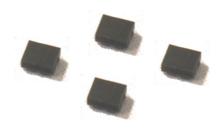


# **Datasheet of SAW Device**


## **SAW Duplexer**

for Band28B / Unbalanced / LR /1814

Murata PN: SAYEY733MBC0F0A

### Feature

- > LTE-A
- High Isolation
- For Envelope Tracking



Note: Murata SAW Component is applicable for Cellular /Cordless phone (Terminal) relevant market only.

Please also read caution at the end of this document.

Revision

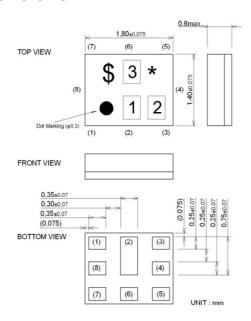


#### **General Information**

- Operating temperature : -20 to +85 deg.C - Storage temperature : -40 to +85 deg.C

- Input Power : +30 dBm 5000 h +50 deg.C

D.C. Volatage between the terminals : 3V (25+/-2 deg.C)
 Minimum Resistance between the terminals : 10M ohm
 RoHS compliance : Yes


- ESD (ElectroStatic Discharge) sensitive device



### Package Dimensions & Recommended Land Pattern

unit: mm

#### **Dimensions**



Marking: Laser Printing

\* : Month code(Refer to the table A)

\$: Date code(Refer to the table B)

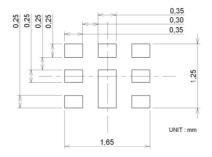
1:7

2 : E

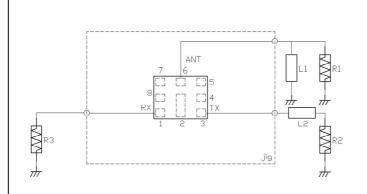
3 : A

#### **Terminal Number**

(6): Ant


(3):TX

(1): RX


Others: GND

Notice) Please refer to Measurement Circuit for Port information in detail.

#### Land Pattern



### Measurement Circuit (Top Thru View)



| R1 : 50 ohm | L1 :8nH(Ideal inductor)    |
|-------------|----------------------------|
|             | :8.2nH(LQP03TN8N2)         |
|             | <reference></reference>    |
| R2 : 50 ohm | L2 :10.4nH(Ideal inductor) |
| R3 : 50 ohm |                            |
|             |                            |
|             |                            |
|             |                            |
|             |                            |



## Electrical Characteristic < TX→ANT. >

| T                     |                    |                 |                    | Characteristics<br>(-20 to +85 deg.C) |          |            | Unit       | Note              |                                 |
|-----------------------|--------------------|-----------------|--------------------|---------------------------------------|----------|------------|------------|-------------------|---------------------------------|
|                       |                    |                 |                    |                                       | min.     | typ.*      | max.       |                   |                                 |
| Center Frequency      |                    |                 |                    |                                       |          | 733        |            | MHz               |                                 |
| Insertion Loss        | 718.25             |                 | 747.75             |                                       |          | 2.3        | 2.7        | dB                |                                 |
| Dinale Deviation      |                    | to              | 745.5              | MHz                                   |          | 1.7        | 2.3        | dB <sub>INT</sub> | Any 4.5MHz                      |
| Ripple Deviation VSWR |                    | to              | 748.<br>748.       | MHz<br>MHz                            |          | 0.9<br>1.8 | 1.5<br>2.0 | dB                | Any 5MHz                        |
| VSVVR                 |                    | to              | 748.               | MHz                                   |          | 1.6        | 2.0        |                   | TX<br>ANT.                      |
| Absolute Attenuation  |                    | to<br>to        | 698.               | MHz                                   | 30       | 35         | 2.0        | dB                | ANT.                            |
| Absolute Attendation  |                    | to              | 710.               | MHz                                   | 19       | 35         |            | dB                | DTV Rejection                   |
|                       |                    | to              | 710.               | MHz                                   | 30       | 35         |            | dB                | +23 to +27deg.C                 |
|                       |                    | to              | 710.               | MHz                                   | 30       | 40         |            | dB                | Average                         |
|                       |                    | to              | 773.               | MHz                                   | 15       | 32         |            | dB                |                                 |
|                       | 773.               | to              | 803.               | MHz                                   | 44       | 49         |            | dB                | RX                              |
|                       |                    | to              | 894.               | MHz                                   | 30       | 37         |            | dB                |                                 |
|                       |                    | to              | 1250.              | MHz                                   | 35       | 39         |            | dB                | GPS L2                          |
|                       |                    | to              | 1510.              | MHz                                   | 32       | 38         |            | dB                | 2f / B21 RX                     |
|                       | 1559.              | to              | 1563.              | MHz                                   | 32       | 38         |            | dB                | Compass                         |
|                       | 1565.42            | to              | 1573.37            | MHz                                   | 32       | 38         |            | dB                | Wideband GPS lower side         |
|                       | 1573.37            | to              | 1577.47            | MHz                                   | 32       | 38<br>38   |            | dB                | Regular GPS                     |
|                       | 1577.47<br>1597.55 | (O              | 1585.42<br>1605.89 | MHz<br>MHz                            | 32<br>32 | 38         |            | dB<br>dB          | Wideband GPS upper side GLONASS |
|                       |                    |                 | 1880.              | MHz                                   | 31       | 40         |            | dB                | DCS                             |
|                       |                    | <u>to</u><br>to | 1995.              | MHz                                   | 31       | 41         |            | dB                | B2 / B25                        |
|                       |                    | to              | 2025.              | MHz                                   | 31       | 42         |            | dB                | B34                             |
|                       |                    | to              | 2244.              | MHz                                   | 28       | 35         |            | dB                | 3f                              |
|                       |                    | to              | 2484.              | MHz                                   | 21       | 27         |            | dB                | ISM 2.4                         |
|                       |                    | to              | 2620.              | MHz                                   | 17       | 23         |            | dB                | B38                             |
|                       |                    | to              | 2992.              | MHz                                   | 15       | 18         |            | dB                | 4f                              |
|                       | 4900.              | to              | 5950.              | MHz                                   | 20       | 29         |            | dB                | ISM 5G                          |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       | ļ        | ļ          |            |                   |                                 |
|                       |                    |                 |                    |                                       |          | ļ          |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          | -          |            |                   |                                 |
|                       |                    |                 |                    |                                       |          | <u> </u>   |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |
|                       |                    |                 |                    |                                       |          |            |            |                   |                                 |

<sup>\*</sup> Typical value at 25±2deg.C



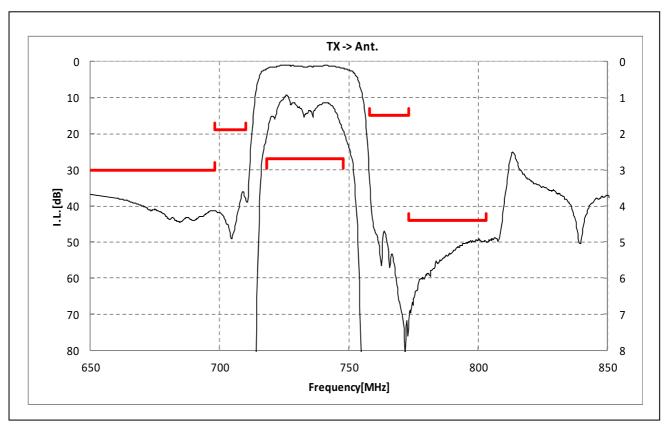
### Electrical Characteristic < ANT.→RX >

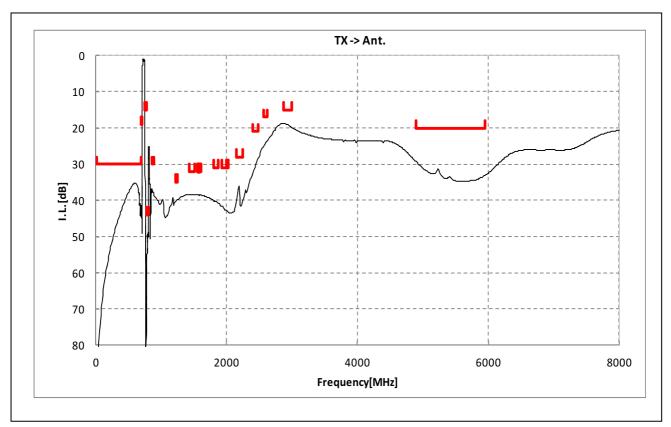
| 775.5 to 800.5 MHz 1.8 2.1 dB <sub>INT</sub> Any 4.5MHz  Ripple Deviation 773. to 803. MHz 0.3 1.5 dB Any 5MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Electrical Characteristic (7/14). |                      |     |       |         |       |                   |            |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|-----|-------|---------|-------|-------------------|------------|--|--|--|
| ANT. → RX    Center Frequency   788   MHz     Insertion Loss   773.25 to 800.5 MHz   1.8 2.1 dB <sub>INT</sub>   Any 4.5MHz     Ripple Deviation   773. to 803. MHz   1.8 2.1 dB <sub>INT</sub>   Any 5MHz     ANT. → RX   773. to 803. MHz   1.8 2.1 dB <sub>INT</sub>   Any 5MHz     ANT. → RX   773. to 803. MHz   1.7 2.0   ANT.     Absolute Attenuation   10. to 699. MHz   38 60 dB     Absolute Attenuation   45. to 65. MHz   48 100 dB   RX TX     Absolute Attenuation   10. to 6000. MHz   48 56 dB     Block-A TX   718. to 748. MHz   50 58 dB   TX     Alt. to 6000. MHz   12 20 dB   OoB Rejection     Absolute Attenuation   6957. to 7227. MHz   24 39 dB   9f     Absolute Attenuation   6963. MHz   10 20 35 dB   10f     Absolute Attenuation   6963. MHz   10 20 dB   11f     Absolute Attenuation   10. to 6000. MHz   10. dB   12f     Absolute Attenuation   10. to 6000. MHz   10. dB   13f     Absolute Attenuation   10. to 6000. MHz   10. dB   13f     Absolute Attenuation   10. to 6000. MHz   10. dB   13f     Absolute Attenuation   10. to 6000. MHz   10. dB   13f     Absolute Attenuation   10. to 10439. MHz   10 19 dB   14f     Absolute Attenuation   10. to 10439. MHz   10 19 dB   14f     Absolute Attenuation   10. to 10439. MHz   10 19 dB   14f     Absolute Attenuation   10. to 10439. MHz   10. dB   15f     Absolute Attenuation   10. to 10439. MHz   10. dB   15f     Absolute Attenuation   10. to 1045. MHz   10. dB   15f     Absolute Attenuation   10. to 1045. MHz   10. dB   15f     Absolute Attenuation   10. to 1045. MHz   10. dB   15f     Absolute Attenuation   10. to 1045. MHz   10. dB   15f     Absolute Attenuation   10. to 1045. MHz   10. dB   15f     Absolute Attenuation   10. to 1045. MHz   10. dB   15f     Absolute Attenuation   10. to 1045. MHz   10. dB   15f     Absolute Attenuation   10. to 1045. MHz   10. dB   15f     Absolute Attenuation   10. to 1045. MHz   10. dB   10. to 1045 |                                   |                      |     | Cha   | racteri | stics |                   |            |  |  |  |
| Min.   typ.*   max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Al                                | $NT. \rightarrow RX$ |     | (-201 | Office  |       |                   | Note       |  |  |  |
| Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                      |     | min.  | typ.*   | max.  |                   |            |  |  |  |
| Transport   Tran                                | Center Frequency                  |                      |     |       |         |       | MHz               |            |  |  |  |
| T75.5   T0   800.5   MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Insertion Loss                    | 773.25 to 802.75     | MHz |       |         | 2.4   | dB                |            |  |  |  |
| Ripple Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                      |     |       | 1.8     | 2.1   | dB <sub>INT</sub> | Any 4.5MHz |  |  |  |
| 773. to 803. MHz 1.7 2.0 ANT.  Absolute Attenuation 10. to 699. MHz 38 60 dB DTV Rejection 45. to 65. MHz 48 100 dB RX- TX  703. to 718. MHz 48 56 dB Block-A TX  718. to 748. MHz 50 58 dB TX  814. to 6000. MHz 12 20 dB OoB Rejection 6957. to 7227. MHz 24 39 dB 9f  7730. to 8030. MHz 20 35 dB 10f  8503. to 8883. MHz 16 29 dB 11f  9267. to 9636. MHz 11 16 dB 12f  10049. to 10439. MHz 8.0 13.0 dB 13f  10822. to 11242. MHz 10 19 dB 14f  11595. to 12045. MHz 9.0 21.0 dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ripple Deviation                  | 773. to 803.         |     |       |         |       | dB                | Any 5MHz   |  |  |  |
| Absolute Attenuation  10. to 699. MHz 38 60 dB DTV Rejection  45. to 65. MHz 48 100 dB RX-TX  703. to 718. MHz 48 56 dB Block-A TX  718. to 748. MHz 50 58 dB TX  814. to 6000. MHz 12 20 dB OoB Rejection  6957. to 7227. MHz 24 39 dB 9f  7730. to 8030. MHz 20 35 dB 10f  8503. to 8883. MHz 16 29 dB 11f  9267. to 9636. MHz 11 16 dB 12f  10049. to 10439. MHz 8.0 13.0 dB 13f  10822. to 11242. MHz 10 19 dB 14f  11595. to 12045. MHz 9.0 21.0 dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VSWR                              |                      |     |       |         |       |                   | RX         |  |  |  |
| 45. to 65. MHz 48 100 dB RX-TX  703. to 718. MHz 48 56 dB Block-A TX  718. to 748. MHz 50 58 dB TX  814. to 6000. MHz 12 20 dB OoB Rejection  6957. to 7227. MHz 24 39 dB 9f  7730. to 8030. MHz 20 35 dB 10f  8503. to 8883. MHz 16 29 dB 11f  9267. to 9636. MHz 11 16 dB 12f  10049. to 10439. MHz 8.0 13.0 dB 13f  10822. to 11242. MHz 10 19 dB 14f  11595. to 12045. MHz 9.0 21.0 dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                      |     |       |         | 2.0   |                   |            |  |  |  |
| 703.         to         718.         MHz         48         56         dB         Block-A TX           718.         to         748.         MHz         50         58         dB         TX           814.         to         6000.         MHz         12         20         dB         OoB Rejection           6957.         to         7227.         MHz         24         39         dB         9f           7730.         to         8030.         MHz         20         35         dB         10f           8503.         to         8883.         MHz         16         29         dB         11f           9267.         to         9636.         MHz         11         16         dB         12f           10049.         to         10439.         MHz         8.0         13.0         dB         13f           10822.         to         11242.         MHz         10         19         dB         14f           11595.         to         12045.         MHz         9.0         21.0         dB         15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Absolute Attenuation              |                      |     |       |         |       |                   |            |  |  |  |
| 718. to 748. MHz 50 58 dB TX  814. to 6000. MHz 12 20 dB OoB Rejection  6957. to 7227. MHz 24 39 dB 9f  7730. to 8030. MHz 20 35 dB 10f  8503. to 8883. MHz 16 29 dB 11f  9267. to 9636. MHz 11 16 dB 12f  10049. to 10439. MHz 8.0 13.0 dB 13f  10822. to 11242. MHz 10 19 dB 14f  11595. to 12045. MHz 9.0 21.0 dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                      |     |       |         |       |                   | RX- TX     |  |  |  |
| 814.       to       6000.       MHz       12       20       dB       OoB Rejection         6957.       to       7227.       MHz       24       39       dB       9f         7730.       to       8030.       MHz       20       35       dB       10f         8503.       to       8883.       MHz       16       29       dB       11f         9267.       to       9636.       MHz       11       16       dB       12f         10049.       to       10439.       MHz       8.0       13.0       dB       13f         10822.       to       11242.       MHz       10       19       dB       14f         11595.       to       12045.       MHz       9.0       21.0       dB       15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                      |     |       |         |       |                   |            |  |  |  |
| 6957. to 7227. MHz 24 39 dB 9f 7730. to 8030. MHz 20 35 dB 10f 8503. to 8883. MHz 16 29 dB 11f 9267. to 9636. MHz 11 16 dB 12f 10049. to 10439. MHz 8.0 13.0 dB 13f 10822. to 11242. MHz 10 19 dB 14f 11595. to 12045. MHz 9.0 21.0 dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                      |     |       |         |       |                   |            |  |  |  |
| 7730. to 8030. MHz 20 35 dB 10f 8503. to 8883. MHz 16 29 dB 11f 9267. to 9636. MHz 11 16 dB 12f 10049. to 10439. MHz 8.0 13.0 dB 13f 10822. to 11242. MHz 10 19 dB 14f 11595. to 12045. MHz 9.0 21.0 dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                      |     |       |         |       |                   |            |  |  |  |
| 8503. to 8883. MHz 16 29 dB 11f 9267. to 9636. MHz 11 16 dB 12f 10049. to 10439. MHz 8.0 13.0 dB 13f 10822. to 11242. MHz 10 19 dB 14f 11595. to 12045. MHz 9.0 21.0 dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                      |     |       |         |       |                   |            |  |  |  |
| 9267. to 9636. MHz 11 16 dB 12f 10049. to 10439. MHz 8.0 13.0 dB 13f 10822. to 11242. MHz 10 19 dB 14f 11595. to 12045. MHz 9.0 21.0 dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                      |     |       |         |       |                   |            |  |  |  |
| 10049.     to 10439.     MHz     8.0     13.0     dB 13f       10822.     to 11242.     MHz     10     19     dB 14f       11595.     to 12045.     MHz     9.0     21.0     dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                      |     |       |         |       |                   |            |  |  |  |
| 10822. to 11242. MHz 10 19 dB 14f<br>11595. to 12045. MHz 9.0 21.0 dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                      |     |       |         |       |                   |            |  |  |  |
| 11595. to 12045. MHz 9.0 21.0 dB 15f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | ,,,                  |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                      |     |       |         |       |                   |            |  |  |  |

<sup>\*</sup> Typical value at 25±2deg.C



### Electrical Characteristic < TX→RX. >

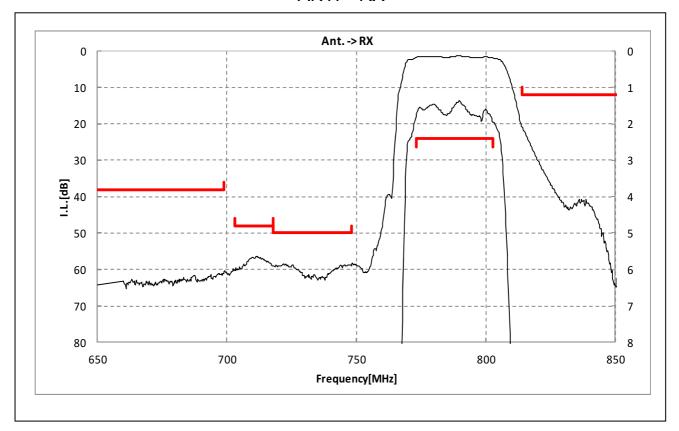

| Electrical Orial |                    |     |        |      |      |                      |       |                   | ,                    |  |  |
|------------------|--------------------|-----|--------|------|------|----------------------|-------|-------------------|----------------------|--|--|
|                  |                    |     |        |      | Cha  | racteria<br>to +85 d | stics |                   |                      |  |  |
| T)               | $X \rightarrow RX$ |     |        |      |      |                      |       | Unit              | Note                 |  |  |
|                  |                    |     |        |      | min. | typ.*                | max   |                   |                      |  |  |
| Isolation        |                    |     |        |      |      | 71:                  |       |                   |                      |  |  |
| Isolation        | 718.25             | to  | 747.75 | МНэ  | 58   | 61                   |       | dB                | TX                   |  |  |
|                  | 710.25             | to. | 747.75 | MHz  | 60   | 62                   |       |                   |                      |  |  |
| 1                | 773.25             | 10  |        | N/L- | 55   | 60                   |       | dB <sub>INT</sub> | Any 4.5MHz, TX<br>RX |  |  |
|                  | 113.25             | 10  | 802.75 |      |      |                      |       |                   |                      |  |  |
|                  | 775.5              | to  | 800.5  | MHz  | 55   | 61                   |       | dB <sub>INT</sub> | Any 4.5MHz, RX       |  |  |
| 1                |                    | to  | 1496.  | MHz  | 30   | 64                   |       |                   | 2f TX                |  |  |
|                  | 2154.              | to  | 2244.  | MHz  | 30   | 63                   |       | dB                | 3f TX                |  |  |
|                  | 2872.              | to  | 2992.  | MHz  | 30   | 59                   |       | dB                | 4f TX                |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
| 1                |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
| 1                |                    |     |        |      |      |                      |       |                   |                      |  |  |
| 1                |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
| 1                |                    |     |        |      |      |                      |       |                   |                      |  |  |
| 1                |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
|                  |                    |     |        |      |      |                      |       |                   |                      |  |  |
| <u> </u>         |                    |     |        |      |      | L                    |       |                   | * T                  |  |  |

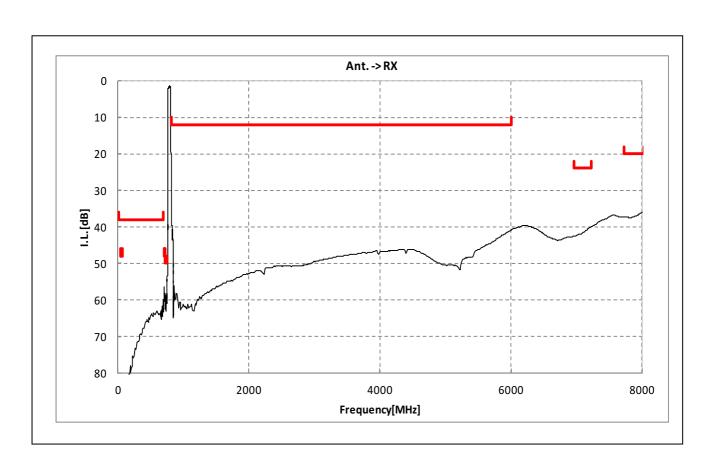

<sup>\*</sup> Typical value at 25±2deg.C



#### **Electrical Characteristic**

### < TX→ANT. >

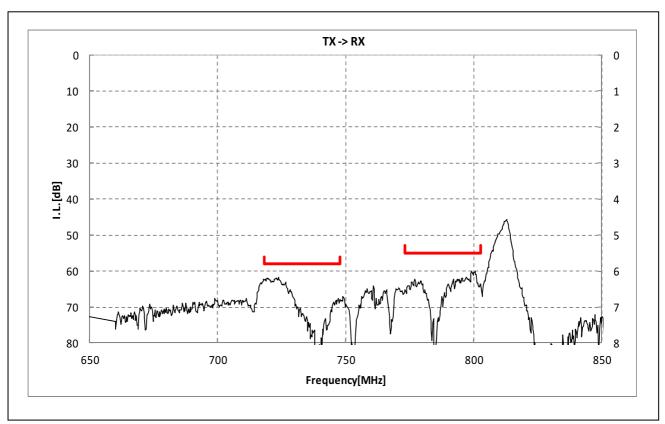


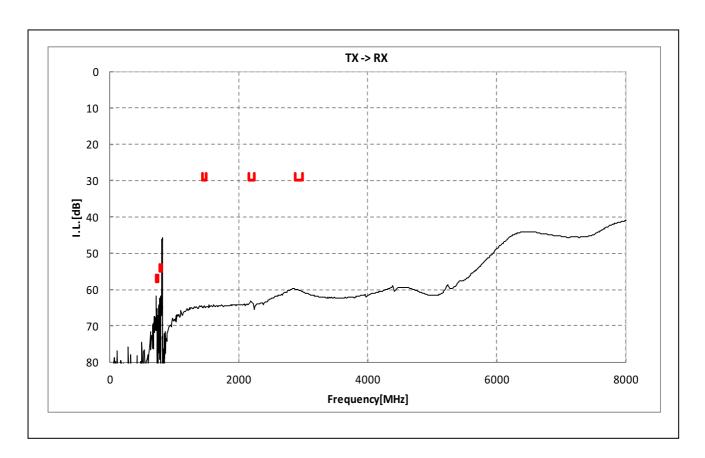






#### **Electrical Characteristic**

#### < ANT.→RX >

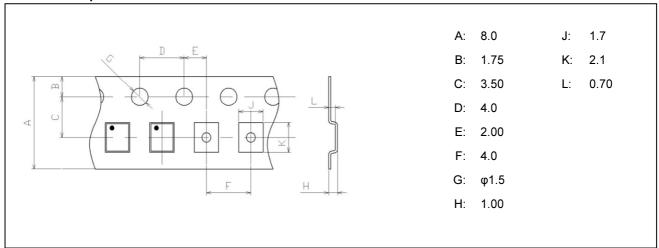


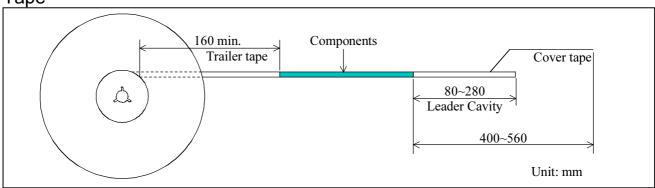



#### **Electrical Characteristic**

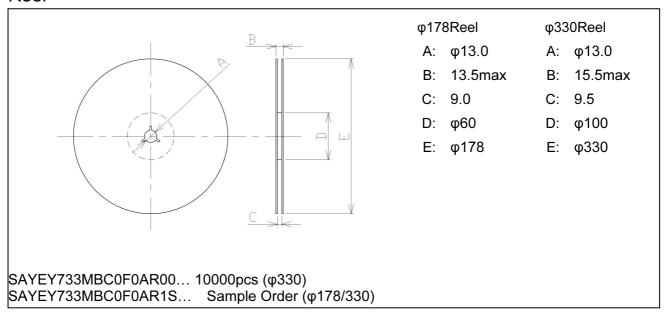
< TX→RX. >






### Dimensions of Tape & Reel unit: mm


#### **Carrier Tape**



#### Tape



#### Reel





#### Marking Code

#### Table A: Month Code

| 2013         | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
|--------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 2017<br>2021 | Α    | В    | С    | D    | Е    | F    | G    | Ι    | ٦    | K    | ١    | М    |
| 2014         | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
| 2018<br>2022 | N    | Р    | Ø    | R    | S    | Т    | U    | ٧    | W    | Х    | Y    | Z    |
| 2015         | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
| 2019<br>2023 | а    | ь    | 10   | d    | е    | f    | 9,0  | h    | j    | k    | Q    | m    |
| 2016         | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
| 2020<br>2024 | n    | P    | G    | r    | 4    | t    | a    | V    | W    | x    | y    | 8    |

#### Table B: Date Code

| date<br>code | 21st<br>W | 22nd<br>X | 23rd | 24th | 25th<br>a | 26th<br>b | 27th | 28th | 29th<br>e | 30th | 31st<br><b>g</b> |
|--------------|-----------|-----------|------|------|-----------|-----------|------|------|-----------|------|------------------|
| code         | L         | М         | N    | Р    | Q         | R         | S    | T    | U         | V    |                  |
| date         | 11th      | 12th      | 13th | 14th | 15th      | 16th      | 17th | 18th | 19th      | 20th |                  |
| code         | Α         | В         | С    | D    | Е         | F         | G    | Н    | J         | K    |                  |
| date         | 1st       | 2nd       | 3rd  | 4th  | 5th       | 6th       | 7th  | 8th  | 9th       | 10th |                  |

#### Important Notice (1/2)

#### PLEASE READ THIS NOTICE BEFORE USING OUR PRODUCTS.

Please make sure that your product has been evaluated and confirmed from the aspect of the fitness for the specifications of our product when our product is mounted to your product. All the items and parameters in this product specification/datasheet/catalog have been prescribed on the premise that our product is used for the purpose, under the condition and in the environment specified in this specification. You are requested not to use our product deviating from the condition and the environment specified in this specification.

Please note that the only warranty that we provide regarding the products is its conformance to the specifications provided herein. Accordingly, we shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this specification.

WE HEREBY DISCLAIMS ALL OTHER WARRANTIES REGARDING THE PRODUCTS, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THAT THEY ARE DEFECT-FREE, OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS.

The product shall not be used in any application listed below which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property. You acknowledge and agree that, if you use our products in such applications, we will not be responsible for any failure to meet such requirements.

Furthermore, YOU AGREE TO INDEMNIFY AND DEFEND US AND OUR AFFILIATES AGAINST ALL CLAIMS, DAMAGES, COSTS, AND EXPENSES THAT MAY BE INCURRED, INCLUDING WITHOUT LIMITATION, ATTORNEY FEES AND COSTS, DUE TO THE USE OF OUR PRODUCTS IN SUCH APPLICATIONS.



#### Important Notice (2/2)

- Aircraft equipment.
- Aerospace equipment
- Undersea equipment.
- Power plant control equipment Medical equipment.
- Transportation equipment (vehicles, trains, ships, elevator, etc.).
- Traffic signal equipment.
- Disaster prevention / crime prevention equipment.
- Burning / explosion control equipment
- Application of similar complexity and/ or reliability requirements to the applications listed in the above.

We expressly prohibit you from analyzing, breaking, Reverse-Engineering, remodeling altering, and reproducing our product. Our product cannot be used for the product which is prohibited from being manufactured, used, and sold by the regulations and laws in the world.

Please do not use the product in molding condition.

This product is ESD (ElectroStatic Discharge) sensitive device.

When you install or measure this, you should be careful not to add antistatic electricity or high voltage. Please be advised that you had better check anti serge voltage.

We do not warrant or represent that any license, either express or implied, is granted under any our patent right, copyright, mask work right, or our other intellectual property right relating to any combination, machine, or process in which our products or services are used. Information provided by us regarding third-party products or services does not constitute a license from us to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from us under our patents or other intellectual property.

Please do not use our products, our technical information and other data provided by us for the purpose of developing of mass-destruction weapons and the purpose of military use.

Moreover, you must comply with "foreign exchange and foreign trade law", the "U.S. export administration regulations", etc.

Please note that we may discontinue the manufacture of our products, due to reasons such as end of supply of materials and/or components from our suppliers.

Customer acknowledges that Murata will, if requested by you, conduct a failure analysis for defect or alleged defect of Products only at the level required for consumer grade Products, and thus such analysis may not always be available or be in accordance with your request (for example, in cases where the defect was caused by components in Products supplied to Murata from a third party).

The product shall not be used in any other application/model than that of claimed to Murata.

Customer acknowledges that engineering samples may deviate from specifications and may contain defects due to their development status.

We reject any liability or product warranty for engineering samples.

In particular we disclaim liability for damages caused by

- •the use of the engineering sample other than for evaluation purposes, particularly the installation or integration in the product to be sold by you,
  - ·deviation or lapse in function of engineering sample,
  - ·improper use of engineering samples.

We disclaim any liability for consequential and incidental damages.

If you can't agree the above contents, you should inquire our sales.

### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Signal Conditioning category:

Click to view products by Murata manufacturer:

Other Similar products are found below:

MAPDCC0004 PD0409J5050S2HF 880157 HHS-109-PIN DC1417J5005AHF DC4859J5005AHF AFS14A30-2185.00-T3 AFS14A35-1591.50-T3 DS-323-PIN DSS-313-PIN B39321R801H210 B39321R821H210 B39921B4317P810 1A0220-3 2089-6207-00 JP510S LFB212G45SG8C341 LFB322G45SN1A504 LFL182G45TC3B746 SF2159E 30057 1P510S CER0813B 3A325 40287 41180 ATB3225-75032NCT B69842N5807A150 BD0810N50100AHF BD2326L50200AHF BD2425J50200AHF HMC189AMS8TR C5060J5003AHF JHS-114-PIN JP503AS DC0710J5005AHF DC2327J5005AHF DC3338J5005AHF 43020 LFB2H2G60BB1C106 LFL15869MTC1B787 X3C19F1-20S XC3500P-20S 10013-20 SF2081E SF2194E SF2238E CDBLB455KCAX39-B0 RF1353C PD0922J5050D2HF