Ultra Precision Current Sensing Chip Resistor

Resistive Product Solutions

Features:

- High power metal alloy current sense resistor
 High temperature performance up to 225°C;
- for operation up to 275° C, contact factory Low thermal EMF (<1 μ V/C)
- Proprietary processing technique produces extremely low resistance values
- Qualified to AEC-Q200
- RoHS compliant, lead-free and halogen-free

	Electrical Specifications - CSS									
Type / Code	Maximum Power Rating (Watts)	Maximum Rating Current (A)	Maximum Overload Current (A)	TCR (ppm/°C)	Ohmic Range (Ω) and Tolerance					
	italing (walls)				0.5%	1%, 2%, 5%				
CSS0603	CSS0603 0.33		18.16	±75ppm/⁰C	-	0.004				
0330003	0.55	8.1	16.2	±50 ppm/⁰C	-	0.005, 0.01, 0.015				
CSS0805	0.5	12.9	25.8	±75ppm/⁰C	-	0.003				
0330605	0.5	12.9	25.8	±50 ppm/ºC	-	0.005, 0.01, 0.015				
		31.62		±50 ppm/ºC	-	0.001 - 0.004				
CSS1206	1		63.25	±25 ppm/⁰C	0.007 - 0.015	0.005 - 0.015				
				±15 ppm/ºC	0.016 - 0.05	0.016 - 0.05				
	1					±50 ppm/⁰C	-	0.001 - 0.003		
CSS2010		31.62	63.25	±25 ppm/⁰C	-	0.004 - 0.006				
				±15 ppm/ºC	0.007 - 0.1	0.007 - 0.1				
				±50 ppm/⁰C	-	0.0005 - 0.003				
CSS2512	2	63.25	141.42	±25 ppm/⁰C	-	0.004 - 0.006				
				±15 ppm/⁰C	0.007 - 0.075	0.007 - 0.075				
0000705	4	126.40	216.02	±100 ppm/ºC	-	0.0002				
CSS2725	4	126.49	316.23	±50 ppm/⁰C	-	0.00025 - 0.003				
0000700	2	07.00	64.94	±25 ppm/⁰C	0.004 -0.007	0.004 - 0.007				
CSS2728	3	3 27.39	61.24	±15 ppm/ºC	0.008 - 0.19	0.008 - 0.1				
CSS4527	5	100	173	±50 ppm/ºC	0.007 - 0.12	0.0005 - 0.12				

Electrical Specifications – CSSH (High Power)									
Type / Code	Maximum Power	Maximum Rating Current (A)	Maximum Overload	TCR (ppm°C)	Ohmic Range (Ω) and Tolerance				
	Rating (Watts)		Rating (Watts) Current (A) Current (A)		0.5%	1%, 2%, 5%			
			134.16	±50 ppm/⁰C	-	0.0005 - 0.0025			
CSSH2512	3	77.46		±25 ppm/⁰C	0.007 - 0.01	0.003 - 0.01			
					±50 ppm/⁰C	0.0101 - 0.05	0.0101 - 0.08		
00000700		04.00	70.74	±25 ppm/⁰C	0.004 - 0.007	0.004 - 0.007			
03582726	CSSH2728 4 31.62		70.71	±15 ppm/ºC	0.008 - 0.019	0.008 - 0.05			

Please refer to the High Power Resistor Application Note (page 5) for more information on designing and implementing high power resistor types.

Ultra Precision Current Sensing Chip Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

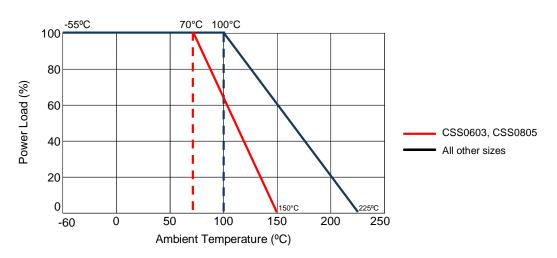
Sala

			Mecha	anical Specif	ications			
				· · ·	ottom			
			4	W L T1	Le A T1			
	Mavin	num Power Resi	stance Range				T1	
Type / Co	ode	ng (Watts)	(Ω)	L	W	Н	Bottom Termination	Unit
CSS06	03	0.33	004, 0.005 .01, 0.015	0.063 ± 0.008 1.60 ± 0.20	$\begin{array}{r} 0.031 \pm 0.008 \\ 0.80 \pm 0.20 \end{array}$	0.010 ± 0.004 0.25 ± 0.10	0.012 ± 0.006 0.30 ± 0.15	inches mm
				Top Bott	tom			
			v) [_	$ \begin{array}{c} L \\ T \\ \mathsf$	r. Ì			
Type / Code	Maximum Power Rating (Watts)	Resistance Range (Ω)	L	W	Н	T1 Bottom Terminatio	T2 Top Termination	Unit
CSS0805	0.5	0.003, 0.005	0.080 ± 0.00 2.03 ± 0.20				0.008 ± 0.006 0.20 ± 0.15	inches mm
					· · · · ·			
Ture (Oods	Maximum Power	Resistance Range				T1	T2	11-13
Type / Code	Maximum Power Rating (Watts)	(Ω)	L 0.126 ± 0.07	₩ ₩ ₩	H 0 0.025 ± 0.010	Bottom Termination	n Top Termination	Unit
Type / Code CSS1206		-	0.126 ± 0.01 3.20 ± 0.25	W 0 0.063 ± 0.01 1.60 ± 0.25	$\begin{array}{c} 0 \\ 0.025 \pm 0.010 \\ 0.65 \pm 0.25 \end{array}$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25	Top Termination 0.020 ± 0.010 0.51 ± 0.25	inches mm
	Rating (Watts)	(Ω)	0.126 ± 0.01	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ \hline & & & \\ 0 & & 0.063 \pm 0.01 \\ \hline & & 1.60 \pm 0.25 \\ 0 & & 0.063 \pm 0.01 \end{array}$	$\begin{array}{c} 0 \\ 0.025 \pm 0.010 \\ 0.65 \pm 0.25 \end{array}$ $\begin{array}{c} 0 \\ 0.022 \pm 0.010 \end{array}$	Bottom Termination 0.020 ± 0.010	n Top Termination 0.020 ± 0.010	inches
CSS1206		(Ω) 0.001	$\begin{array}{c} 0.126 \pm 0.01 \\ 3.20 \pm 0.25 \\ 0.126 \pm 0.01 \end{array}$	$\begin{array}{c c} & & & \\ & & \\ & & \\ 0 & & 0.063 \pm 0.01 \\ \hline 1.60 \pm 0.25 \\ 0 & & 0.063 \pm 0.01 \\ \hline 1.60 \pm 0.25 \\ 0 & & 0.063 \pm 0.01 \end{array}$	$\begin{array}{c} 0 \\ 0.025 \pm 0.010 \\ 0.65 \pm 0.25 \\ 0 \\ 0.022 \pm 0.010 \\ 0.55 \pm 0.25 \\ 0 \\ 0.022 \pm 0.010 \end{array}$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010	n Top Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010	inches mm inches
CSS1206 CSS1206	Rating (Watts)	(Ω) 0.001 0.002 - 0.004	$\begin{array}{c} 0.126 \pm 0.01 \\ 3.20 \pm 0.25 \\ 0.126 \pm 0.01 \\ 3.20 \pm 0.25 \\ 0.126 \pm 0.01 \\ 0.126 \pm 0.01 \end{array}$	$\begin{array}{c c} & & & \\ & & \\ & & \\ 0 & 0.063 \pm 0.01 \\ 1.60 \pm 0.25 \\ 0 & 0.063 \pm 0.01 \\ 1.60 \pm 0.25 \\ 0 & 0.063 \pm 0.01 \\ 1.60 \pm 0.25 \\ 0 & 0.063 \pm 0.01 \end{array}$	$\begin{array}{c} 0 \\ 0.025 \pm 0.010 \\ 0.65 \pm 0.25 \\ 0 \\ 0.022 \pm 0.010 \\ 0.55 \pm 0.25 \\ 0 \\ 0.022 \pm 0.010 \\ 0.55 \pm 0.25 \\ 0 \\ 0.022 \pm 0.010 \end{array}$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.024 ± 0.010 0.60 ± 0.25 0.020 ± 0.010	$\begin{array}{ c c c c c c c }\hline n & Top Termination \\ \hline 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline 0.024 \pm 0.010 \\ 0.60 \pm 0.25 \\ \hline 0.020 \pm 0.010 \\ \hline \end{array}$	inches mm inches mm inches
CSS1206 CSS1206 CSS1206 CSS1206	Rating (Watts)	(Ω) 0.001 0.002 - 0.004 0.005	$\begin{array}{c} 0.126 \pm 0.0'\\ 3.20 \pm 0.2t\\ 0.126 \pm 0.0'\end{array}$	$\begin{array}{c c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\begin{array}{c c} & & & & \\ 0 & 0.025 \pm 0.010 \\ & 0.65 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.021 \pm 0.010 \\ \end{array}$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.024 ± 0.010 0.60 ± 0.25	$\begin{array}{ c c c c c c c }\hline n & Top Termination \\ \hline 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline 0.024 \pm 0.010 \\ 0.60 \pm 0.25 \\ \hline \end{array}$	inches mm inches mm inches mm inches
CSS1206 CSS1206 CSS1206	Rating (Watts)	(Ω) 0.001 0.002 - 0.004 0.005 0.006 - 0.05	$\begin{array}{c} 0.126 \pm 0.01\\ 3.20 \pm 0.26\\ 0.126 \pm 0.02\\ 3.20 \pm 0.26\\ 0.200 \pm 0.02\\ 5.08 \pm 0.26\\ 0.200 \pm 0.02\\ 0.200 \pm 0.02\\ 0.200 \pm 0.02\\ 0.020 \pm 0.020 \pm 0.02\\ 0.020 \pm 0.020 \pm 0.020\\ 0.020 \pm 0.020 \pm 0.020\\ 0.020 \pm 0.020 \pm 0.020\\ 0.020 \pm 0.020 \pm 0.020 \pm 0.020\\ 0.020 \pm 0.020 \pm 0.020 \pm 0.020\\ 0.020 \pm $	$\begin{array}{c c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\begin{array}{c c} & & & & \\ 0 & 0.025 \pm 0.010 \\ & 0.65 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.031 \pm 0.010 \\ & 0.79 \pm 0.25 \\ 0 & 0.025 \pm 0.010 \end{array}$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.024 ± 0.010 0.60 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.051 ± 0.010 1.30 ± 0.25 0.031 ± 0.010	$\begin{array}{ c c c c c c c }\hline & Top Termination \\ \hline 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline 0.024 \pm 0.010 \\ 0.60 \pm 0.25 \\ \hline 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline 0.051 \pm 0.010 \\ 1.30 \pm 0.25 \\ \hline 0.031 \pm 0.010 \\ \hline \end{array}$	inches mm inches mm inches mm inches mm inches mm
CSS1206 CSS1206 CSS1206 CSS1206 CSS2010	Rating (Watts)	(Ω) 0.001 0.002 - 0.004 0.005 0.006 - 0.05 0.001 - 0.003	$\begin{array}{c} 0.126 \pm 0.0'\\ 3.20 \pm 0.2\xi\\ 0.200 \pm 0.0'\\ 5.08 \pm 0.2\xi\\ 0.200 \pm 0.0'\\ 5.08 \pm 0.2\xi\\ 0.246 \pm 0.0'\end{array}$	$\begin{array}{c c} & & & \\ & & \\ & & \\ & & \\ 0 & 0.063 \pm 0.01 \\ \hline 1.60 \pm 0.25 \\ 0 & 0.063 \pm 0.01 \\ \hline 1.60 \pm 0.25 \\ 0 & 0.063 \pm 0.01 \\ \hline 1.60 \pm 0.25 \\ 0 & 0.063 \pm 0.01 \\ \hline 1.60 \pm 0.25 \\ 0 & 0.100 \pm 0.01 \\ \hline 2.54 \pm 0.25 \\ 0 & 0.100 \pm 0.01 \\ \hline 2.54 \pm 0.25 \\ 0 & 0.126 \pm 0.01 \end{array}$	$\begin{array}{c c} & & & & \\ 0 & 0.025 \pm 0.010 \\ & 0.65 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.031 \pm 0.010 \\ & 0.79 \pm 0.25 \\ 0 & 0.025 \pm 0.010 \\ & 0.65 \pm 0.25 \\ 0 & 0.031 \pm 0.010 \\ \end{array}$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.024 ± 0.010 0.60 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.051 ± 0.010 1.30 ± 0.25 0.031 ± 0.010 0.79 ± 0.25 0.074 ± 0.010	$\begin{array}{ c c c c c c c } \hline & Top Termination \\ \hline & 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline & 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline & 0.024 \pm 0.010 \\ 0.60 \pm 0.25 \\ \hline & 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline & 0.051 \pm 0.010 \\ 1.30 \pm 0.25 \\ \hline & 0.031 \pm 0.010 \\ 0.79 \pm 0.25 \\ \hline & 0.074 \pm 0.010 \\ \hline \end{array}$	inches mm inches mm inches mm inches mm inches mm inches
CSS1206 CSS1206 CSS1206 CSS1206	Rating (Watts)	 (Ω) 0.001 0.002 - 0.004 0.005 0.006 - 0.05 0.001 - 0.003 0.0031 - 0.1 	$\begin{array}{c} 0.126 \pm 0.01\\ 3.20 \pm 0.25\\ 0.200 \pm 0.01\\ 5.08 \pm 0.25\\ 0.200 \pm 0.01\\ 5.08 \pm 0.25\\ 0.246 \pm 0.01\\ 6.25 \pm 0.25\\ 0.246 \pm 0.01\\ \end{array}$	$\begin{array}{c c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\begin{array}{c c} & & & & \\ 0 & 0.025 \pm 0.010 \\ & 0.65 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.022 \pm 0.010 \\ & 0.55 \pm 0.25 \\ 0 & 0.021 \pm 0.010 \\ & 0.79 \pm 0.25 \\ 0 & 0.025 \pm 0.010 \\ & 0.65 \pm 0.25 \\ 0 & 0.031 \pm 0.010 \\ & 0.79 \pm 0.25 \\ 0 & 0.031 \pm 0.010 \\ & 0.79 \pm 0.25 \\ 0 & 0.025 \pm 0.010 \\ \end{array}$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.024 ± 0.010 0.60 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.051 ± 0.010 1.30 ± 0.25 0.031 ± 0.010 0.79 ± 0.25 0.074 ± 0.010 1.88 ± 0.25 0.044 ± 0.010	$\begin{array}{ c c c c c c c } \hline & Top Termination \\ \hline & 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline & 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline & 0.024 \pm 0.010 \\ 0.60 \pm 0.25 \\ \hline & 0.020 \pm 0.010 \\ 0.51 \pm 0.25 \\ \hline & 0.051 \pm 0.010 \\ 1.30 \pm 0.25 \\ \hline & 0.031 \pm 0.010 \\ 0.79 \pm 0.25 \\ \hline & 0.074 \pm 0.010 \\ 1.88 \pm 0.25 \\ \hline & 0.044 \pm 0.010 \\ \hline \end{array}$	inches mm inches mm inches mm inches mm inches mm inches mm inches
CSS1206 CSS1206 CSS1206 CSS1206 CSS2010	Rating (Watts)	 (Ω) 0.001 0.002 - 0.004 0.005 0.006 - 0.05 0.001 - 0.003 0.0031 - 0.1 0.0005 - 0.004 	$\begin{array}{c} 0.126 \pm 0.0'\\ 3.20 \pm 0.2\xi\\ 0.200 \pm 0.0'\\ 5.08 \pm 0.2\xi\\ 0.200 \pm 0.0'\\ 5.08 \pm 0.2\xi\\ 0.246 \pm 0.0'\\ 6.25 \pm 0.2\xi\\ 0.246 \pm 0.0'\\ 0.0'\\ 0.246 \pm 0.0'\\ $	$\begin{array}{c c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\begin{array}{c ccccc} 0 & 0.025 \pm 0.010 \\ 0.65 \pm 0.25 \\ \hline 0 & 0.022 \pm 0.010 \\ 0.55 \pm 0.25 \\ \hline 0 & 0.022 \pm 0.010 \\ 0.55 \pm 0.25 \\ \hline 0 & 0.022 \pm 0.010 \\ 0.55 \pm 0.25 \\ \hline 0 & 0.022 \pm 0.010 \\ 0.55 \pm 0.25 \\ \hline 0 & 0.031 \pm 0.010 \\ 0.79 \pm 0.25 \\ \hline 0 & 0.031 \pm 0.010 \\ 0.65 \pm 0.25 \\ \hline 0 & 0.025 \pm 0.010 \\ 0.79 \pm 0.25 \\ \hline 0 & 0.025 \pm 0.010 \\ 0.65 \pm 0.25 \\ \hline 0 & 0.025 \pm 0.010 \\ 0.65 \pm 0.25 \\ \hline 0 & 0.031 \pm 0.010 \\ \hline \end{array}$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.024 ± 0.010 0.60 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.051 ± 0.010 1.30 ± 0.25 0.031 ± 0.010 0.79 ± 0.25 0.074 ± 0.010 1.88 ± 0.25 0.044 ± 0.010 1.12 ± 0.25 0.074 ± 0.010	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	inches mm inches mm inches mm inches mm inches mm inches mm inches mm
CSS1206 CSS1206 CSS1206 CSS1206 CSS2010	Rating (Watts)	 (Ω) 0.001 0.002 - 0.004 0.005 0.006 - 0.05 0.001 - 0.003 0.0031 - 0.1 0.0005 - 0.004 0.0041 - 0.075 	$\begin{array}{c} 0.126 \pm 0.01\\ 3.20 \pm 0.25\\ 0.126 \pm 0.02\\ 3.20 \pm 0.25\\ 0.200 \pm 0.02\\ 5.08 \pm 0.25\\ 0.200 \pm 0.02\\ 5.08 \pm 0.25\\ 0.246 \pm 0.02\\ 0.$	$\begin{array}{c c} & & & \\ & & \\ & & \\ & & \\ 0 & 0.063 \pm 0.01 \\ 1.60 \pm 0.25 \\ 0 & 0.063 \pm 0.01 \\ 1.60 \pm 0.25 \\ 0 & 0.063 \pm 0.01 \\ 1.60 \pm 0.25 \\ 0 & 0.063 \pm 0.01 \\ 1.60 \pm 0.25 \\ 0 & 0.063 \pm 0.01 \\ 1.60 \pm 0.25 \\ 0 & 0.100 \pm 0.01 \\ 5 & 1.60 \pm 0.25 \\ 0 & 0.100 \pm 0.01 \\ 5 & 2.54 \pm 0.25 \\ 0 & 0.126 \pm 0.01 \\ 5 & 3.20 \pm 0.25 \\ 0 & 0.126 \pm 0.01 \\ 5 & 3.20 \pm 0.25 \\ 0 & 0.126 \pm 0.01 \\ 5 & 3.20 \pm 0.25 \\ 0 & 0.126 \pm 0.01 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.024 ± 0.010 0.60 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.021 ± 0.010 0.51 ± 0.25 0.051 ± 0.010 1.30 ± 0.25 0.031 ± 0.010 0.79 ± 0.25 0.074 ± 0.010 1.12 ± 0.25 0.074 ± 0.010 1.88 ± 0.25 0.074 ± 0.010 1.88 ± 0.25 0.044 ± 0.010	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	inches mm inches mm inches mm inches mm inches mm inches mm inches mm inches
CSS1206 CSS1206 CSS1206 CSS1206 CSS2010	Rating (Watts)	 (Ω) 0.001 0.002 - 0.004 0.005 0.006 - 0.05 0.001 - 0.003 0.0031 - 0.1 0.0005 - 0.004 0.0041 - 0.075 0.0005 	$\begin{array}{c} 0.126 \pm 0.0'\\ 3.20 \pm 0.2\xi\\ 0.200 \pm 0.0'\\ 5.08 \pm 0.2\xi\\ 0.200 \pm 0.0'\\ 5.08 \pm 0.2\xi\\ 0.200 \pm 0.0'\\ 5.08 \pm 0.2\xi\\ 0.246 \pm 0.0'\\ 6.25 \pm 0.2\xi\\ 0.246 \pm 0.0'\\ 0.246 \pm 0.0'$	$\begin{array}{c c} & & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.024 ± 0.010 0.60 ± 0.25 0.020 ± 0.010 0.51 ± 0.010 1.30 ± 0.25 0.031 ± 0.010 0.79 ± 0.25 0.074 ± 0.010 1.88 ± 0.25 0.074 ± 0.010 1.8 ± 0.25 0.074 ± 0.010 1.12 ± 0.25 0.074 ± 0.010	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	inches mm inches mm inches mm inches mm inches mm inches mm inches mm inches mm
CSS1206 CSS1206 CSS1206 CSS1206 CSS2010 CSS2212	Rating (Watts) 1 1 2	 (Ω) 0.001 0.002 - 0.004 0.005 0.006 - 0.05 0.001 - 0.003 0.0031 - 0.1 0.0005 - 0.004 0.0041 - 0.075 0.0005 0.0005 	$\begin{array}{c} 0.126 \pm 0.0'\\ 3.20 \pm 0.2\xi\\ 0.126 \pm 0.0'\\ 5.08 \pm 0.2\xi\\ 0.200 \pm 0.0'\\ 5.08 \pm 0.2\xi\\ 0.200 \pm 0.0'\\ 5.08 \pm 0.2\xi\\ 0.246 \pm 0.0'\\ 6.25 \pm 0.2\xi\\ 0.246 \pm 0.0'\\ 0.25 \pm 0.25 \\ 0.25 \pm 0.25$	W 0 0.063 ± 0.01 1.60 \pm 0.25 0.010 ± 0.01 2.54 \pm 0.25 0.1100 ± 0.01 2.54 \pm 0.25 0.126 ± 0.01 3.20 \pm 0.25 0.126 ± 0.01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bottom Termination 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.020 ± 0.010 0.51 ± 0.25 0.024 ± 0.010 0.60 ± 0.25 0.020 ± 0.010 0.51 ± 0.010 0.51 ± 0.010 1.30 ± 0.25 0.031 ± 0.010 0.79 ± 0.25 0.074 ± 0.010 1.88 ± 0.25 0.074 ± 0.010 1.88 ± 0.25 0.074 ± 0.010 1.88 ± 0.25 0.044 ± 0.010 1.88 ± 0.25 0.044 ± 0.010 1.12 ± 0.25	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	inches mm inches mm inches mm inches mm inches mm inches mm inches mm

Ultra Precision Current Sensing Chip Resistor

Stackpole Electronics, Inc. Resistive Product Solutions

			Mechanical	Specificatio	ns (cont.)				
Гуре / Code	Maximum Power Rating (Watts)	Resistance Range (Ω)	L	W	Н	T1 Bottom Termination	T2 Top Termination	Unit	
		0.00025, 0.0005	0.268 ± 0.010	0.254 ± 0.010	0.039 ± 0.010	0.085 ± 0.010	0.085 ± 0.010	inches	
		,	6.81 ± 0.25 0.268 ± 0.010	6.45 ± 0.25 0.254 ± 0.010	0.99 ± 0.25 0.043 ± 0.010	$\frac{2.16 \pm 0.25}{0.085 \pm 0.010}$	2.16 ± 0.25 0.085 ± 0.010	mm inches	
		0.001	0.268 ± 0.010 6.81 ± 0.25	0.254 ± 0.010 6.45 ± 0.25	0.043 ± 0.010 1.09 ± 0.25	2.16 ± 0.25	0.085 ± 0.010 2.16 ± 0.25	mm	
			0.268 ± 0.010	0.254 ± 0.010	0.039 ± 0.010	0.085 ± 0.010	0.085 ± 0.010	inches	
	4 0.0015 0.002 0.0025	0.0015	6.81 ± 0.25	6.45 ± 0.25	0.99 ± 0.25	2.16 ± 0.25	2.16 ± 0.25	mm	
CSS2725		0.000	0.268 ± 0.010	0.254 ± 0.010	0.035 ± 0.010	0.071 ± 0.010	0.071 ± 0.010	inches	
		0.002	6.81 ± 0.25	6.45 ± 0.25	0.89 ± 0.25	1.80 ± 0.25	1.80 ± 0.25	mm	
		0.0025	0.268 ± 0.010	0.254 ± 0.010	0.035 ± 0.010	0.065 ± 0.010	0.065 ± 0.010	inches	
			6.81 ± 0.25	6.45 ± 0.25	0.89 ± 0.25	1.65 ± 0.25	1.65 ± 0.25	mm	
		0.003	0.268 ± 0.010	0.254 ± 0.010	0.035 ± 0.010	0.051 ± 0.010	0.051 ± 0.010	inches	
		0.000	6.81 ± 0.25	6.45 ± 0.25	0.89 ± 0.25	1.30 ± 0.25	1.30 ± 0.25	mm	
CSS2728	3	0.004 - 0.1	0.264 ± 0.010	0.283 ± 0.010	0.039 ± 0.010	0.045 ± 0.010	0.045 ± 0.010	inches	
	-		6.71 ± 0.25	7.19 ± 0.25	0.99 ± 0.25	1.14 ± 0.25	1.14 ± 0.25	mm	
CSSH2728	4	0.004 - 0.1	0.264 ± 0.010 6.71 ± 0.25	0.283 ± 0.010 7.19 ± 0.25	0.039 ± 0.010 0.99 ± 0.25	0.045 ± 0.010 1.14 ± 0.25	0.045 ± 0.010 1.14 ± 0.25	inches mm	
Гуре / Code	Maximum Power Rating (Watts)	Resistance Range (Ω)	L	W	н	T1 Bottom Termination	T2 Top Termination	Unit	
		0.0005 - 0.005	0.450 ± 0.010	0.270 ± 0.010	0.059 ± 0.010	0.127 ± 0.010	0.038 ± 0.010	inches	
CSS4527	5	0.0000 0.000	11.43 ± 0.25	6.85 ± 0.25	1.50 ± 0.25	3.22 ± 0.25	0.97 ± 0.25	mm	
	-	0.0051 - 0.1	0.450 ± 0.010	0.270 ± 0.010	0.059 ± 0.010	0.071 ± 0.010	0.038 ± 0.010	inches	
		0.0051 - 0.1	11.43 ± 0.25	6.85 ± 0.25	1.50 ± 0.25	1.82 ± 0.25	0.97 ± 0.25	mm	


	Recommended Pad Layouts								
Type / Code	Type / Code Maximum Power Rating (Watts) Resistance Range (Ω) a b i Unit								
CSS0603	CSS0603 0.33 0.005, 0.01, 0.015 0.039 0.050 0.020 inches 1.00 1.27 0.50 mm								
CSS0805	0.071 0.086 0.026 inches								
CSS1206	1	0.001 - 0.05	0.063 1.60	0.086 2.18	0.039 1.00	inches mm			

Rev Date: 01/28/2019 This specification may be changed at any time without prior notice Please confirm technical specifications before you order and/or use.

Ultra Precision Current Sensing Chip Resistor

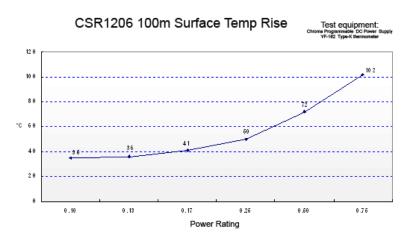
	R	ecommended Pac	Layouts					
Type / Code	Maximum Power Rating (Watts)	Resistance Range (Ω)	а	b	i	Unit		
0000040		0.001 - 0.003	0.114 2.89	0.115 2.92	0.048 1.22	inches mm		
CSS2010	1	0.0031 - 0.1	0.090 2.29	0.115 2.92	0.095 2.41	inches mm		
0000540		0.0005 - 0.004	0.120 3.05	0.145 3.68	0.050 1.27	inches mm		
CSS2512	2	0.0041 - 0.075	0.083	0.145 3.68	0.125 3.18	inches mm		
		0.0005	0.120 3.05	0.145 3.68	0.050	inches mm		
CSSH2512	3	0.0006 - 0.0029 0.0041 - 0.01	0.086 2.19	0.145 3.68	0.118 3.00	inches mm		
		0.003 - 0.004	0.110 2.79	0.145 3.68	0.071	inches mm		
CSS2725	4	0.00025 - 0.003	0.125 3.18	0.270	0.052	inches mm		
CSS2728	3	0.004 - 0.1	0.108 2.75	0.308 7.82	0.138 3.51	inches mm		
CSSH2728	4	0.004 - 0.1	0.108 2.75	0.308 7.82	0.138 3.51	inches mm		
		0.0005 - 0.005	0.189 4.80	0.344 8.74	0.217 5.51	inches mm		
CSS4527	5	0.0051 - 0.12	0.134 3.40	0.344 8.74	0.327 8.31	inches		

Power Derating Curve:

Stackpole Electronics, Inc.

Ultra Precision Current Sensing Chip Resistor

Resistive Product Solutions


Performance Characteristics							
Test	Test Method	Test Specification	Test Condition				
Temperature Coefficient of Resistance (TCR)	JIS-C-5201-1 4.8	Per specification (refer to Electrical Specification table)	$TCR (ppm/°C) = \frac{(R2-R1)}{R1 (T2-T1)} X 10^{6}$ R1: resistance of room temperature (T1) R2: resistance of 150°C (T2) T1: room temperature T2: temperature at 150°C				
Short Time Overload (rating power duration = 5 seconds)	JIS-C-5201-1 4.13	(∆R/R1) ≤ ±0.5%	The number of rated power are as follows: CSS0603-0.33W: 4 times rated power CSS0805-0.5W: 4 times rated power CSS1206-1W: 4 times rated power CSS2010-1W: 4 times rated power CSS2512-2W: 5 times rated power CSSH2512-3W: 3 times rated power CSS2725-4W: 4 times rated power CSS2728-3W: 3 times rated power CSSH2728-4W: 4 times rated power				
		(∆R/R1) ≤ ±2%	CSS4527-5W: 3 times rated power				
Insulation Resistance	JIS-C-5201-1 4.6	≥10 ⁹ Ω	100±15V DC for 1 minute				
Dielectric Withstanding Voltage	JIS-C-5201-1 4.7	Without break down	Applied 500V AC for 1 minute and limit surge current 50mA (max)				

Operating Temperature Range for sizes 0603 and 0805: -55°C to +150°C. Contact factory for operation at higher temperatures. Operating Temperature Range for all other sizes: -55°C to +225°C. Contact factory for operation at higher temperatures.

High Power Chip Resistors and Thermal Management

Stackpole has developed several surface mount resistor series in addition to our current sense resistors, which have had higher power ratings than standard resistor chips. This has caused some uncertainty and even confusion by users as to how to reliably use these resistors at the higher power ratings in their designs.

The data sheets for the RHC, RMCP, RNCP, CSR, CSRN, CSRF, CSS, and CSSH state that the rated power assumes an ambient temperature of no more than 100°C for the CSS / CSSH series and 70°C for all other high power resistor series. In addition, IPC and UL best practices dictate that the combined temperature on any resistor due to power dissipated and ambient air shall be no more than 105°C. At first glance this wouldn't seem too difficult, however the graph below shows typical heat rise for the CSR ½ 100 milliohm at full rated power. The heat rise for the RMCP and RNCP would be similar. The RHC with its unique materials, design, and processes would have less heat rise and therefore would be easier to implement for any given customer.

Resistive Product Solutions

The 102°C heat rise shown here would indicate there will be additional thermal reduction techniques needed to keep this part under 105°C total hot spot temperature if this part is to be used at 0.75 watts of power. However, this same part at the usual power rating for this size would have a heat rise of around 72°C. This additional heat rise may be dealt with using wider conductor traces, larger solder pads and land patterns under the solder mask, heavier copper in the conductors, via through PCB, air movement, and heat sinks, among many other techniques. Because of the variety of methods customers can use to lower the effective heat rise of the circuit, resistor manufacturers simply specify power ratings with the limitations on ambient air temperature and total hot spot temperatures and leave the details of how to best accomplish this to the design engineers. Design guidelines for products in various market segments can vary widely so it would be unnecessarily constraining for a resistor manufacturer to recommend the use of any of these methods over another.

Note: The final resistance value can be affected by the board layout and assembly process, especially the size of the mounting pads and the amount of solder used. This is especially notable for resistance values $\leq 50m\Omega$. This should be taken into account when designing.

RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 3). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament as amended by Directive (EU) 2015/863/EU as regards the list of restricted substances.

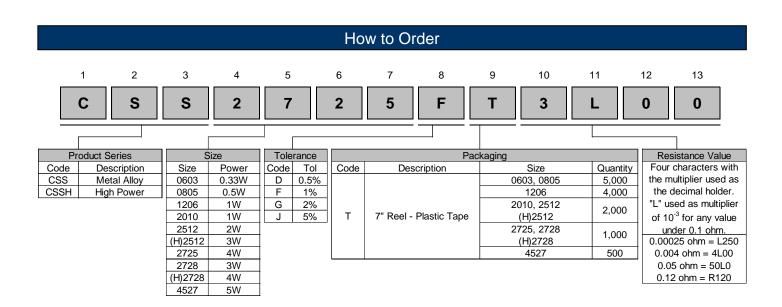
	RoHS Compliance Status									
Standard Product Series	luct Description Termination Series Lead-Free Termination Mfg. Effective Date Effective Date									
CSS	Ultra Precision Current Sensing Chip Resistor	SMD	YES	100% Matte Sn over Ni	Always	Always				
CSSH	Ultra Precision Current Sensing Chip Resistor (High Power)	SMD	YES	100% Matte Sn over Ni	Always	Always				

"Conflict Metals" Commitment

We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.


Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

Stackpole Electronics, Inc.

Ultra Precision Current Sensing Chip Resistor

Resistive Product Solutions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Current Sense Resistors - SMD category:

Click to view products by Stackpole manufacturer:

Other Similar products are found below :

5112 65709-330JE PF2512FKF7W0R007L PR2512FKF7W0R003L PR2512FKF7W0R005L RCWL0603R500JNEA ERJ-3BQF1R1V ERJ-L14UJ42MU 2-2176088-5 PF2512FKF7W0R006L PF2512FKF7W0R033L 2-2176089-4 CD2015FC-0.10-1% PR2512FKF7W0R004L CGSSL1R01J CGSSL1R047J RC1005F124CS RCWE2512R110FKEA RCWL0805R330JNEA RL73H3AR47FTE RL73K3AR56JTDF RL7520WT-R001-F RL7520WT-R009-G RL7520WT-R020-F RLP73N1ER43JTD TL3AR01FTDG TLR3A20DR0005FTDG LRC-LR2512LF-01-R820J ERJ-3BQF4R3V ERJ-L14UF68MU TLR3A20DR001FTDG TLR3A30ER0005FTDG WR06X104JGLJ RLP73K1ER82JTD TL2BR01F TLR3A20DR01FTDG WSR3R0600FEA32 ERJ-14BQF1R6U ERJ-14BQJR30U SP1220RJT SP1R12J ERJ-14BQF6R2U RL7520WT-R039-G PF1206FRF7W0R02L RL7520WT-R002-F RL7520WT-R047-F RLP73N2BR068FTDF RL7520WT-R005-F RCWE2512R220FKEA RCWE120625L0FMEA