						RoHS							
MESSRS:					APPROVAL NO	214 - 016							
					DATE	2008.12.25							
				ELECTROLY	тіс								
<u>CAPACITOR</u>													
	CATALO	G TYPE	S TYPE										
	USER PA	ART NO.	RT NO.										
	适用	机种											
	特 记	事 项		Pb-FR	EE								
QINGDAO SAMYOUNG ELECTRONICS CO.,LTD MANAGER OF DEVELOPMENT DEPARTMENT GONG JANG SUG													
USER APP	PROVAL:			APPR	DVAL NO.:								
SamYoung(Kore	ea) : 146-1,SA	NGDAEWON	I-DONG,JO	ONGWON-GU,S	UNGNAM-CITY,KYUNG	KI-DO,KOREA							
SamYoung(Chir	na) : No.5 CHA	NGJIANG R	OAD,PINGI	OU-CITY,SHAND	ONG-PROVINCE,CHIN	A							
样式:H-1001-0)11					A4 (210×297)							

SamYoung Electronics Co., Ltd.

APPROVAL NO.

214 - 016

ALUMINUM ELECTROLYTIC CAPACITOR

PAGE: 1 OF 5

Specifications of SMS Series

opecifications	of SMS Serie	S													
Item	Characteristics														
Rated Voltage Range	100 \	/ _{DC} or I	ess			160 ~ 450V _{DC}									
Operating Temperature Range	- 40	~ + 85	°C			- 25 ~ + 85 ℃									
Nominal Capacitance Range					0.1 ~ ′	15,	000 uF	-							
Capacitance Tolerance				±209	% (AT	T 120Hz,20°C)									
	After 2 minute:0.01	CrVr (μA)	or 3 µ	Α,	After 1 minute					After 5 minutes				
Leakage Current	whichev	/er is g	reater				CnVn < 1	<u> </u>		0 CoVo<		RVR>1, 000			
(at 20 ℃)	Where,CR =Nomi	nal cap	acitanc	се (µ F)										
	V _R =Rate	d Volta	ge (Voc))			0.1CrV	rk+4U	0.04CrVr+10	0.030	rVr+15 ().02CrVr+25			
Dissipation Factor (TAN δ)	Rated voltage(VDC)	6.3	10	16	25		35	50	63	100	160~250	350~450			
(20℃, 120Hz)	ΤΑΝ δ	0.24	0.20	0.16	0.14		0.12	0.10	0.09	0.08	0.20	0.24			
	When the capacitance	e excee	eds 100	0µF,0	.02 sha	llb	e adde	d every	/ 1000 µ F	increas	e.				
Temperature Characteristic	Rated voltage(VDC)	6.3	10	16	25	3	5~100	160	200~250	350	400	450			
(Impedance ratio at 120Hz)	Z-25℃/z+20℃	4	3	2	2		2	4	8	12	16	16			
	Z-40°C/z+20°C	10	8 6 4				3	-	-	-	-	-			
Load Life	the capacitors are restored voltage applied for 2,00 Capacitance change: \leq TAN $\delta \leq$ Leakage current : \leq	0 hours ± 20% 150% of	s at 85°C of initial f initial s	C. Value specified		the capacitors are restored to 20 °C after the rated voltage applied for 2,000 hours at 85 °C. Capacitance change: $\leq \pm$ 20% of initial Value TAN $\delta \leq 200\%$ of initial specified value (where, 150% for \geq WV 450V _{DC}) Leakage current: \leq Initial specified value									
Leakage current: <Initial specified valueThe following specifications shall be satisfied when the capacitors are restored to 20°C after exposing them at 85°C for a half assurance load life time without voltage applied.The following specifications shall be satisfied when the capacitors are restored to 20°C after exposing them at 85°C for a half assurance load life time without voltage applied.The following specifications shall be satisfied when the capacitors are restored to 20°C after exposing them at 85°C for a half assurance load life time without voltage applied.Shelf LifeCapacitance change: << \pm 20% of initial Value TAN δ Capacitance change: << \pm 20% of initial specified valueLeakage current : <												posing me ue ied value			
Others A.DIAGRAM OF DIMENS	Satisfies characteristic			<u>1721</u>	B.	MA		G:WIT	H BLACI	K SLEE	EVE, WH				
SAFETY VENT (≥6.3 φ) When ΦD≤8,ΦD When ΦD>8,ΦD	20MIN 5MIN ⇒ 20MIN 5MIN ⇒ 5		≱12.5	-	T V	33	SMS 6 V 0 µ F = CAP/		(M)	UNG =					

SamYoung Electronics Co., Ltd.

PAGE: 2 OF 5

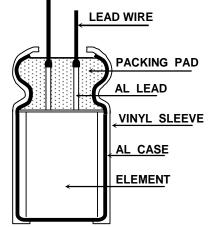
ALUMINUM ELECTROLYTIC CAPACITORS

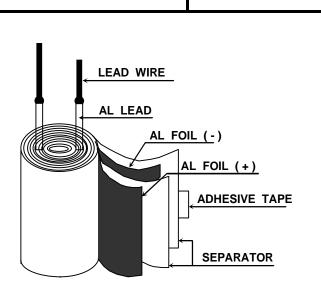
214 - 016

APPROVAL NO.

RATI	NGS	OF SI	NS S	ERIE	S								ØD	XL(mm)
WV CAP	6.3	10	16	25	35	50	63	100	160	200	250	350	400	450
0.1						5X11	5X11	5X11						
						7.5 5X11	8.2 5X11	8.5 5X11						
0.22						10	11	13						
						5X11	5X11	5X11						
0.33						12	13	15						
0.47						5X11	5X11	5X11	6.3X11	6.3X11	6.3X11	8X11.5	8X11.5	
0.47						17	18	18	19	19	20	21	21	
0.68						5X11 20	5X11 21	5X11 21	6.3X11 23	6.3X11 23	6.3X11 24	8X11.5 25	8X11.5 25	
						20 5X11	5X11	5X11	23 6.3X11	6.3X11	6.3X11	8X11.5	8X11.5	10X12.5
1						24	25	25	26	27	28	29	30	27
2.2						5X11	5X11	6.3X11	6.3X11	6.3X11	8X11.5	10X12.5	10X12.5	10X16
2.2						36	37	39	39	40	45	52	53	42
3.3						5X11	5X11	5X11	8X11.5	8X11.5	10X12.5		10X16	10X20
0.0						44	46	47	54	56	62	63	64	63
4.7					5X11 40	5X11 53	5X11 57	5X11 58	8X11.5 66	10X12.5 74	10X12.5 77	10X16 78	10X20 84	12.5X20 82
					40 5X11	5X11	57 5X11	50 5X11	10X12.5				04 12.5X20	02 12.5X20
6.8					50	63	68	69	90	92	94	101	110	99
10			5X11	5X11	5X11	5X11	5X11	6.3X11	10X16	10X16	10X20	12.5X20		12.5X20
10			44	54	58	76	82	95	112	123	125	134	156	141
22		5X11	5X11	5X11	5X11	5X11	6.3X11	8X11.5	10X20	10X20	12.5X25		16X25	16X31.5
	5)(44	59	75	80	87	113	140	165	195	198	233	254	254	252
33	5X11 55	5X11 84	5X11 90	5X11 97	5X11 129	6.3X11 158	6.3X11 171	10X12.5 235	12.5X20 280	12.5X25 286	12.5X25 312	16X25 312	16X31.5 345	16X35.5 348
	5X11	5X11	5X11	5X11	6.3X11	6.3X11	8X11.5	10X16	12.5X25	12.5X25	16X25	16X31.5		16X35.5
47	79	100	110	138	177	190	242	308	341	372	412	418	473	423
68	5X11	5X11	5X11	6.3X11	6.3X11	8X11.5	10X12.5	10X20	16X25	16X25	16X25	16X35.5	18X35.5	18X40
00	110	130	151	191	213	269	347	360	447	490	495	569	611	573
100	5X11	5X11	6.3X11	6.3X11	8X11.5	8X11.5	10X12.5	10X20	16X25	16X31.5	18X35.5			
	150 6.3X11	165 6.3X11	211 8X11.5	231 8X11.5	306 10X12.5	327 10X16	409 10X20	450 16X25	602 18X35.5	608 18X40	658	778		
220	256	280	370	405	526	615	726	929	1000	1153				
000	6.3X11	8X11.5	8X11.5	10X12.5	10X16	10X20	12.5X20	16X25						
330	313	405	453	576	706	823	1044	1262						
470	8X11.5		10X12.5		10X20		12.5X25							
	441	483	626	752	909	1153	1358	1647						
680	10X12.5 616	10X12.5 675	10X20 902	10X20 988	12.5X20 1296	12.5X25 1519	16X25 1811	18X35.5 2230						
1000	10X12.5	10X16	10X20	12.5X20		16X25	16X31.5	2200						
1000	747	896	1094	1407	1714	2034	2403							
2200	12.5X20	12.5X20	12.5X25	16X25	16X31.5	18X35.5								
2200	1457	1514	1798	2134	2521	3049								
3300		12.5X25	16X25		18X31.5		Case Size		. ,		l			
	1649	1922	2303	2673	3218		Ripple Cu	irrent (mA	rms)AT 8	5℃,120H: 	z I			
4700	16X25 2287	16X25 2433	16X31.5 2854	18X35.5 3386										
0000		16X31.5		0000										
6800	2562	2954	3192											
10000		18X35.5												
10000	3102	3448												
15000	18X31.5													
	3785													

SamYoung Electronics Co., Ltd.


PAGE: 3 OF 5


ALUMINUM ELECTROLYTIC CAPACITORS

214 - 016

APPROVAL NO.

STRUCTURE AND MATERIALS

CE04 TYPE

*MINIATURE SIZED TYPE CAPACITORS COMPONENT

PART NAME	MATERIALS	VENDER					
LEAD WIRE	TINNED COPPER - PLY WIRE(Pb-FREE)	SAMATRON	(KOREA/CHINA)				
	TINNED COPPER - PLT WIRE(PD-FREE)	IL KWANG	(KOREA/CHINA)				
AL LEAD	ALUMINUM 99.92 % OVER	IL KWANG	(KOREA/CHINA)				
	ALOMINOM 99.92 % OVER	SAM ATRON	(KOKEA/CHINA)				
PACKING PAD	SYNTHETIC RUBBER OR BAKE PAD(Pb-FREE)	SUNG NAM	(KOREA/CHINA)				
TACKINGTAD	STATIENC ROBBER OR BARE FAD(FB-I REE)	TIAN TAI	(CHINA)				
SLEEVE	P.V.C (POLY VINYL CHLORIDE)	SUNG NAM	(KOREA/CHINA)				
		MOO DEUNG					
		D.N TECH	(KOREA/CHINA)				
AL CASE	ALUMINUM 99.0 % OVER	HANAM	(KOREA/CHINA)				
		AO XING	(CHINA)				
		K.D.K / JCC / MATSUSHITA	(JAPAN)				
		BECROMAL	(ITALY)				
		ALUKO / SAM YOUNG	(KOREA)				
	FORMED ALUMINUM 99.9 % OVER	ECHO / INTERTEC	(110112),				
		SATMA	(FRANCE)				
		HUAFENG / HISTAR	(CHINA)				
		YINGKELAI / HUAFENG / HEC	(or many				
		LUXON / LITON	(TAIWAN)				
_		K.D.K	(JAPAN)				
AL FOIL 😑	ETCHED ALUMINUM 98.0 % OVER	ALUKO / K-JCC	(KOREA)				
		AFT / YINGKELAI / SHENGHONG	i (CHINA)				
		N.K.K / M.F.G / DAIFUKU	(JAPAN)				
SEPARATOR	INSULATION PAPER	SPO	(GERMANY)				
JEFANATUK		MHD	(AMERICA)				
		KAN	(CHINA)				
	POLY PROPYLENE FILM	DAI IL	(KOREA)				
		NITTO	(JAPAN)				

When using aluminum electrolytic capacitors, pay strict attention to the following:

1. Electrolytic capacitors for DC application require polarization.

Confirm the polarity.If used in reversed polarity,the circuit life may be shortened or the capacitor may be damaged.For use on circuits whose polarity is occasionally reversed,or whose polarity is unknown,use bi-polarized capacitors (BP-series).Also,note that the electrolytic capacitor cannot be used for AC application.

2. Do not apply a voltage exceeding the capacitor's voltage rating.

If a voltage execceeding the capacitor's voltage rating is applied, the capacitor may be damaged as leakage current increases. When using the capacitor with AC voltage superimposed on DC voltage, care must be exercised that the peak value of AC voltage does not exceed the rated voltage.

3. Do not allow excessive ripple current to pass.

Use the electrolytic capacitor at current values within the permissible ripple range. If the ripple current exceeds the specified value, request capacitors for high ripple current applications.

4. Ascertain the operating temperature range.

Use the electrolytic capacitors according to the specified operating temperature range. Usage at room temperature will ensure longer life.

- 5. The electrolytic capacitor is not suitable for circuits in which charge and discharge are frequently repeated. If used in circuits in which charge and discharge are frequently repeated, the capacitance value may drop, or the capacitor may be damaged. Please consult our engineering department for assistance in these applications.
- 6. Apply voltage treatment to the electrolytic capacitor which has been allowed to stand for a long time. If the electrolytic capacitor is allowed to stand for a long time, its withstand voltage is liable to drop, resulting in increased leakage current. If the rated voltage is applied to such a product, a large leakage current occurs and this generates internal heat, which damaged the capacitor. If the electrolytic capacitor is allowed to stand for a long time, therefore, use it after giving voltage treatment (Note 1). (However, no voltage treatment is required if the electrolytic capacitor is allowed to stand for less than 2 or 3 years at normal temperature.)

7. Be careful of temperature and time when soldering.

When soldering a printed circuit board with various,components,care must be taken that the soldering temperature is not too high and that the dipping time is not too long.Otherwise,there will be adverse effects on the electrical characteristics and insulation sleeve of electrolytic capacitors in the case of small-sized electrolytic capacitors,nothing abnormal will occur if dipping is performed at less than 260°C for less than 10 seconds.

8. Do not place a soldering iron on the body of the capacitor.

The electrolytic capacitor is covered with a vinyl sleeve. If the soldering iron comes in contact with the electrolytic capacitor body during wiring, damage to the vinyl sleeve and/or case may result in defective insulation, or improper protection of the capacitor element.

9. Cleaning circuit boards after soldering.

Some solvents have adverse effects on capacitors. Please refer to the next page.

10.Do not apply excessive force to the lead wires or terminals.

If excessive force is applied to the lead wires and terminals, they may be broken or their connections with the internal elements may be affected. (For strength of terminals, refer to KS C6035 KS C6421 (JIS C5102, JIS C5141)

11.Care should be used in selecting a storage area.

If electrolytic capacitors are exposed to high temperatures caused by such things as direct sunlight, the life of the capacitor may be adversely affected. Storage in a high humidity atmosphere may affect the solderability of lead wires and terminals.

12.Surge voltage.

The surge voltage rating is the maximum DC over-voltage to which the capacitor may be subjected for short periods not exceeding approximately 30 seconds at infrequent intervals of not more than six minutes. According to KS C6421, the test shall be conducted 1000 cycles at room temperature for the capacitors of characteristic W of KS C6421 or at the maximum operating temperature for the capacitors of characteristics B and C of KS C6421 with voltage applied through a series resistance of 1000 ohms without discharge. The electrical characteristics of the capacitor after the test are specified in KS C6421. Unless otherwise specified, the rated surge voltage are as follows:

I	Rated Voltage(V)	2	4	6.3	10	16	25	35	50	63	80	100	160	200	250	315	350	400	450	500
I	Rated Surge Voltage(V)	2.5	5	8	13	20	32	44	63	79	100	125	200	250	300	365	400	450	500	550

Note 1 Voltage treatment ... Voltage treatment shall be performed by increasing voltage up to the capacitor's voltage rating gradually while lowering the leakage current. In this case, the impressed voltage shall be in the range where the leakage current of the electrolytic capacitor is less than specified value. Meanwhile, the voltage treatment time may be effectively shortened if the ambient temperature is increased (within the operating temperature range).
Note 2 For methods of testing, refer to KS C 6035, KS C 6421, (JIS C 5102, JIS C 5141)

CLEANING CONDITIONS

Aluminum electrolytic capacitors that have been exposed to halogenated hydrocarbon cleaning and defluxing solvents are susceptible to attack by these solvents. This exposure can result in solvent penetration into the capacitors, leading to internal corrosion and potential failure. Therefore, for ordinary capacitors, the cleaning materials of alcohol system had to be used. However, the solvent proof type capacitors of Samyoung Elec. Can withstand cleaning by some halogenated solvents shown:

(rated voltage≤100 VDC only)

* FREON TE[®] OR TES[®]

Cleaning method: One of immersion, ultrasonic or vap or cleaning. Maximum cleaning time: 5 minutes(where, KRE, SRM is 2 minutes)

* 1,1,1-Trichlorethane

Cleaning method: immersion cleaning at the normal temperature Maximum cleaning time: 5 minutes(where, KRE,SRM is not assured)

— Caution —

- * When the lead space of the capacitor is different from the hole space of the PC board to be mounted , use the lead forming type capacitor to prevent stress on seal.
- * Consult for flux to be used and other cleaning conditions. (Freon TE and TES are registered trademarks of Dupont,Inc.)

* Influence of cleaning solvent for aluminum electrolytic capacitor.

Aluminum electrolytic capacitors are easily affeceted by halogen ions, particularly by chloride ions. Excessive amounts of halogen ions, if happened to enter the inside of the capacitors, will give corrosion accidents-rapid capacitance drop and vent open. The extent of corrosion accidents varies with kinds of electrolytes and seal-materials. Therefore, the prevention of halogen ion contamination is the most improtant check point for quality control in our procuction lines. At present, halogenated hydrocarboncontained organic solvents such as Trichloroethylene, 1,1,1-Trichloroethane, and Freon are used to remove flux from circuit boards. However, if general types of aluminum electroytic capacitors, whose seal constructions are not solvent-proof, are cleaned with such solvents, the solvents may gradually penetrate the seal portion and erode. The inside of the capacitors.

The mechanism of corrosion of aluminum electrolytic capacitors by halogen ions can be explained as follows:

Halides(RX) are absorbed and diffused into the seal portion. The halides then enter the inside of the capacitors and contact with the electrolyte of the capacitors. Where by halogen ions are made free by a hydrolysis with water in the electrolyte:

$$RX + H_2O \rightarrow ROH + H^+ + X^-$$

The halogen ions (X) react with the dielectric substance(Al_2O_3) of aluminum electrolytic capacitors:

$$AI_2O_3 + 6H^+ + 6X^- \rightarrow 2ALX_3 + 3H_2O$$

AIX₃ is dissociated with water:

 $ALX_3 + 3H_2O \rightarrow AL (OH)_3 + 3H^+ + 3X^-$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by SamYoung manufacturer:

Other Similar products are found below :

NRELS102M35V16X16C.140LLF ESRG160ETC100MD07D 227RZS050M 335CKR250M 476CKH100MSA 477CKR100M 107CKR010M 107CKH063MSA RJH-25V222MI9# RJH-35V221MG5# B43827A1106M8 RJH-50V221MH6# EKYA500ELL470MF11D B41022A5686M6 ESRG250ELL101MH09D EKMA160EC3101MF07D RJB-10V471MG3# ESMG160ETD221MF11D EKZH160ETD152MJ20S RJH-35V122MJ6# EGXF630ELL621ML20S RBD-25V100KE3#N EKMA350ELL100ME07D ESMG160ETD101ME11D ELXY100ETD102MJ20S EGXF500ELL561ML15S EKMG350ETD471MJ16S 35YXA330MEFC10X12.5 RXW471M1ESA-0815 ELXZ630ELL221MJ25S ERR1HM1R0D110T LPE681M30060FVA LPL471M22030FVA HFE221M25030FVA LKMD1401H221MF B41888G6108M000 EKMA160ETD470MF07D UHW1J102MHD6 EKMG500ETD221MJC5S LKMK2502W101MF LKMD1401H181MF LKMI2502G820MF LKMJ2001J122MF LKML2501C472MF LKMJ4002C681MF 450MXH330MEFCSN25X45 450MXK330MA2RFC22X50 63ZLH560MEFCG412.5X30 ELH2DM331025KT ELH2DM471P30KT