
Ī	15:0	Returns the input voltage reading on feed B.	Linear	V

MFR_STATUS_BITS (0xD5)

Transfer Type: Read Byte Description: Status bits.

Bit	Function	Description	Value	Description
6	Output under voltage	Cleared when the output voltage is below the	0	Raised
		threshold defined by command	1	Ceased
		MFR_HU_TRIG_LEVEL. Set when the output		
		voltage is above the threshold defined by command		
5	Hot swap switch state	MFR_HU_TRIG_LEVEL. Set when the hot swap switch is on.	0	Off
3	Tiot swap switch state	Get when the not swap switch is on.	1	On
4	Hold-up switch state	Set when the hold-up capacitor is connected to the	0	Off
"	1 loid-up switch state	output.	1	On
2	Feed Alarm	Set when any feed voltage is below the threshold	0	Ceased
_	1 304 / 1141111	defined by command	1	Raised
		MFR_FEED_ALARM_RAISE_LEVEL. Cleared		raioca
		when both feed voltages are above the threshold		
		define by command		
		MFR_FEED_ALARM_CEASE_LEVEL.		
1	Feed B Enable	Cleared when feed B voltage is below the threshold	0	Disabled
		defined by command MFR_ENABLE_OFF_LEVEL	1	Enabled
		or enable B pin is unplugged. Set when feed B		
		voltage is above the threshold defined by command		
		MFR_ENABLE_ON_LEVEL and enable B pin is		
0	Feed A Enable	plugged in.	0	Disabled
U	reed A Enable	Cleared when feed A voltage is below the threshold defined by command MFR_ENABLE_OFF_LEVEL	1	Enabled
		or enable A pin is unplugged. Set when feed A	'	Eliablea
		voltage is above the threshold defined by command		
		MFR_ENABLE_ON_LEVEL and enable A pin is		
		plugged in.		

MFR_PG_DEASSERT_TRIP_LEVEL (0xE0)

Transfer Type: R/W Word

Description: Configures the functional mode of the Power Good. When set to zero the Power Good will function in its standard mode. When set to a non-zero value the Power Good will function in the shutdown advance alert mode and the value will define a hold up voltage level at which the Power Good de-asserts

	Bit	Description	Format	Unit
ſ	15:0	DIRECT-format with m = 6400, b = 0 and R = -2. (15.625 mV/LSB).	Direct	V

MFR_OUT1_START_DELAY (0xE1)

Transfer Type: R/W Word

Description: Configures the delay from enable detection to start of output 1.

Bit	Description	Format	Unit
15:0	Configures the delay from enable detection to start of output 1.	Integer Unsigned	ms

PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

MFR OUT2 START DELAY (0xE2)

Transfer Type: R/W Word

Description: Configures the delay from enable detection to start of output 2.

Bit	Description	Format	Unit
15:0	Configures the delay from enable detection to start of output 2.	Integer Unsigned	ms

MFR CONFIG (0xE3)

Transfer Type: R/W Word

Description: Miscellaneous production configuration.

Bit	Description	Format
15:0	Reserved.	Integer Unsigned

MFR HU TRIG LEVEL (0xE4)

Transfer Type: R/W Word

Description: Configures the input and output voltage level at which the hold-up engages.

Ī	Bit	Description	Format	Unit
	15:0	DIRECT-format with $m = 6400$, $b = 0$ and $R = -2$. (15.625 mV/LSB).	Direct	V

MFR ENABLE OFF LEVEL (0xE5)

Transfer Type: R/W Word

Description: Configures the disable level. When both input voltages are below this threshold the outputs will be turned off.

	Bit	Description	Format	Unit
ſ	15:0	DIRECT-format with m = 6400, b = 0 and R = -2. (15.625 mV/LSB).	Direct	V

MFR_ENABLE_ON_LEVEL (0xE6)

Transfer Type: R/W Word

Description: Configures the enable level. When any input voltage is above this threshold the outputs will be turned on.

Bit	Description		Format	Unit
15:0	DIRECT-format with $m = 6400$, $b = 0$ and $R = -2$. (*)	15.625 mV/LSB).	Direct	V

MFR_FEED_ALARM_RAISE_LEVEL (0xE7)

Transfer Type: R/W Word

Description: Configures the feed alarm raise level.

Bit	Description	Format	Unit
15:0	DIRECT-format with $m = 6400$, $b = 0$ and $R = -2$. (15.625 mV/LSB).	Direct	V

MFR_FEED_ALARM_CEASE_LEVEL (0xE8)

Transfer Type: R/W Word

Description: Configures the feed alarm cease level.

Bit	Description	Format	Unit
15:0	DIRECT-format with $m = 6400$, $b = 0$ and $R = -2$. (15.625 mV/LSB).	Direct	V

MFR_VINAP_SLOPE (0xE9)

Transfer Type: R/W Word

Description: Calibration data. Feed A input voltage slope positive pin (+IN A).

	Bit	Description	Format
Ī	15:0	Calibration data. Feed A input voltage slope positive pin (+IN A).	Integer Signed

MFR_VINA_OFFSET (0xEA)

Transfer Type: R/W Word

Description: Calibration data. Feed A input voltage offset.

EKIC330II >

Technical Specification 34

	•		
PIM 4710 series Power Interface Modules	28701-BMR 455 40	Rev.B	December 2016
Input 36-75V, Output up to 20A / 780-1080 W	© Ericsson AB		

Bit	Description	Format
15:0	Calibration data. Feed A input voltage offset.	Integer Signed

MFR_IOUT1_SLOPE (0xEB)

Transfer Type: R/W Word

Description: Calibration data. lout1 slope.

Bi		Description	Format
15	5:0	Calibration data. lout1 slope.	Integer Signed

MFR_IOUT1_OFFSET (0xEC)

Transfer Type: R/W Word

Description: Calibration data. lout1 offset.

I	Bit	Description	Format
	15:0	Calibration data. lout1 offset.	Integer Signed

MFR_VINAN_SLOPE (0xED)

Transfer Type: R/W Word

Description: Calibration data. Feed A input voltage slope negative pin (-IN A).

Bit	Description	Format
15:0	Calibration data. Feed A input voltage slope negative pin (-IN A).	Integer Signed

MFR_VINBP_SLOPE (0xEE)

Transfer Type: R/W Word

Description: Calibration data. Feed B input voltage slope positive pin (+IN B).

I	Bit	Description	Format
	15:0	Calibration data. Feed B input voltage slope positive pin (+IN B).	Integer Signed

MFR_VINB_OFFSET (0xEF)

Transfer Type: R/W Word

Description: Calibration data. Feed B input voltage offset.

Bit	Description	Format
15:0	Calibration data. Feed B input voltage offset	Integer Signed

MFR_VINBN_SLOPE (0xF0)

Transfer Type: R/W Word

Description: Calibration data. Feed B input voltage slope negative pin (-IN B).

Bit	Description	Format
15:0	Calibration data. Feed B input voltage slope negative pin (-IN B).	Integer Signed

MFR_FIRMWARE_DATA (0xFD)

Transfer Type: Read Block (20 bytes)

Description: Hard coded.

Bit	Description	Format
159:0		ASCII fixed length

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for power systems technology manufacturer:

Other Similar products are found below:

BMR4652110/001 PKM4613NHPILA