

General Description

The LB1117 is a low dropout three terminal regulator that features a low quiescent current, low input, output and dropout voltages, as well as over temperature shutdown. The output voltage of the LB1117 is set at the factory and trimmed to $\pm 1\%$. The LB1117 is stable with a aluminum electrolytic capacitor of 10uF.

This family of regulators can provide either a stand-alone power supply solution or act as a post regulator for switch mode power supplies. They are particularly well suited for applications requiring low input and output voltage.

Features

- Min. 1.1A Output Current Limiter
- 1.4V Maximum Full load Dropout Voltage
- 3-Terminal Adjustable or Fixed , 1.5V, 1.8V, 2.5V, 3.3V and 5V Output Voltage
- Fast Load Transient Response
- Built-in Over Current Protection
- Built-in Over Temperature Protection
- Good Noise Rejection Capability
- Stable with Aluminum Electrolytic Capacitor Cap of 10uF
- Package: SOT223-3L, SOT89-3L, TO252-3L
- RoHS Compliant & Halogen Free

Applications

- PC Mother Board Applications
- LCD TV/ Monitors
- Communication Devices

Please be aware that an **Important Notice** concerning availability, disclaimers, and use in critical applications of LSC products is at the end of this document.

Block Diagram

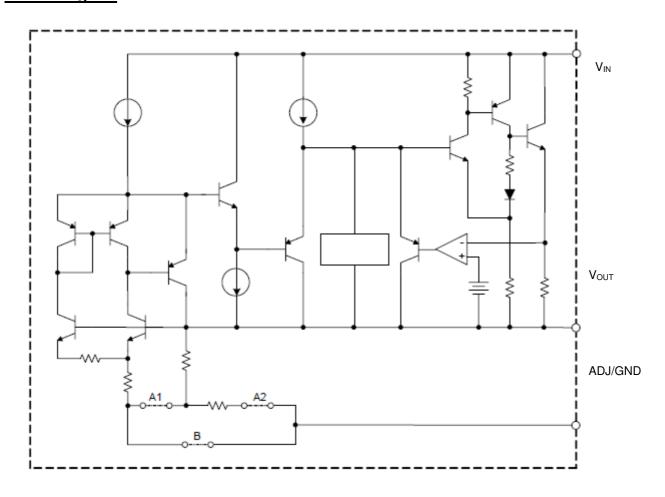


Figure 1 . Block Diagram

Ordering Information

Pin-o	ut Version	Package Type	Pin Count	Output Voltage
A (SOT223-3L) (SOT89-3L) (TO252-2L)	1. ADJ/GND 2. VOUT 3. VIN	AD : SOT223 AT : SOT89 AC : TO252	A : 2 B : 3	ADJ: Adjustable 150: 1.50V 180: 1.80V 250: 2.50V 330: 3.30V 500: 5.00V

Pin Assignment

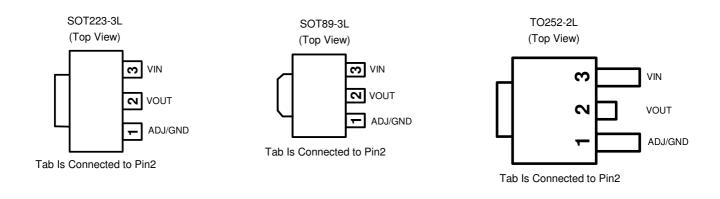


Figure 2. Pin Assignments

Pin Descriptions

Pin Name Pin Description	
ADJ/GND	Vo Adjusting Pin or Ground Pin
VOUT	Voltage Output
V/N	Voltage Input

Absolute Maximum Ratings (at T_A=25°C)

Operate over the "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to such conditions for extended time may still affect the reliability of the device.

Parameter	Value
DC Supply Voltage	-0.3 ~ 20V
Power Dissipation	Internally Limited
Maximum Junction Temperature (note1)	150°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature	260°C, to 10 sec
ESD Withstand Voltage - Human Body Model (HBM) - Machine Model (MM)	2000V 200V
Moisture Sensitivity	Please Refer The Moisture Sensitivity Label on the IC packing bag material for more detail.

Note 1: Maximum Junction Temperature is the temperature limit of this device. Over this limit, the IC may be damaged permanently.

Operation Junction Temperature Range is the range the device intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, please refer the Electrical Characteristics

Recommended Operating Conditions

Characteristics	Symbol	Min	Max	Unit
Input Voltage	V_{IN}	V _{OUT} +1.5V	15	V
Output Current	I _{OUT}	10	1000	mA
Operating Junction Temperature Range	T_J	-40	125 (Note2)	°C

Note 2: If the IC experienced OTP, then the temperature may need to drop to <125 °C to let the IC recover.

Electrical Characteristics

TA=25°C, C_{IN} = C_{OUT} =10 μ F aluminum electrolytic capacitance, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Reference Voltage	V_{REF}	LB1117-ADJ $V_{IN}=V_{OUT}+1.5V$, $I_{OUT}=10mA$	1.238	1.250	1.262	V
		LB1117-1.5V $3V \le V_{IN} \le 12V$, $I_{OUT} = 10mA$	1.485	1.500	1.515	
		LB1117-1.8V $3.3V \le V_{IN} \le 12V$, $I_{OUT} = 10$ mA	1.782	1.800	1.818	
Output Voltage	V _{OUT}	LB1117-2.5V 4V ≤ V _{IN} ≤ 12V, I _{OUT} = 10mA	2.475	2.500	2.525	٧
		LB1117-3.3V $4.8V \le V_{IN} \le 12V$, $I_{OUT} = 10mA$	3.267	3.300	3.333	
		LB1117-5.0V $6.5V \le V_{IN} \le 12V$, $I_{OUT} = 10mA$	4.950	5.000	5.05	
Line Regulation	ΔV_{OUT}	LB1117- ADJ/1.5V/1.8V/2.5V/3.3V/5.0V V_{OUT} +1.5V < V_{IN} < 7V, I_{OUT} = 10mA (Note 3)	-	0.1	0.3	%
$(=\Delta V_{OUT}/\Delta V_{IN})$	ΔV _{OUT}	LB1117- ADJ/1.5V/1.8V/2.5V/3.3V/5.0V V_{OUT} +1.5V < V_{IN} < 12V, I_{OUT} = 10mA (Note 3)	- 0.1	0.5	%	
		LB1117-ADJ $V_{IN} = V_{OUT} + 1.5V$, 10mA < $I_{OUT} < 1A$ (Note 3)	-	-	1	%
		LB1117-1.5V $V_{IN} = 3.0V, 10mA < I_{OUT} < 1A \text{ (Note 3)}$	-	12	15	mV
Load Regulation	V	LB1117-1.8V $V_{IN} = 3.3V$, 10mA < I_{OUT} < 1A (Note 3)	- I 1h	15	18	mV
(=∆ V _{OUT})	V _{OUT}	LB1117-2.5 V $V_{IN} = 4.0V$, $10mA < I_{OUT} < 1A$ (Note 3)	-	20	25	mV
		LB1117-3.3 V $V_{IN} = 5.0V$, $10mA < I_{OUT} < 1A$ (Note 3)	-	26	33	mV
		LB1117-5.0 V $V_{IN} = 8.0V$, $10mA < I_{OUT} < 1A$ (Note 3)	-	40	50	mV
Dropout Voltage	V _{DO}	LB1117- ADJ/1.5V/1.8V/2.5V/3.3V/5.0V $I_{OUT} = 0.8A, \Delta V_{OUT} = V_{OUT} X 1\%$ 0°C \leq TJ \leq 125°C	-	1.3	1.4	V
Output Current Limit (Note4)	I _{LIMIT}	LB1117- ADJ/1.5V/1.8V/2.5V/3.3V/5.0V (V _{IN} -V _{OUT})= 2V	1100	-	1	mA
Minimum Required Load Current	I _{L(min)}	LB1117- ADJ/1.5V/1.8V/2.5V/3.3V/5.0V 0°C ≤ TJ ≤ 125°C	-	5	10	mA
Adjust Pin Current	I _{ADJ}	LB1117–ADJ, V _{IN} =V _{OUT} +1.5V, I _{OUT} =10mA	-	50	120	uA

Electrical Characteristics (Contd.)

 $TA=25^{\circ}C,\,C_{IN}=C_{OUT}=10\mu F \,\, aluminum \,\, electrolytic \,\, capacitance, \,unless \,\, otherwise \,\, specified.$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Adjust Pin Current Change	ΔI_{ADJ}	LB1117–ADJ $V_{IN}=V_{OUT}+1.5V \text{ to } V_{IN}=12V,\\ I_{OUT}=10\text{mA to } 800\text{mA}$	-	4	7	uA
Ripple Rejection (Note 4)	PSRR	V _{IN} =5V, V _{OUT} =1.25V, I _{OUT} =0.01A, 120 Hz sine wave, C _{OUT} =10uF aluminum electrolytic Cap.	-	70	1	dB
RMS Output Noise (% of VOUT) (Note 4)	e _N	10Hz ≤ f ≤ 10 kHz	-	0.003	1	%
VOUT Temperature Coefficient (Note 4)	T _C	TA = 25°C, 30ms Pulse	-	100	1	ppm/°C
Thermal Shutdown (Note 4)	T_{SD}		-	150	ı	°C
Thermal Shutdown Hysteresis	$T_{SD(Hys)}$		-	25		°C

Note 3: Line and load regulation are measured by low duty cycle pulse testing and the junction temperature is kept at 25 degree C. The V_{OUT} of load regulation is measured at the out lead.

Note 4 : Guarantee by design. Not 100% tested in manufacturing.

Application Circuit

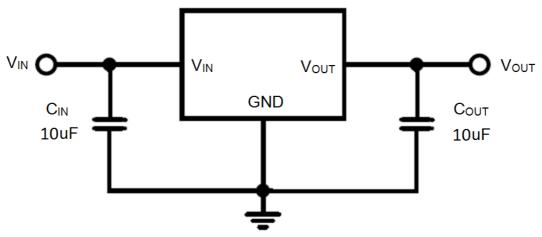


Figure 3(a). Typical Application Circuit – Fixed Output Versions

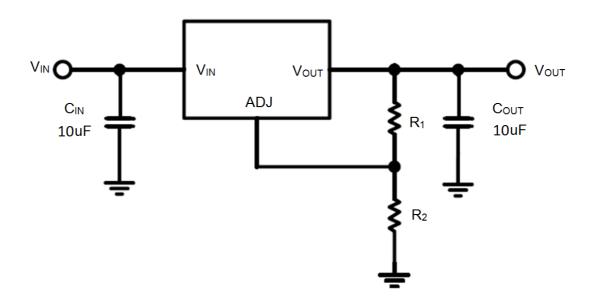
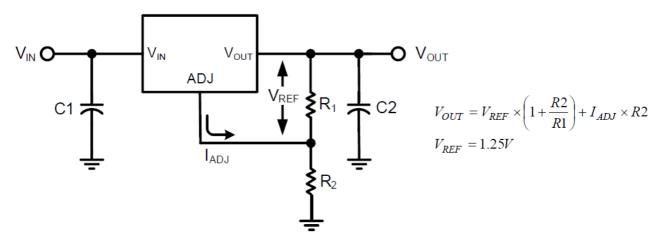
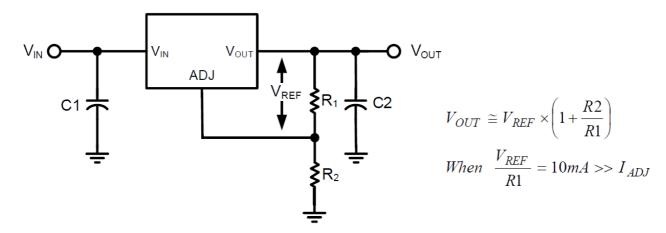
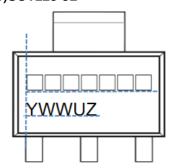
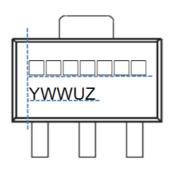



Figure 3(b). Typical Application Circuit - Adjustable Output Version


The LB1117 keeps a constant 1.25V between the output pin and the adjust pin. By placing a resistor R_1 across these two pins a constant current flows through R_1 , adding to the I_{ADJ} current and into the R_2 resistor producing a voltage equal to the $(1.25/R_1)^*R_2 + I_{ADJ}^*R_2$ which will be added to the 1.25V to set the output voltage.

Application Circuit (Contd.)

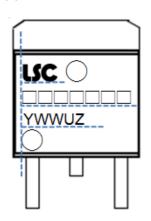

This is summarized in the above equation. Since the minimum load current requirement of the LB1117 is 10mA, R_1 is typically selected to be 121Ω resistor so that it automatically satisfies the minimum current requirement. Notice that since I_{ADJ} is typically in the range of 50uA it only adds a small error to the output voltage and should only be considered when a very precise output voltage setting is required. For example, in a typical 3.3V application where $R1=121\Omega$ and $R2=200\Omega$. The C1, C2 capacitor are 10uF (Aluminum electrolytic capacitor).


Marking Information

(1)SOT223-3L

- 2) YWWUZ = Date Code & Internal Code Y = Year WW = Week UZ = Internal Code

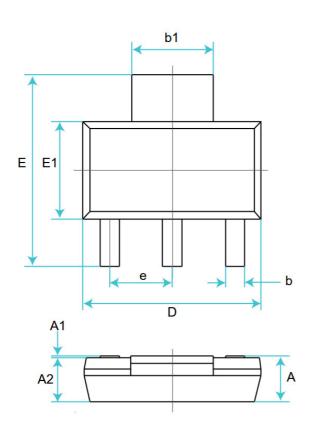
(2)SOT89-3L

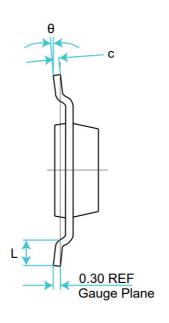


- 2) YWWUZ = Date Code & Internal Code Y = Year WW = Week UZ = Internal Code

Marking Information (Contd.)

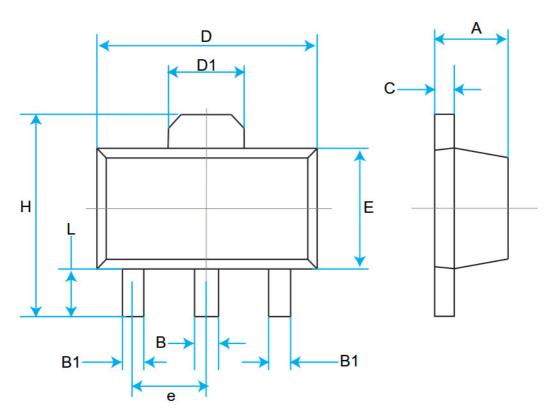
(3)TO252-2L




- 2) YWWUZ = Date Code & Internal Code Y = Year WW = Week UZ = Internal Code

Mechanical Information

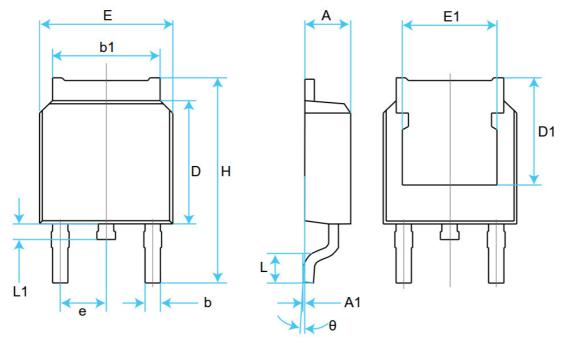
(1) Package type: SOT223-3L


Unit: mm

Symbol	Min	Max
А	-	1.80
A1	0.20	0.10
A2	1.45	1.75
b	0.66	0.84
С	0.23	0.35
D	6.30	6.70
b1	2.90	3.10
E	6.70	7.30
E1	3.30	3.70
е	2.30	BSC
L	0.75	-
θ	0°	10°

Mechanical Information (Contd.)

(2) Package type: SOT89-3L


Unit: mm

Symbol	Min	Max
A	1.40	1.60
В	0.40	0.58
B1	0.32	0.52
С	0.35	0.46
D	4.30	4.70
D1	1.70	REF
Е	2.30	2.70
е	1.50	TYP
Н	3.94	4.70
L	0.80	1.20

Mechanical Information (Contd.)

(3) Package type: TO252-2L

Unit: mm

Symbol	Min	Max	
А	2.200	2.400	
A1	-	0.127	
b	0.660	0.860	
b1	5.334	REF	
D	6.000	6.200	
D1	5.300 REF		
E	6.500	6.700	
E1	4.830	REF	
е	2.286	BSC	
Н	9.800	10.400	
L	1.400	1.700	
L1	0.600	1.000	
θ	0°	8°	

MSL (Moisture Sensitive Level) Information

IPC/JEDEC J-STD-020D.1 Moisture Sensitivity Levels Table

				S	OAK REQUIR	EMENTS		
	FLOOR LIFE				Accelerated Equivalent 1			
LEVEL			Standard		eV 0.40-0.48	eV 0.30-0.39	CONDITION	
	TIME	CONDITION	TIME (hours)	CONDITION	TIME (hours)	TIME (hours)	CONDITION	
1	Unlimited	≤30 °C /85% RH	168 +5/-0	85 °C /85% RH	NA	NA	NA	
2	1 year	≤30 °C /60% RH	168 +5/-0	85 °C /60% RH	NA	NA	NA	
2a	4 weeks	≤30 °C /60% RH	696 ² +5/-0	30 °C /60% RH	120 -1/+0	168 -1/+0	60 °C/ 60% RH	
3	168 hours	≤30 °C /60% RH	192 ² +5/-0	30 °C /60% RH	40 -1/+0	52 -1/+0	60 °C/ 60% RH	
4	72 hours	≤30 °C /60% RH	96 ² +2/-0	30 °C /60% RH	20 +0.5/-0	24 +0.5/-0	60 °C/ 60% RH	
5	48 hours	≤30 °C /60% RH	72 ² +2/-0	30 °C /60% RH	15 +0.5/-0	20 +0.5/-0	60 °C/ 60% RH	
а	24 hours	≤30 °C /60% RH	48 ² +2/-0	30 °C /60% RH	10 +0.5/-0	13 +0.5/-0	60 °C/ 60% RH	
6	Time on Label (TOL)	≤30 °C /60% RH	TOL	30 °C /60% RH	NA	NA	NA	

Note 1: CAUTION - To use the "accelerated equivalent" soak conditions, correlation of damage response (including electrical, after soak and reflow), should be established with the "standard" soak conditions. Alternatively, if the known activation energy for moisture diffusion of the package materials is in the range of 0.40 - 0.48 eV or 0.30 - 0.39 eV, the "accelerated equivalent" may be used. Accelerated soak times may vary due to material properties (e.g. mold compound, encapsulant, etc.). JEDEC document JESD22-A120 provides a method for determining the diffusion coefficient.

Note 2: The standard soak time includes a default value of 24 hours for semiconductor manufacturer's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility. If the actual MET is less than 24 hours the soak time may be reduced. For soak conditions of 30 °C/60% RH, the soak time is reduced by 1 hour for each hour the MET is less than 24 hours. For soak conditions of 60 °C/60% RH, the soak time is reduced by 1 hour for each 5 hours the MET is less than 24 hours. If the actual MET is greater than 24 hours the soak time must be increased. If soak conditions are 30 °C/60% RH, the soak time is increased 1 hour for each hour that the actual MET exceeds 24 hours. If soak conditions are 60 °C/60% RH, the soak time is increased 1 hour for each 5 hours that the actual MET exceeds 24 hours.

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for LDO Voltage Regulators category:

Click to view products by Lite-On manufacturer:

Other Similar products are found below:

M38D29FFHP#U1 702103A 717726C 742457H MP20051DN-LF-Z R5F111PGGFB#30 AP7363-SP-13 NCP103AMX285TCG
NCV8664CST33T3G NCV8752AMX28TCG L9454 AP7362-HA-7 LX13043CLD TCR3DF185,LM(CT TCR3DF24,LM(CT
TCR3DF285,LM(CT TCR3DF31,LM(CT TCR3DF45,LM(CT TLF4949EJ L9708 L970813TR 030014BB 059985X EAN61387601
EAN61573601 NCP121AMX173TCG NCP4687DH15T1G NCV8703MX30TCG 701326R 702087BB 755078E TCR2EN28,LF(S
LM1117DT-1.8/NO LT1086CM#TRPBF AZ1085S2-1.5TRE1 MAX15101EWL+T NCV8170AXV250T2G SCD337BTG
TCR3DF27,LM(CT TCR3DF19,LM(CT TCR3DF125,LM(CT TCR2EN18,LF(S MAX15103EWL+T TS2937CZ-5.0 C0 MAX8878EUK30-T MAX663CPA NCV4269CPD50R2G NCV8716MT30TBG AZ1117IH-1.2TRG1 MP2013GQ-P