

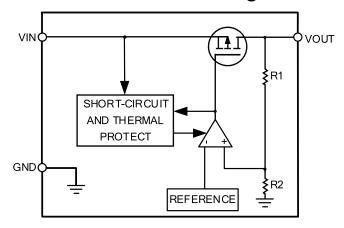
150mA, Low Power Consumption, High Voltage CMOS LDO Regulator

FEATURES

- Low Power Consumption
- 150mA Nominal Output Current
- Low Dropout Voltage
- Low Temperature Coefficient
- High Input Voltage (up to 36V)
- Output Voltage Accuracy: ±2.5%
- Operating Temperature Range: -40°C to +85°C
- Micro SIZE PACKAGES: SOT23-3 SOT89-3L and SOT89-3L(L-Type)

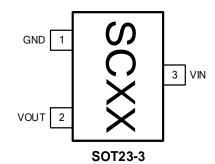
APPLICATIONS

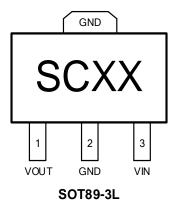
- Audio/Video Equipment
- Communication Equipment
- Battery-Powered Equipment
- Laptop, Palmtops, Notebook Computers

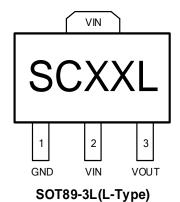

DESCRIPTION

The RS3005 series is a set of low power high voltage regulators implemented in CMOS technology. It can operate from 2.5V to 36V. which can provide 150mA output current. The device allows input voltage as high as 36V.

The RS3005 series is available in several fixed output voltages. CMOS technology ensures low dropout voltage and low quiescent current.


The RS3005 is available in Green SOT23-3 and SOT89-3L packages. It operates over an ambient temperature range of -40°C to +85°C.


Function Block Diagram



PIN CONFIGURATIONS

NOTE: XX indicate Output Voltage

For example: SC33 (V_{OUT}=3.3V)

PIN DESCRIPTION

	PIN			FUNCTION		
NAME	SOT23-3	SOT89-3L	SOT89-3L (L-Type)	FUNCTION		
GND	1	2	1	Ground.		
VIN	3	3	2	Regulator Input. Up to 36V input voltage. At least 1µF supply bypass capacitor is recommended.		
VOUT	2	1	3	Regulator Output. Recommended output capacitor range:1µF to 10µF.		

ABSOLUTE MAXIMUM RATINGS (1)

VIN to GND	0.3 to 40V
VOUT to GND0.3V to N	$Min (V_{IN} + 0.3V,7V)$
Power Dissipation, P _D @ T _A = 25°C	
SOT23-3	0.31W
SOT89-3L	1.3W
SOT89-3L(L-Type)	0.6W
Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Package Thermal Resistance @ T _A = 25	°C
SOT23-3	320°C/W
SOT89-3L	75°C/W
SOT89-3L(L-Type)	165°C/W
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	260°C
ESD Susceptibility	
HBM	
MM	100V

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERING NUMBER	Vouт(V)	PACKAGE LEAD	PACKAGE MARKING	PACKAGE OPTION
	RS3005-3.3YF3	3.3	SOT23-3	SC33 XXXX	Tape and Reel,3000
RS3005-3.3	RS3005-3.3YE3	3.3	SOT89-3L	SC33 XXXX	Tape and Reel,1000
	RS3005-3.3YE3L	3.3	SOT89-3L (L-Type)	SC33L XXXX	Tape and Reel,1000
RS3005-5.0	RS3005-5.0YF3	5.0	SOT23-3	SC50 XXXX	Tape and Reel,3000
	RS3005-5.0YE3	5.0	SOT89-3L	SC50 XXXX	Tape and Reel,1000
	RS3005-5.0YE3L	5.0	SOT89-3L (L-Type)	SC50L XXXX	Tape and Reel,1000

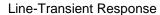
3

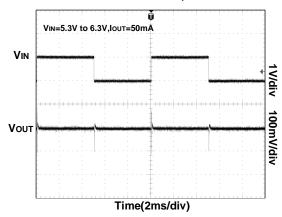
NOTE: XXXX = Date Code and Vendor Code.

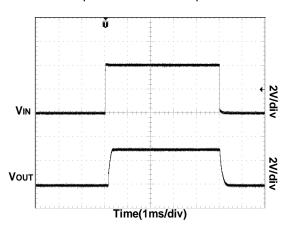
ELECTRICAL CHARACTERISTICS

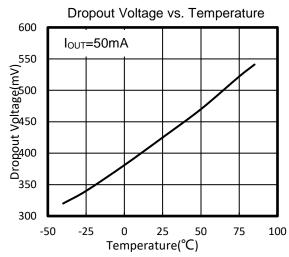
 $(V_{IN} = V_{OUT} + 2V, C_{IN} = C_{OUT} = 1\mu F, Full = -40^{\circ}C$ to +85°C, typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

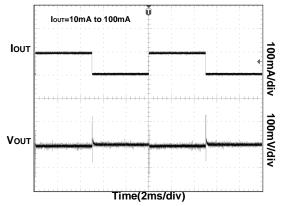
PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
Input Voltage	V _{IN}	V _{OUT} = 3.3V		+25°C	2.5(1)		36	V
Output Voltage Accuracy		I _{OUT} = 1mA		+25°C	-2.5	0	2.5	%
		NI- Id	VIN = VOUT + 2V	+25°C		11	18	μА
Ground Pin Current		No load	V _{IN} = 36V			16	25	
		I _{OUT} = 50mA				11		
Maximum Output Current (2)				+25°C	150			mA
Dropout Voltage (3)	V _{DROP}	Iоит = 150mA		+25°C		1300	1800	mV
Line Regulation	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$	$V_{IN} = V_{OUT} + 2V$ to 36V, $I_{OUT} = 1$ mA		+25°C		0.005	0.012	%/V
Load Regulation	ΔVουτ	V _{IN} =V _{OUT} +2V, I _{OUT} = 1mA to150mA		+25°C		10	25	mV
Power Supply Rejection	PSRR	V _{OUT} = 3.3V,		+25°C		65		dB
Ratio	PORK	I _{OUT} = 10mA	f = 1KHz	T-25 C		63		uБ
Output Voltage Temperature Coefficient (4)	$\frac{\Delta V_{OUT}}{\Delta T_{A} \times V_{OUT}}$	I _{OUT} = 1mA		FULL		70		ppm/°C
THERMAL PROTECTION								
Thermal Shutdown Temperature	T _{SHDN}					120		°C


NOTES:

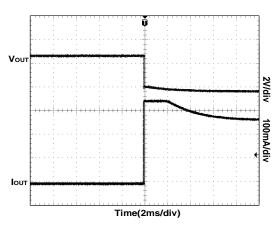

- 1. V_{IN} = V_{OUT} (NOMINAL) or 2.5V, whichever is greater.
- 2. Maximum output current is affected by the PCB layout, size of metal trace, the thermal conduction path between metal layers, ambient temperature and the other environment factors of system. Attention should be paid to the dropout voltage when $V_{IN} < V_{OUT} + V_{DROP}$.
- 3. The dropout voltage is defined as V_{IN} V_{OUT} , when V_{OUT} is 100mV below the value of V_{OUT} for $V_{IN} = V_{OUT}$ (NOMINAL) + 2V.
- 4. Output voltage temperature coefficient is defined as the worst-case voltage change divided by the total temperature range.

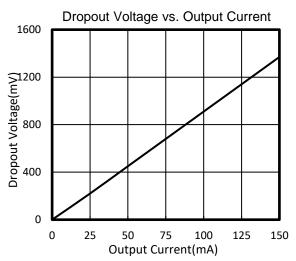

TYPICAL CHARACTERISTICS


 $V_{IN} = 5.3V$, $V_{OUT} = 3.3V$, $C_{IN} = C_{OUT} = 1\mu F$, $T_A = 25^{\circ}C$ unless otherwise noted.



Power-Up/Power-Down Output Waveform

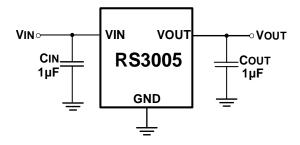




Load-Transient Response

Output Short Waveform

APPLICATION NOTES

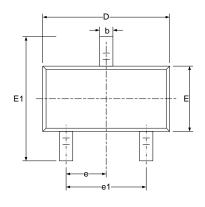

Input Capacitor and Output Capacitor

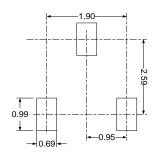
For proper operation, using a ceramic capacitor (C_{IN}) between $1\mu F$ and $10\mu F$ between the input pin and ground. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. The capacitor with larger value and lower ESR (equivalent series resistance) provides better PSRR and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application for stable operation, use a ceramic capacitor (C_{OUT}) between $1\mu F$ and $10\mu F$. Larger values in this range will help improve load transient response and reduce noise. Output capacitors of other dielectric types may be used, but are not recommended as their capacitance can deviate greatly from their rated value over temperature.

Thermal Considerations

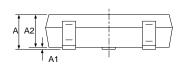
When the junction temperature is too high, the thermal protection circuitry sends a signal to the control logic that will shut down the IC. The IC will restart when the temperature has sufficiently cooled down.

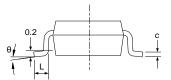
The maximum power dissipation is dependent on the thermal resistance of the case and the circuit board, the temperature difference between the die junction and the ambient air, and the rate of air flow. The GND pin must be connected to the ground plane for proper dissipation.


Typical Application Circuit

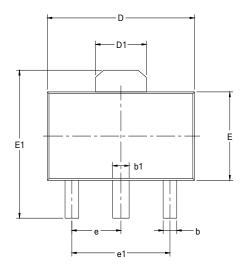

6

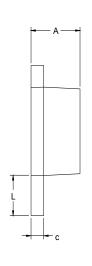
www.run-ic.com

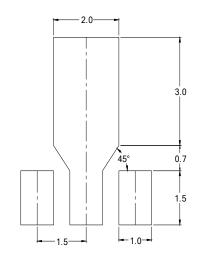



PACKAGE OUTLINE DIMENSIONS SOT23-3

RECOMMENDED LAND PATTERN (Unit: mm)






Cumhal	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037	(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SOT89-3L

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions	In Millimeters	Dimensions In Inches			
	Min	Max	Min	Max		
А	1.400	1.600	0.055	0.063		
b	0.320	0.520	0.013	0.020		
b1	0.400	0.580	0.016	0.023		
С	0.350	0.440	0.014	0.017		
D	4.400	4.600	0.173	0.181		
D1	1.550) REF	0.061 REF			
Е	2.300	2.600	0.091	0.102		
E1	3.940	4.250	0.155	0.167		
е	1.500	BSC	0.060 BSC			
e1	3.000) BSC	0.118 BSC			
L	0.900	1.200	0.035	0.047		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by RUNIC manufacturer:

Other Similar products are found below:

M38D29FFHP#U1 702103A 717726C 742457H MP20051DN-LF-Z R5F111PGGFB#30 AP7363-SP-13 NCP103AMX285TCG
NCV8664CST33T3G NCV8752AMX28TCG L9454 AP7362-HA-7 LX13043CLD TCR3DF185,LM(CT TCR3DF24,LM(CT
TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT TLF4949EJ L9708 L970813TR 030014BB 059985X EAN61387601
EAN61573601 NCP121AMX173TCG NCP4687DH15T1G NCV8703MX30TCG 701326R 702087BB 755078E TCR2EN28,LF(S
LM1117DT-1.8/NO LT1086CM#TRPBF AZ1085S2-1.5TRE1 MAX15101EWL+T NCV8170AXV250T2G SCD337BTG
TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S MAX15103EWL+T TS2937CZ-5.0 C0 MAX8878EUK30-T MAX663CPA NCV4269CPD50R2G NCV8716MT30TBG AZ1117IH-1.2TRG1 MP2013GQ-P