

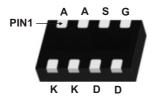
P-Channel 20V (D-S) MOSFET With Schottky Diode

General Description

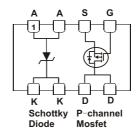
This miniature surface mount MOSFET uses advanced Trench process, low RDS(ON) assures minimal power loss and energy conversion, which makes this device ideal f or use in power management c ircuit.

Applications

Charging Switch For Portable Devices


Features

MOSFET • $V_{DS}(V) = -20V$


• $I_D(A) = -3.9A$ ($V_{GS} = -4.5V$) • $R_{DS(on)} = 110 \text{ m}\Omega$ @ $V_{GS} = -4.5V$ • $R_{DS(on)} = 145 \text{ m}\Omega$ @ $V_{GS} = -2.5V$ • $R_{DS(on)} = 175 \text{ m}\Omega$ @ $V_{GS} = -1.8V$

Schottky Diode VR (V) = 20VIF(A) = 1.5A

• $V_F(TYP) = 0.41 V@ 0.5A$

DFN 2×3×0.75(mm)

Absolute Maximum Ratings (TA = 25°C Unless Otherwise Noted)

Parameter	Value	Units	
Drain-Source Voltage (MOSFET)		-20	
Reverse Voltage (Schottky)		20	V
Gate-Source Voltage (MOSFET)		±8	
Continuous Prain Current/T :=150°C\/MOSEET\	T _A =25°C	-3. 9	
Continuous Drain Current(TJ=150°C)(MOSFET)	TA=70°C	-3. 1	
Pulsed Drain Current (MOSFET)		-16	_
Continuous Source Current (MOSFET Diode Conduction)	-3.0	A	
Average Foward Current (Schottky) a		1.5	
Pulsed Foward Current (Schottky)	6. 0		
Maximum Power Dissipation (MOSFET)	T _A =25°C	2. 3	
Power dissipation for single operation	TA=70°C	1. 45]
Maximum Power Dissipation (Schottky) a	T _A =25°C	1.4	W
Power dissipation for single operation	TA=70°C	0.9	
Operating Junction and Storage Temperature Range	−55 to 150	°C	
Soldering Recommendations (PeakTemperature) b, c	260		

Notes

- a.Surface Mounted on 1"x1" FR4 Board.
- b.The SlimFET is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the regulation processin manufacturing.

 A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- c.Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.

Mf5853CS

Package Outlines and Ordering Information				
Device	Device Marking	Reel Size	Tape Width	Quantity
MF5853CS	D801 . xxxx	7"	8mm	3000 units

Thermal Resistance Ratings

Parameter	Device	Symbol	Typical	Maximum	Units	
	T ≤ 10 sec	MOSFET	$R_{\theta JA}$	45	55	°C/W
		Schottky		70	88	
Junction-to-Ambient ^a	Steady State	MOSFET		80	89	
		Schottky		100	125	
lunding to Foot	Steady State	MOSFET	Б	30	40	
Junction-to-Foot		Schottky	$R_{\theta JF}$	33	40	

MOSFET Specifications (T_J=25°C Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units	
Static							
Drain-Source Breakdown Voltage	V(BR)DSS	VGS=0V, ID=-250uA	-20				
Gate Threshold Voltage	V _{GS (th)}	$V_{DS} = V_{GS}$, $I_D = -250 \mu$ A	-0.45	-0. 60	-0.9	V	
Gate-Body Leakage	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±8V			±100	nA	
Zana Onto Maltana Banin Oromant	Inno	V _{DS} =-16 V, V _{GS} = 0 V			-1.0	uA	
Zero Gate Voltage Drain Current	IDSS	V _{DS} =-16 V, V _{GS} = 0 V, T _J = 55°C			-10		
On-State Drain Current d	I _D (on)	V _{DS} = -5.0V, V _{GS} =-4.5 V	-16			Α	
		V _{GS} =-4.5 V, b=-3.6 A		100	110		
Drain-Source On-State Resistance ^d	RDS(on)	V _{GS} =-2.5 V, b=-2.0 A		130	145	mΩ	
		V _{GS} =-1.8 V, _b =-1.0 A		160	175		
Forward Transconductance d	g _{fs}	$V_{DS} = -5 \text{ V}, I_{D} = -3.6 \text{ A}$		7		S	
Diode Forward Voltage ^d	V _{SD}	I _S =-1.0 A, V _{GS} = 0 V			-1. 2	V	

Total Gate Charge	Qg		6.0		
Gate-Source Charge	Qgs	V _{DS} = -10 V, V _{GS} = -4.5 V, b=-3.6 A	0.8		nC
Gate-Drain Charge	Q _{gd}		1.3		
Turn-On Delay Time	td (on)		6. 5	25	
Rise Time	t _r	V _{DD} =-10V ,R G = 6 ohm I _D = -1 A, V _{GEN} = -4.5 V	20	60	
Turn-Off Delay Time	t _d (off)		31	70	ns
Fall Time	t _f		21	60	
Source-Drain Reverse Recovery Time	t _{rr}	I _F =-0.9 A, di/dt = 100 A/s	20	40	

Notes d.Pulse test; pulse width \leqslant 300us, duty cycle \leqslant 2%. e.Guaranteed by design, not subject to production testing.

SCHOTTKY Specifications (T_J=25°C Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Forward Voltage Drop		I _F = 0.1 A		220	320	mV
	VF	I _F = 0.5 A		410	430	
Reverse Breakdown Voltage	VBR	Ir = 250uA	23			V
Maximum Reverse Leakage Current	IR	V _r = 10 V			10	uA
	'R	V _r = 20 V			50	
Junction Capacitance	CT	V _r = 10 V		31		pF
	•	•	•	•	•	

Typical Electrical and Thermal Characteristics

Typical P-Channel Performance Curves

(TJ= 25 °C unless otherwise noted)

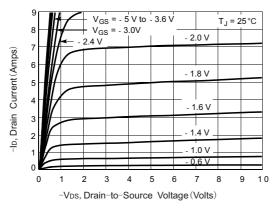
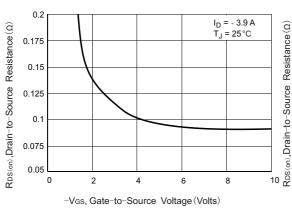



Figure 1. On - Region Characteristics

Figure 2. T ransfer Characteristics

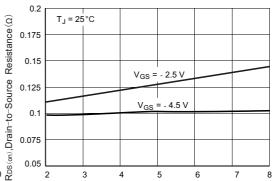
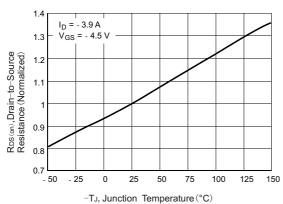



Figure 3. On - Resistance vs. Gate - to- Source Voltage

-I_D, Drain Current(Amps)

Figure 4. On - Resistance vs. Drain Current and
Gate V oltage

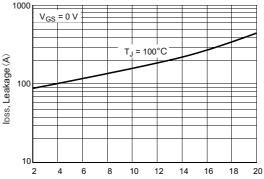
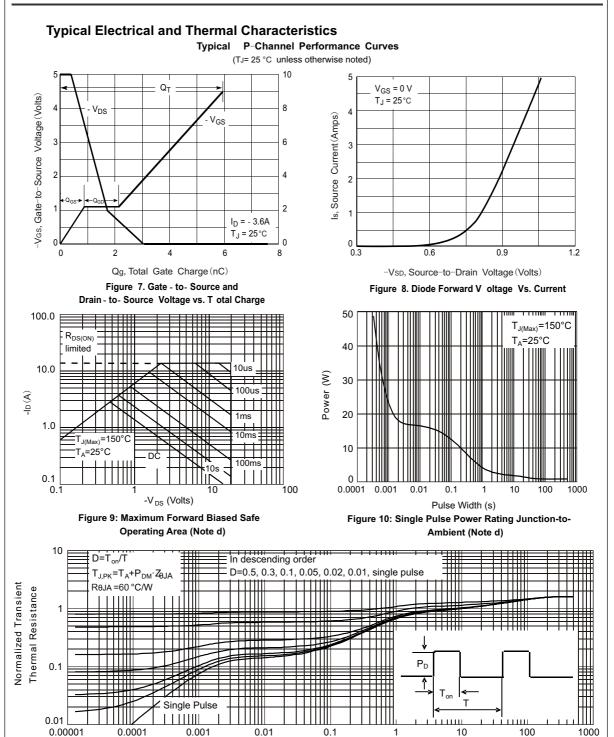
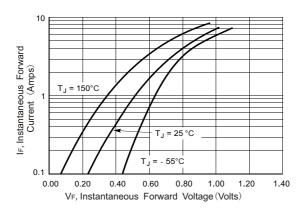



Figure 5. On - Resistance V ariation with

Temperature

-Vps, Drain-to-Source Voltage (Volts)

Figure 6. Drain - to- Source Leakage Current vs. Voltage


Note d: These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. The SOA curve provides a single pulse rating.

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance

Typical Electrical and Thermal Characteristics

Typical Schottky Performance Curves

(T $_{J}$ = 25 $^{\circ}$ C unless otherwise noted)

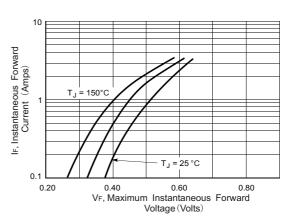


Figure 11. Typical Forward Voltage

Figure 12. Maximum Forward V oltage

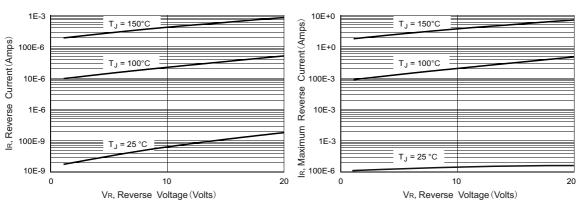


Figure 13. T ypical Reverse Current

Figure 14. Maximum Reverse Current

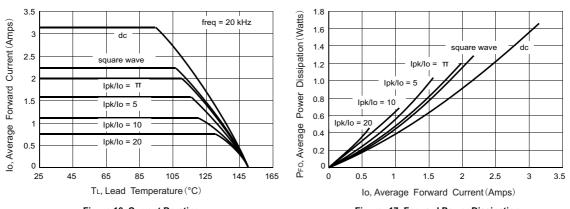
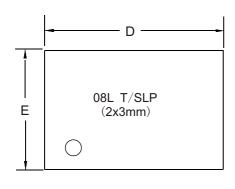
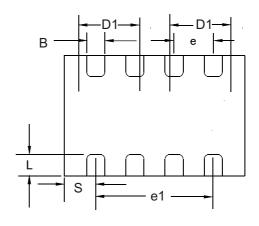
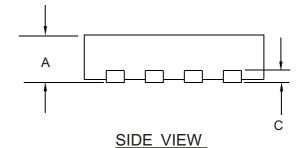
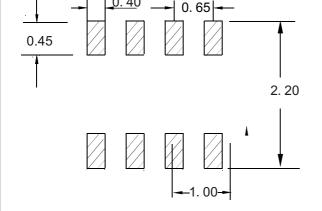




Figure 16. Current Derating

Figure 17. Forward Power Dissipation


DFN 2x3x0. 75 (mm) Package



TOP VIEW

BOTTOM VIEW

RECOMMENDED LAND PATTERN

Dim	MILLIMETERS				
Dim	Min	Nom	Max		
Α	0.70	0. 75	0. 90		
В	0. 25	0. 30	0. 35		
С	C). 203Re	f		
D	2. 95	3. 05			
D1	0. 75	1. 00	1. 05		
Е	1. 95	2. 00	2. 05		
е	0. 65BSC				
e1	1. 95Ref				
L	0.30		0.40		
S	0. 55BSC				

UNIT:mm

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Megapower manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3