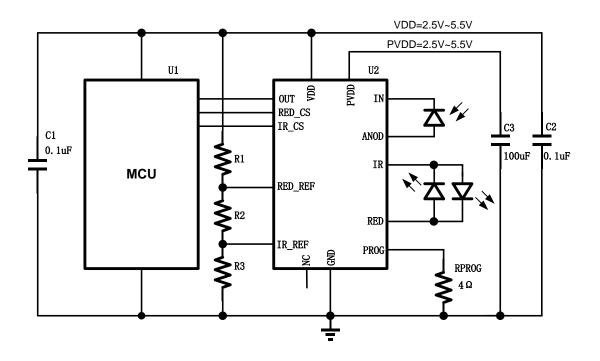
Integrated Analog Front-End for

Heart Rate Monitors and Low-Cost Pulse Oximeters

Features

- Fully-Integrated Analog Front-End for Pulse Oximeter Applications
- Receiver: High Accuracy Current to Frequency Converter up to 500KHz
- Transmitter: Flexible Pulse Sequencing and Timing Control with Integrated LED Driver (H-Bridge) 95dB Dynamic Range LED Currents Programmable with an External

Resistor and Analog Input Voltages


- Power Supplies: 2.5V to 5.5V
 Low Power: 1.25 mA at 3.3V Supply
- Specified Temperature Range: -40°C to +85°C
- Package: TSSOP14, QFN16

Applications

- Low-Cost Medical Pulse Oximeter Applications
- Optical HRM

Product Description

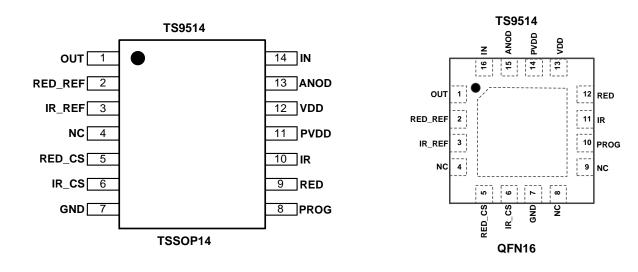
The TS9514 is a fully-integrated analog front-end (AFE) that is ideally suited for pulse Oximeter applications. The device consists of a low-noise I/F converter and a LED transmitter section. The I/F converter converts photodiode current to frequency signal. The LED transmitter currents can be easily controlled through analog input voltages. The TS9514's flexibility allows users to have complete control of the device's timing characteristics. The TS9514 is an AFE solution in TSSOP14 and QFN16 packages and is specified over the operating temperature from -40°C to +85°C.

Ordering Information

Product	Package-Lead	Package Option	Package Qty.	Operating Temperature Range
TS9514EQR	QFN16	Tape and Reel	2500	-40°C to +85°C
TS9514ETR	TSSOP14	Tape and Reel	2500	-40°C to +85°C

Absolute Maximum Ratings

Over operating free-air temperature range, unless otherwise noted.


		Value	Unit
VDD to GND	VDD to GND		V
Input current to a supply pins	ny pin except	±10	mA
lanut cument	Momentary	±50	mA
Input current	Continuous	±10	mA
Operating temper	Operating temperature range		°C
Storage temperat	Storage temperature range		°C
Maximum junction	Maximum junction temperature, TJ		°C
	Human body model (HBM)	±2000	V
Electrostatic discharge	Machine model (MM)	±200	V
(ESD) ratings	Charge device model(CDM)	±500	V

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjects to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN Configuration

NO. (TSSOP14)	NO. (QFN16)	Name	Function	Description
1	1	OUT	Output	Frequency output
2	2	RED_REF	Input	RED LED driver reference voltage input
3	3	IR_REF	Input	IR LED driver reference voltage input
4	4,8,9	NC	Input	No connection pin
5	5	RED_CS	Input	RED LED control input. High active
6	6	IR_CS	Input	IR LED Control Input. High active
7	7	GND	Supply	Supply ground pin
8	10	PROG	I/O	LED driver current program pin, connect a resistor to this Pin
9	12	RED	Output	RED LED drive output
10	11	IR	Output	IR LED drive output
11	14	PVDD	Supply	LED driver power supply pin
12	13	VDD	Supply	Power supply pin
13	15	ANOD	Input	Current input, connect to PIN diode anode
14	16	IN	Input	Current input, connect to PIN diode cathode

Table 1. PIN Descriptions

Electrical Characteristics

Minimum and maximum specification are at $T_{\mbox{\scriptsize A}}\mbox{=-40}^{\circ}\mbox{C}$ to +85°C. Typical specifications are at +25°C.

All specifications are at VDD=3.3V, unless otherwise noticed.

	Parameter	Test Conditions	Min	Тур	Max	Unit
Performance	e (Full-Signal Chain)					
M	Dessiver eventy veltare	0°C to +85°C	2.5		5.5	V
V _{DD}	Receiver supply voltage	-40°C to +85°C	2.7		5.5	V
PV_{DD}	LED driver supply voltage ¹		2.5		5.5	V
I _{DD}	Supply current	T _A =25°C, VDD=5.5V		1.25	1.7	mA
PRF	Pulse repetition frequency				1000	SPS
I-F Transimp	edance Amplifier					
fo	Output frequency	I _{IN} =1uA		100		kHz
	Full-scale frequency		500		1000	kHz
	Nonlinearity	f _O =0 to 100kHz		±1%		%FS
R _e	Current responsivity			100		kHz/μA
PSRR	Power-supply rejection ratio	f _O =100kHz		0.3		%/V
Transmitter						
	Full-scale output current ¹	$T_{A}=25^{\circ}C, V_{DD}=5V, R_{PROG}=4\Omega;$ $V_{CONTROL}=0.8V$		200		mA
VCONTROL	Analog input voltage		0		V _{DD} -2	V
	Output current offset	$V_{DD}=5V, R_{PROG}=4\Omega$		0.25	1.25	mA
	Transmitter noise dynamic	At 5mA output current		TBD		dB
	range, over 0.1Hz to 5Hz	At 25mA output current		TBD		dB
	bandwidth	At 50mA output current		TBD		dB
	Minimum on time of LEDs			50		μs
	LED current linearity vs analog input voltage	Percent of full-scale current		1%		
		From 0 to 50 mA		TBD		μs
	Output current settling time	From 50 mA to 0		TBD		μs
Temperature						
	Specified temperature range		-40		+85	°C
	Storage temperature range		-65		+150	°C

1. The Maximum LED output current depends on PV_{DD}, R_{PROG} resistance and LED forward voltage strongly; it can be smaller than the full-scale current.

Trusignal Microelectronics

The TS9514 is a complete analog front-end (AFE) circuit targeting pulse oximeter applications. The device consists of a low-noise I/F converter and a LED transmitter section. The I/F converter converts the photodiode current to frequency signal precisely. The output of the device connects directly to a high resolution timer of the external microcontroller (MCU) for which an A/D converter is not necessary. The LED transmitter current can be adjusted through analog input voltages.

Receiver

The receiver consists of a high precision current-to-frequency (I/F) converter section. The I/F converter converts the photodiode current to frequency signal with high dynamic range and linearity. The converter continuously converts input current to frequency without being interrupted by the LED control signals.

Transmitter Section

The transmitter section integrates a voltage controlled constant current source, an H-bridge LED driver and its control logic. Two LED driver schemes are supported: an H-bridge drive for a two-terminal back-to-back LED package and a push-pull drive for a three-terminal LED package. The on-off of the LED current is controlled by logic signals at the input pins of RED_CS and IR_CS, and each LED current can be adjusted by the corresponding analog input voltage independently. An external resistor R_{PROG} at the PROG pin sets the ratio of the input voltage to the LED current and the maximum output current is primarily dependent on R_{PROG} , the power supply voltage PV_{DD}, and the forward voltage of the LEDs.

TS9514

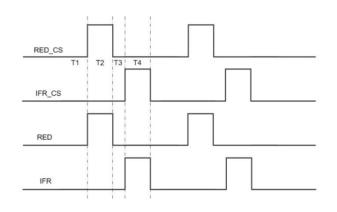


Figure 1. Timing of LED Control.

LED Current Control

The output currents of the transmitter are controlled by the analog input voltages and are given by the following equation:

$$I_{LED} = \frac{V_{REF}}{R_{PROG}}$$

where V_{REF} is the voltage at RED_REF or IR_REF pin. The voltages at RED_REF pin and IR_REF pin control the RED LED current and IR LED current respectively and independently.

Timing Diagram of the Transmitter

Figure 1 shows the timing diagram for the LED transmitter control. Through the internal logic, signals at the RED_CS and IR_CS pins control the switches of the H-Bridge. In T1 and T3 cycles, both LEDs are turned off. In T2 and T4 cycles, RED LED and IR LED are turned on respectively. Both of the RED_CS and IR_CS pins are active 'high', however, when both are high at the same time, there will be no current flow through the two-terminal back-to-back packaged LEDs (see Table 2 and Table 3).

Table 2. Transmitter True Table (two-terminal back-to-back packaged LEDs)

Inp	uts	Outputs			
RED_CS	IR_CS	RED	IR	RED Transmit	IR Transmit
0	0	Z	Z	OFF	OFF
1	0	Н	L	ON	OFF
0	1	L	Н	OFF	ON
1	1	Н	Н	OFF	OFF

Table 3. Timing Requirements

Parameter			Тур	Max	Unit
t _{RED_CS}	Red LED on time, active high	50			μs
t _{IR_CS}	Infrared LED on time, active high	50			μs
t _{INT}	The time interval between Red LED on and IR LED on	50			μS

Trusignal Microelectronics

Application Examples

Figure 2 and Figure 3 show the typical application circuit of TS9514 as an analog front-end for Pulse Oximeters. Please note that the pins of RED and IR and pins of VDD and PVDD are interchanged between the two packages.

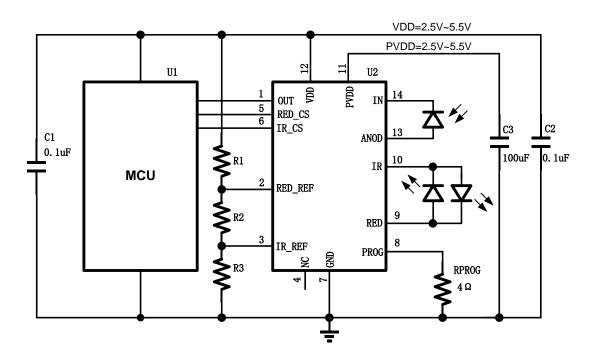


Figure 2. Typical Application of TS9514 in TSSOP14 Package.

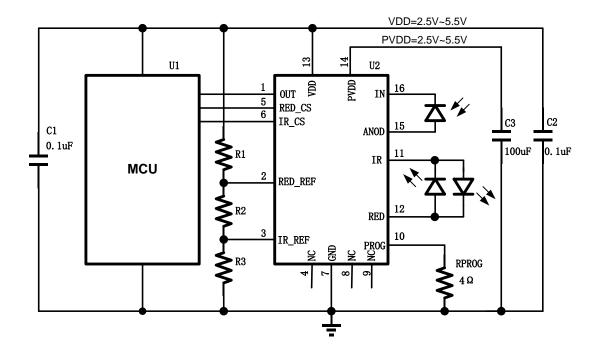
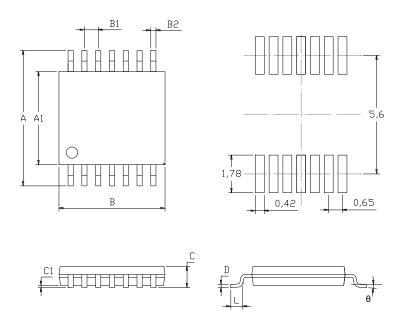
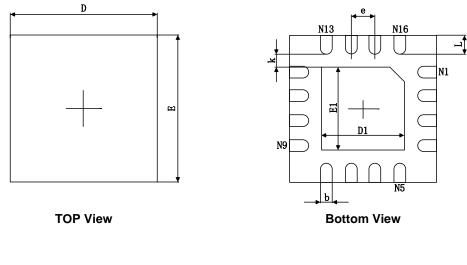
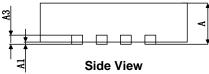



Figure 3. Typical Application of TS9514 in QFN16 Package.

Mechanical Dimensions


TSSOP-14 PACKAGE MECHANICAL DRAWING



TSSOP-14 PACKAGE MECHANICAL DATA

	dimensions				
symbol	millin	neters	inches		
	min	max	min	max	
А	6.2	6.6	0.2441	0.2598	
A1	4.3	4.5	0.1693	0.1772	
В	4.9	5.1	0.1929	0.2008	
B1	0.65		0.0256		
B2	0.19	0.3	0.0075 0.0118		
С		1.20MAX	0.0472M		
C1	0.05	0.15	0.0020	0.0059	
L	0.5	0.75	0.0197	0.0295	
D	0.1	0.2	0.0039	0.0079	
θ	0°	8°	0 [°]	8°	

QFN-16 PACKAGE MECHANICAL DRAWING

	dimensions					
symbol	millin	neters	inches			
	min	max	min	max		
А	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035		
A1	0.000	0.050	0.000	0.002		
A3	0.203	3REF.	0.008REF.			
D	2.924	3.076	0.115	0.121		
E	2.924	3.076	0.115	0.121		
D1	1.600	1.800	0.063	0.071		
E1	1.600	1.800	0.063	0.071		
k	0.200MIN.		0.00	8MIN		
b	0.180	0.280	0.007	0.011		
е	0.500TYP.		0.020)TYP.		
L	0.324	0.476	0.013	0.019		

QFN-16 PACKAGE MECHANICAL DATA

CONTACT INFORMATION

Trusignal Microelectronics

328 Xinghu Street, Suite 22-207, Suzhou Industrial Park, Suzhou, 215123, PR China

 Email:
 support@trusignal.com; sales@trusignal.com

 Phone:
 +86 512-65923982

 Fax:
 +86 512-65923995

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiple Function Sensor Development Tools category:

Click to view products by Trusignal Microelec manufacturer:

Other Similar products are found below :

RD-KL25-AGMP01 PTC-04-DB-ACT PTC-04-DB-FL FRDM-K22F-SA9500 EV_ICM-20649 MULTI-SENSE-GEVB FRDM-STBC-SA9500 BRKT-STBC-SA9500 3397 STEVAL-MKIT01V1 EVAL-CN0411-ARDZ SEN0004 KT-TVOC-200-TB200A KT-NmHc-200-TB200A SEN0344 PIM520 PIM518 PIM519 PIM510 103030375 ZSSC4132KIT ADIS16505-3/PCBZ SEN-16794 PIM502 SEN0359 4829 EV26Q64A EVAL-AD7746RDZ EVAL-AD7746HDZ AS7022-EVALKIT RTK0ESXB10C00001BJ MAX30134EVSYS# EV-CBM-PIONEER1-1Z EVAL-ADPD188BIZ-S2 EVAL-ADCM-1 EVAL-CN0507-ARDZ SI118X-KIT ALTEHTG2SMIP EVAL-CN0533-EBZ MIKROE-4305 MAX30101WING# MIKROE-4192 MIKROE-4049 OB1203SD-U-EVK OB1203SD-BT-EVK MIKROE-4037 101990644 MIKROE-4267 MIKROE-4265 MIKROE-4330