ALP SEMI	HA & ON CONDU	MEGA CTOR			30V N-Ch	AO3480 annel MOSFET
General Descrip	otion			Product Sum	mary	
The AO3480 combined technology with a location of the extremely low $R_{DS(O)}$ load switch or in PW	backage to pr e is suitable f	rovide		30V 5.7A < 26.5mΩ < 32mΩ < 48mΩ		
RoHS and Halogen	-Free Complia	nt				Green
Absolute Maximum	Top View	DT23 Bottom Vi	G G	oted	G	
Parameter			Symbol		timum	Units
Drain-Source Voltage			V _{DS}		30	V
Gate-Source Voltage			V _{GS}	±	12	V
Continuous Drain Current	T _A =25°C T _A =70°C		- I _D	<u> </u>	A	
Pulsed Drain Current	С		I _{DM}			
Power Dissipation ^B $T_A=25^{\circ}C$ P_D			-P _D	1.4 W		
			T _J , T _{STG}	-55	°C	
		~	0. 010			
Thermal Characteris	tics					
Pa	rameter		Symbol	Тур	Max	Units
Maximum Junction-to		t ≤ 10s	R	70	90	°C/W
Maximum Junction-to	-Ambient AD	Steady-State	R _{θJA}	100	125	°C/W

Maximum Junction-to-Ambient AD

Maximum Junction-to-Lead

Steady-State

 $R_{\theta JL}$

63

80

°C/W

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC I	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V
1	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V			1	^	
I _{DSS}	Zero Gale Voltage Drain Current		TJ=55°C			5	μA
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V				100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250 \mu A$		0.65	1.05	1.45	V
I _{D(ON)}	On state drain current	V _{GS} =4.5V, V _{DS} =5V		30			А
		V _{GS} =10V, I _D =5.7A			18	26.5	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125°C		28	38	11152
	Static Drain-Source On-Resistance	V _{GS} =4.5V, I _D =5A			19	32	mΩ
		V _{GS} =2.5V, I _D =3A			24	48	mΩ
9 _{FS}	Forward Transconductance	V _{DS} =5V, I _D =5.7A			33		S
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V
ls	Maximum Body-Diode Continuous Cur	rent			2	А	
DYNAMI	C PARAMETERS						
C _{iss}	Input Capacitance				630		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=	=1MHz		75		pF
C _{rss}	Reverse Transfer Capacitance				50		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1	MHz	1.5	3	4.5	Ω
SWITCH	NG PARAMETERS						
Qg	Total Gate Charge				6	10	nC
Q _{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =15V,	I _D =5.7A		1.3		nC
Q_{gd}	Gate Drain Charge				1.8		nC
t _{D(on)}	Turn-On DelayTime				3		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R _L =2.6 Ω , R _{GEN} =3 Ω			2.5		ns
t _{D(off)}	Turn-Off DelayTime				25		ns
t _f	Turn-Off Fall Time				4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =5.7A, dI/dt=100A/µ	us		8.5		ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =5.7A, dI/dt=100A/	us		2.6		nC

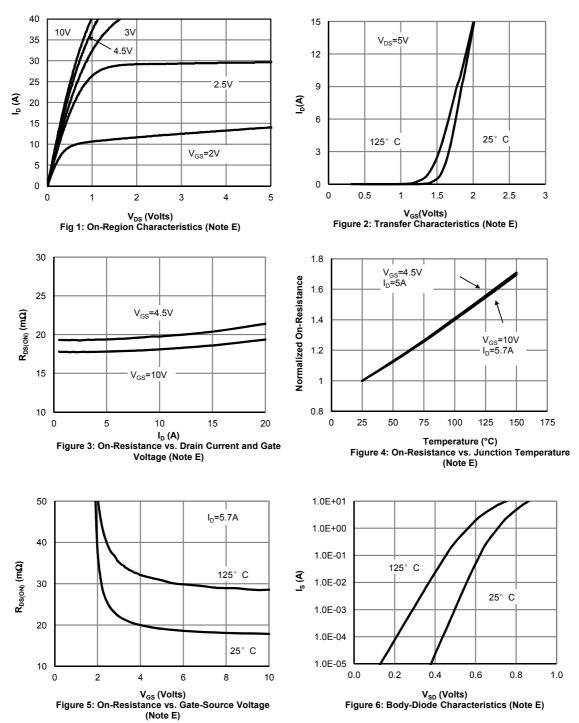
A. The value of R_{8JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The

value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}=150^{\circ}$ C, using ≤ 10 s junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^{\circ}$ C. Ratings are based on low frequency and duty cycles to keep initialT₁=25° C.

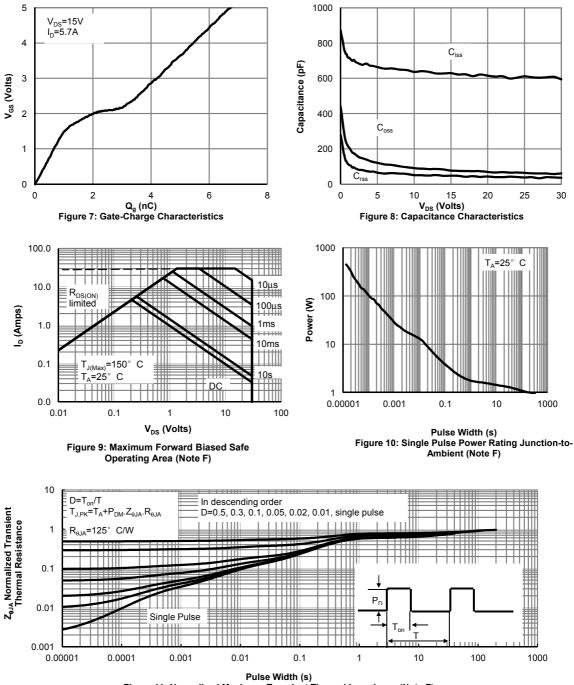
D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

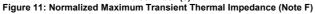
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

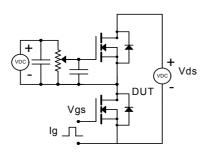
F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on $1n^2$ FR-4 board with 20z. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

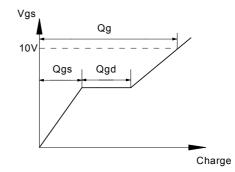

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

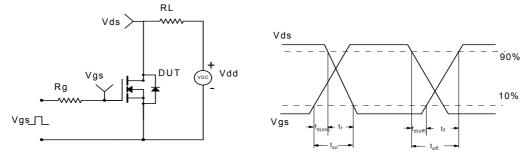
AO3480


ALPHA & OMEGA

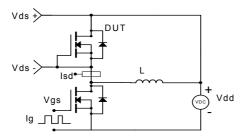

SEMICONDUCTOR

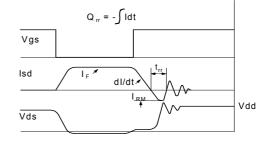

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS





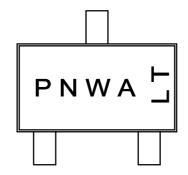
Gate Charge Test Circuit & Waveform





Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms



Document No.	PD-02361
Version	А
Title	AO3480 Marking Description

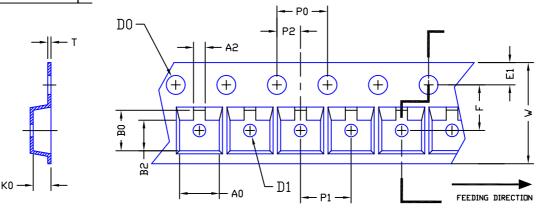
SOT-23 PACKAGE MARKING DESCRIPTION

Green product

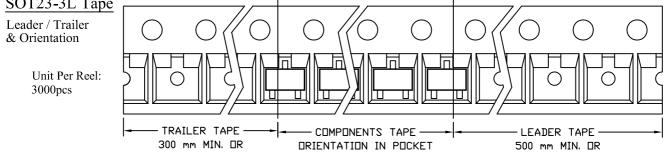
NOTE:

- Р - Package and product type
- Ν - Last digital of product number
- W - Week code
- A Assembly location code L&T Assembly lot code

PART NO.	DESCRIPTION	CODE (PN)
AO3480	Green product	CN


	ALPHA & ON SEMICONDU	<u>IEGA</u> CTOR			Document No Version	. PO-00001 L
				l		
		SOT23 PA	CKAGE (
		30123 17		JOTEINE		
RECOMMENDED LAND PATTERN $\frac{1}{4} = \frac{1}{4} $	E1				0.25	mm
SYMBOLS DIMENSIONS IN MILLIMETERS MIN NOM MAX M A 0.85 1.25 0.0 A1 0.00 0.13 0.0 A2 0.70 1.00 1.15 0.0 b 0.30 0.40 0.50 0.0 c 0.08 0.13 0.20 0.0 D 2.80 2.90 3.10 0.1 E 2.60 2.80 3.00 0.1 E1 1.40 1.60 1.80 0.0 0.95 0.80				3]0.10mm]		
SYMBOLS MIN NOM MAX M A 0.85 1.25 0.0 A1 0.00 0.13 0.0 A2 0.70 1.00 1.15 0.0 b 0.30 0.40 0.50 0.0 c 0.08 0.13 0.20 0.0 D 2.80 2.90 3.10 0.1 E 2.60 2.80 3.00 0.1 E1 1.40 1.60 1.80 0.0 e 0.95 BSC	ECOMMENDED LAND PATTER	N				
UNIT mm		TN II TT- una contra	$ \begin{array}{c c} & A \\ \hline A \\ A1 \\ (\\ A2 \\ (\\ A2 \\ (\\ C \\ C$	IIN NOM .85	MAX MIN 1.25 0.03 0.13 0.00 1.15 0.02 0.50 0.01 0.20 0.00 3.10 0.11 3.00 0.10 1.80 0.05 0.60 0.01	3 0.049 0 0.005 8 0.039 0.045 2 0.016 0.020 3 0.005 0.008 0 0.114 0.122 2 0.110 0.118 5 0.063 0.071 0.037 BSC 0.075 BSC
	L	JNIT: mm				

- 2. TOLERANCE ±0.100 mm (4 mil) UNLESS OTHERWISE SPECIFIED.
- DIMENSION L IS MEASURED IN GAUGE PLANE.
 CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS
- ARE NOT NECESSARILY EXACT.
- 5. ALL DIMENSIONS ARE IN MILLIMETERS.


SOT23-3L Carrier Tape

UNIT: MM

PACKAGE	A0	B0	К0	DO	D1	W	E1	F	P0	P1	P2	Т	A2	B5
SDT23-3L (8 mm)	3.05-3.40	3.00-3.38	1.20- 1.47	1.55 ±0.05	1.00 ±0.25	8.00 ±0.30	1.75 ±0.10	3.50 ±0.05	4.00 ±0.10	4.00 ±0.10	2.00 ±0.05	0.18 -0.25	0.84-1.24	2.29-2.69

SOT23-3L Reel - W1 - S G ż > -| |-- v UNIT: MM TAPE SIZE REEL SIZE W W1 Н К S G М Ν R V ø54.00 ±0.50 ø13.00 +0.50 -0.20 2.00 ±0.50 ø178 ø178.00 9.00 11.40 10.60 ø9.00 5.00 18.00 8 mm ±1.00 ±0.30 ±1.00 SOT23-3L Tape

This AOS product reliability report summarizes the qualification result for AO3480. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO3480 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	Temp = 150°C , Vgs=100% of Vgsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
HTRB	Temp = 150°C, Vds=80% of Vdsmax	168 / 500 / 1000 hours	924 pcs	0	JESD22-A108
Precondition (Note A)	168hr 85°C / 85%RH + 3 cycle reflow@260°C (MSL 1)	-	5082 pcs	0	JESD22-A113
HAST	130°C ,85%RH, 33.3 psia, Vds = 80% of Vdsmax	96 hours	924 pcs	0	JESD22-A110
H3TRB	85°C , 85%RH, Vds = 80% of Vdsmax	1000 hours	693 pcs	0	JESD22-A101
Autoclave	121°C , 29.7psia, RH=100%	96 hours	924 pcs	0	JESD22-A102
Temperature Cycle	-65°C to 150°C, air to air,	1000 cycles	924 pcs	0	JESD22-A104
HTSL	Temp = 150°C	1000 hours	924 pcs	0	JESD22-A103
Power Cycling	∆ Tj = 100°C	15000 cycles	693 pcs	0	AEC Q101

I. Reliability Stress Test Summary and Results

Note: The reliability data presents total of available generic data up to the published date. Note A: MSL (Moisture Sensitivity Level) 1 based on J-STD-020

II. Reliability Evaluation

FIT rate (per billion): 1.91 MTTF = 59839 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 \times 10^9 / [2 (N) (H) (Af)] = 1.91$ **MTTF =** 10^9 / FIT = 59839 vears Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval **N** = Total Number of units from burn-in tests **H** = Duration of burn-in testing Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = $55^{\circ}C$) Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)] **Acceleration Factor ratio list:** 85 deg C 100 deg C 55 deg C 70 deg C 115 deg C 130 deg C 150 deg C 259 87 32 13 5.64 2.59 Af 1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵ eV / K

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Alpha & Omega manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3