ALUMINUM ELECTROLYTIC CAPACITORS SPECIFICATION SHEET

CUSTOMER PART No.		
Rubycon PART No.	YXA SERIES (PET sleeve type)
DRAWING No.	REE – 033812	ISSUE No. 1
ISSUE DATE	10 JANUARY 2008	

Rubycon

RUBYCON CORPORATION ENGINEERING DIVISION

1938-1, NISHIMINOWA, INA-SHI, NAGANO-KEN, JAPAN TEL No. 0265-72-7116 FAX No. 0265-73-3380

	SEIJI IWAI
DESIGN	Seychan
	TETSUYA MIZU
CHECK	Horgan
	YOSHINORI SASAKI
APPROVAL	7. Garage

		PAGE 1/8
1.Scope. This specification covers polarized aluminu	n electrolytic capacitors with non-solid electrolyte for use in electronic	equipments .
2. Reference Standard JIS C 5141 (1991) and JIS C 5102 (1994) n	nethods for testing.	
3. Operating Temperature Range -55°C to +105°C (6.3 to 100 V.DC.), -40°C f	o +105°C (160 to 250 V.DC.), -25°C to +105°C (350 to 450 V.DC.)	
4. Performance Refer to Table-1		
5. Style and Numbering System (1) Style CE 04 (Rad	al Leaded)	
Voltage	Capacitance Code Forming	Case size
 Marking Unless otherwise specified, capacitor shall Sleeve color: Black Lettering color: White 	be clearly marked the following items on its body.	
 (1) Trade mark (2) Rated Voltage (3) Nominal Capacitance (4) Polarity (5) Series (6) Lot Number (7) Maximum Operating Temperature (8) PET sleeve mark 	Rubycon V µF YXA 105°C PET (Negative Polarity)	
7. Vent On capacitors whose diameter is 6.3mm an	d greater, a safety vent shall be provided.	
 Notes on use of aluminum electrolytic capacity (1) Charge and discharge Do not use for the circuit that repeats of the circuit the circuit that repeats of the circuit the circu		
(2) External stress Do not apply excessive force of pushir	g, pulling bending, and/or twisting to the main body, lead wire and terr	ninals.
soldering temperature is too high and /or	tern of double sided PC board touches the capacitor, the similar failure	
	loyed, note that it could cause a short circuit if lead wire of other con- r. Please avoid circuit pattern runs underneath capacitor.	omponents or pattern of
(5) Adhesives and coating materials Do not use the adhesives and coating	materials that contain halogenated organic solvents or chloroprene as	polymer.
	midity. During a long storage time, leakage current will be increased. sibly causes, voltage treatment is recommended for the capacitors tha	
storage condition is 5°C-35°C and less t *Aluminum electrolytic capacitors shou *Do not store aluminum electrolytic ca acid, chlorine gas, ammonia or bromine	ld not be stored in damp conditions such as water, saltwater spray or pacitors in an environment full of hazardous gas (hydrogen sulfide, su	oil spray. Ilfurous acid gas, nitrous
YXA SERIES	Rubycon RUBYCON CORPORATION	

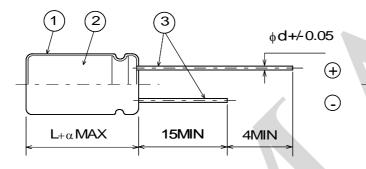
		PAGE	2/8
*Fumigation of wooden pallets before shi *Existence of components or parts that c	rodes, aluminum cases and terminal surface when the following conditi	capacitors.	
(8) PC board cleaning after soldering Please consult us when cleaning is sub	jected.		
Please consult us when cleaning is sub Guide to application except the above are de EIAJ RCR-2367C: "Safety Application Guide f		it."	
YXA SERIES	Rubycon RUBYCON CORPORATION		

	ITEMS						PER	FORM	ANCE					
	Rated Voltage(WV)		WV(V.DC)	6.3	10	16	25	35	50	63	100	160	200	
	Surge Voltage (SV)		SV(V.DC)	8	13	20	32	44	63	79	125	200	200	
				050	250	400	450	 	I					
			WV(V.DC)	250 300	350 400	400 450	450 500							
			SV(V.DC)											
	Nominal Capacitance (Tolerance)		Criteria> .1 to 22000μF(<u>:</u>	±20%)										
			Condition>	,										
		ſ	- Measuring Fre		• 100)Hz±209					l			
			Measuring Vo Measuring Te	ltage	: No	t more t		Vrms +	1.5 to 2	.0V.DC				
				mporata										
	Leakage Current	<	Condition> The rated vol	tage sha	all be ap	plied be	etween	termina	ls of cap	bacitor s	such tha	at the te	rminal vo	oltage
		i	reach the rated after the voltag	voltage e has re	within o ached t	ne minu he rateo	ute and d voltag	the lea e acros	kage cu s a 100	rrent sh 0 ±10 Ω	all be m 2 series	neasure	d at follow	wing ti
			the current valu	ie shall r	not exce	ed value	e calcula	ated fro	m follow	ing form	nula.			
			• 6.3 to 100V. E			es)								
					ichever	is areat	er							
			• 160 to 450V.		lichever	is great	er							
			 160 to 450V. (after 1 minutes) I=0.1CV +40 	DC ute) ΟμΑ	(CV≤10	00)	er		I=0.0	5minute I3CV +1	5μΑ	(CV≤10		
			• 160 to 450V. (after 1 minu I=0.1CV +40 I=0.04CV +1	DC ute) DµA 100µA	(CV≤10 (CV>10	00) 00)			I=0.0		5μΑ	(CV≤10 (CV>10		
			• 160 to 450V. (after 1 minu I=0.1CV +40 I=0.04CV + where	DC ute) ΟμΑ	(CV≤10 (CV>10 age curre nal capa	00) 00) ent in μA	A. ein μF.		I=0.0	3CV +1	5μΑ			
	Dissipation Factor		• 160 to 450V. (after 1 minu I=0.1CV +40 I=0.04CV + where	DC ute) ΟμΑ 100μΑ I : Leaka C : Nomi	(CV≤10 (CV>10 age curre nal capa	00) 00) ent in μA	A. ein μF.		I=0.0	3CV +1	5μΑ			
1	Dissipation Factor (tan∂:Tangent of loss angle)		• 160 to 450V. (after 1 minu I=0.1CV +40 I=0.04CV +* where	DC ute) ΟμΑ 100μΑ I : Leaka C : Nomi	(CV≤10 (CV>10 age curre nal capa	00) 00) ent in μA	A. ein μF.	35	I=0.0	3CV +1	5μΑ			
	(tano:Tangent of		• 160 to 450V. (after 1 minu I=0.1CV +40 I=0.04CV + where	DC ute) DµA 100µA I : Leaka C : Nomi V : Rated	(CV≤10 (CV>10 age curri nal capa d voltage	00) 00) ent in μ <i>μ</i> acitance e in V.D	λ. ⇒in μF. C.	35 0.14	I=0.0	93CV +1 92CV +2	5μΑ 25μΑ			
	(tano:Tangent of		• 160 to 450V. (after 1 minu I=0.1CV +40 I=0.04CV + where Criteria>	DC ute) DµA 100µA I : Leaka C : Nomi V : Rated 6.3	(CV≤10 (CV>10 nal capa d voltage	00) 00) ent in µA acitance e in V.D	A. in μF. C. 25		I=0.0 I=0.0	3CV +1)2CV +2 63	5μΑ 25μΑ 100			
	(tano:Tangent of		• 160 to 450V. (after 1 minu I=0.1CV +40 I=0.04CV + where Criteria> WV(V.DC) tanδ	DC ute))µA 100µA I : Leaka C : Nomi / : Rated 6.3 0.26	(CV≤10 (CV>10 age currinal capa d voltage	00) 00) ent in μ/ acitance e in V.D 16 0.18	A. : in μF. C. 25 0.16	0.14	1=0.0 1=0.0 50 0.12	3CV +1)2CV +2 63	5μΑ 25μΑ 100			
	(tano:Tangent of	V	 160 to 450V. (after 1 minute 1=0.1CV +40) 1=0.04CV +40 1=0.04CV +40 1=0.04CV +40 where Wree Wree WV(V.DC) tanδ WV(V.DC) tanδ When nomine 	DC ute))µA 100µA I : Leaka C : Nomi / : Rated 6.3 0.26 160 0.20 nal capa	(CV≤10 (CV>10 age currinal capa d voltage 10 0.22 200 0.20 acitance	00) 00) ent in μ/ acitance e in V.D 16 0.18 250 0.20	A. in μF. C. 25 0.16 350 0.24	0.14 400 0.24	1=0.0 1=0.0 50 0.12 450 0.24	3CV +1)2CV +2 63 0.10	5μΑ 25μΑ 100 0.08	(CV>10	000)	ed va
	(tano:Tangent of	<	 160 to 450V. (after 1 minute 1=0.1CV +40) 1=0.04CV +40 1=0.04CV +40 1=0.04CV +40 where Wree Wree<td>DC ute))µA 100µA I : Leaka C : Nomi / : Rated 6.3 0.26 160 0.20 nal capa</td><td>(CV≤10 (CV>10 age currinal capa d voltage 10 0.22 200 0.20 acitance</td><td>00) 00) ent in μ/ acitance e in V.D 16 0.18 250 0.20</td><td>A. in μF. C. 25 0.16 350 0.24</td><td>0.14 400 0.24</td><td>1=0.0 1=0.0 50 0.12 450 0.24</td><td>3CV +1)2CV +2 63 0.10</td><td>5μΑ 25μΑ 100 0.08</td><td>(CV>10</td><td>000)</td><td>ed va</td>	DC ute))µA 100µA I : Leaka C : Nomi / : Rated 6.3 0.26 160 0.20 nal capa	(CV≤10 (CV>10 age currinal capa d voltage 10 0.22 200 0.20 acitance	00) 00) ent in μ/ acitance e in V.D 16 0.18 250 0.20	A. in μF. C. 25 0.16 350 0.24	0.14 400 0.24	1=0.0 1=0.0 50 0.12 450 0.24	3CV +1)2CV +2 63 0.10	5μΑ 25μΑ 100 0.08	(CV>10	000)	ed va

													PAGE	4 /			
		T															
5	Terminal Strength	Ten T	he bod	ength of Te	tor shal						owing t	able sha	all be applie	ed to t			
		T beo cor pos	The bod comes v ndition,	vertical. The	itor shall ne weigh body of	be held t of follo sample	owing to is bent	able sha t through	ıll be sı n 90 de	ispende grees,	d from it shall	the end be retu	of lead wire I of termina rned to the urned to the	al. In th e origir			
			Diamet	er of lead	wire		Те	nsile for	се	Be	nding fo						
		-		and less				<u>N{kgf}</u> 5{0.51}		2	N{kgf} 5{0.25		-				
		-			8mm inc	:	-	0{1.0}		-	5 {0.25		_				
			Over 0.5mm to 0.8mm incl 10{1.0} 5 {0.51} <criteria> Notable changes shall not be found, as breakage or looseness in the terminal.</criteria>														
6 Temperature		<co< td=""><td>ondition</td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></co<>	ondition	>													
	Coefficient and Drift		STEP	Testing	Temper	ature (°	C)			Time							
			1		20±2			Time	e to rea	ch thern	nal equi	ilibrium					
			2 -40±3							//							
			3 -25±3														
			4		20±					//							
		-	-			-											
			5	105±2			2 hrs.										
			6		20±					ch thern	nal equi	ilibrium					
				e, D.F. and ge 160 to -					at 120H	IZ.							
		<cri< td=""><td>iteria></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></cri<>	iteria>														
			STEP 2	2,3 Imp	edance	Ratio				atio to S	STEP 1	not mo	re than valu	ue of			
		-	STEP :	5 Ca	pacitance	e Chanc	e		ng table 100WV	Within	±25% (of the va	lue of STEI	P 1			
													alue of STE	P 1			
					sipation					the spe							
		-	STEP 6		Leakage Current Capacitance Change			Not more than 8 times the specified value Within ±10% of the value of STEP 1									
				Ou	sipation		C	-		the spe							
					akage Cu					the spe							
			\M/\//	V.DC)	6.3	10	16	25	35	50	63	100	160				
								1									
			2(-25°C)	/Z(+20°C)		3	2	2	2	2	2	2	3				
		Z	Z(-40°C)	/Z(+20°C)	8	6	4	4	3	3	3	3	—				
			WV(V.DC)	200	250	350	400	450	1							
			7(-25°C)	/Z(+20°C)	3	3	6	6	6								
			∠(-40°C)	/Z(+20°C)	—		_			l							
	YXA SERIES					uЪ				Τ							
	TA JENIES		- 1	R	UBYC	ON C	ORP	DRAT	ION								

PAGE	5	/	8
------	---	---	---

7	Load Life Test	(with maximun	n ripple curren	t) at 105±2°C for fo	ntinuously through 1000 Ω series protective resis llowing test period. After the test and returned tor shall meet following requirements.	
		Case dia		Life Time]	
		 φD≤8		1000 +48		
		φD=10		2000 +72		
		¢D≥12.5		3000 ⁺⁷² 0		
				00000 0]	
		<criteria> Leakage Cur</criteria>	rent	Not more than t	ne specified value	
		Capacitance		Within ±25% of		
		Dissipation F	0		00% of the specified value	
		Appearance			s shall not be found	
8	Shelf Life Test	<condition></condition>				
0	Shell Life Test		hall be stored a	nt 105+2°C with no v	roltage applied for $1000 \stackrel{+48}{_{0}}$ hours. After the test a	and
		returned in star	ndard condition as on the judge	for 1 to 2 hours and	the capacitor shall meet following requirements. shall be subjected to voltage treatment specified	. (If
		<criteria></criteria>				
		Leakage Cur	rent	Not more than the	specified value	
		Capacitance	Change	Within ±25% of the	e initial value	
		Dissipation F	actor		% of the specified value	
		Appearance		Notable changes s	hall not be found	
9	Surge Voltage	for 30±5 seco Then the cap	onds in every 6	±0.5 minutes at 15 to left under normal hu	ough a (100 \pm 50)/C _R [k Ω] resistor in series 35°C. Procedure shall be repeated 1000 times. Imidity for 1 to 2 hours before measurement.	
		Leakage Cur	rent	Not more than the	specified value	
		Capacitance		Within ±15% of the		
		Dissipation F		Not more than the		
		Appearance		Notable changes s	hall not be found	
				ge at abnormal situa	tions, and not be hypothesizing that overvoltage	∍ is
10	Vibration Test	Fix lead wire one with a dian	at a point not n neter 12.5mm a uency range : amplitude :	more than 4mm from nd greater or with a	ach (total 6 hours) as below. n the body , use mounting device separately for th length 25mm and longer. about 1min.	he
	1	· · · · · · · · · · · · · · · · · · · ·]
	YXA SERIES			DI CORPORA		


							PAGE	6 /
		<criteria></criteria>						
		Capacitance (During test)	the vibration	rom one er	nd to the ot by within la			
		Capacitance Change	Within ±5%	of the initial	value			
		Appearance	Notable cha	nges shall n	ot be found			
1	Solderability	<condition> Terminals of the capacito for 5 to 10 seconds and sha and pulled out at the same <criteria> At least 3/4 of circumfer solder.</criteria></condition>	all be immersed in tl speed.	ne solder ba	th (235±5°C	c) and held f	or 2±0.5 sec	conds
_		0						
12	Resistance to Solder Heat	<condition> Terminals of the capacito to 2.0mm from the body of Then the capacitors shall before measurement.</condition>	capacitor.					
		<criteria> Leakage Current</criteria>	Not more than	the specifie	d value			1
		Capacitance Change	Within ±10% o					_
		Dissipation Factor	Not more than					_
		Appearance						
		Then the capacitors shall before measurement.	i de left under the n	ormai tempe	erature and	normai num	naity for 1 to	o 2 no
		<criteria> Leakage Current</criteria>	Not more than	the specifie	d value			
		Capacitance Change	6.3 to 100WV :	Within ±15	% of the initi			_
		Dissipation Factor	160 to 450WV Not more than			lial value		
		Appearance	Notable chang					_
14	Maximum Permissible Ripple Current	 (1)The maximum permissible applied at maximum opera (2)The combined value of D. voltage and shall not be re- 	ating temperature. .C. voltage and the					
		Frequen						1
		Capacitance(µF)	60(50)	120	500	1k	10k≤	
		0.1 to 1	0.50	1.0	1.20	1.30	1.50	1
		2.2 to 4.7	0.65	1.0	1.20	1.30	1.50	1
		10 to 47	0.80	1.0	1.20	1.30	1.50	1
		100 to 1000	0.80	1.0	1.10	1.15	1.20	1
		2200 to 22000	0.80	1.0	1.05	1.10	1.15	1
							. <u>.</u>	
			lubyco	п				
	YXA SERIES							

PAGE 7/8

Ambient Temperature(°C)	105	85	65≥	
Coefficient	1.0	1.7	2.1	
passed through a capacitor at ea be nearly equal with the lifetime a	ach temperat	ture when tl	ne life expe	

9. Diagram of dimensions. :unit mm

٢

0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0-1+-1
▲Table-3	

•	Table-2							
	φD	5	6.3	8	10	12.5	16	18
	F	2.0	2.5	3.5	5.0	5.0	7.5	7.5
	φd	0.5	0.5	0.6	0.6	0.6	0.8	0.8
a	6.3 to 100WV			1.5			2	.0
α	160 to 450WV	_			2	.0		

Table-3									
0	Sleeve	P.E.T.							
2	Case	Aluminum							
3	Lead Wire	Tin plated							

◆Table-4 Standard size, Maximum permissible ripple current

WV Cap (μF)	6.3		10		16		25		35	
	Size	Ripple								
22									5X11	64
33							5X11	69	5X11	77
47					5X11	80	5X11	84	5X11	100
100	5X11	96	5X11	105	5X11	130	6.3X11	140	6.3X11	170
220	5X11	160	6.3X11	175	6.3X11	220	8X11.5	240	10X12.5	300
330	6.3X11	210	6.3X11	235	8X11.5	270	10X12.5	335	10X12.5	400
470	6.3X11	275	8X11.5	295	8X11.5	375	10X12.5	440	10X16	525
1000	8X11.5	460	10X12.5	540	10X16	640	10X20	740	12.5X20	865
2200	10X20	775	10X20	860	12.5X20	1050	12.5X25	1230	16X25	1370
3300	10X20	985	12.5X20	1100	12.5X25	1300	16X25	1500	16X35.5	1680
4700	12.5X20	1150	12.5X25	1350	16X25	1650	16X31.5	1800	18X35.5	1920
6800	12.5X25	1480	16X25	1700	16X31.5	1900	18X35.5	2050		
10000	16X25	1700	16X35.5	1950	18X35.5	2070				
15000	16X35.5	2090	18X35.5	2180						
22000	18X40	2350								

PAGE 8/8

200		160		100		63		WV 50		
Ripple	Size	Cap (μF)								
								1	5X11	0.1
								1.5	5X11	0.15
								2.5	5X11	0.22
								4	5X11	0.33
				8	5X11			7	5X11	0.47
				15	5X11			13	5X11	1
				21	5X11			20	5X11	2.2
36	6.3X11			30	5X11			25	5X11	3.3
50	8X11.5	43	6.3X11	35	5X11			32	5X11	4.7
80	10X12.5	77	8X11.5	60	5X11	48	5X11	47	5X11	10
135	10X20	125	10X16	98	6.3X11	80	5X11	70	5X11	22
200	12.5X20	170	10X20	140	8X11.5	100	6.3X11	94	5X11	33
220	12.5X20	210	12.5X20	185	10X12.5	140	6.3X11	115	6.3X11	47
340	16X25	320	12.5X25	290	10X20	230	10X12.5	200	8X11.5	100
580	18X35.5	580	16X35.5	560	12.5X25	390	10X16	360	10X12.5	220
		700	18X35.5	690	12.5X25	540	10X20	470	10X16	330
				880	16X25	700	12.5X20	600	10X20	470
				985	18X40	1200	16X25	1060	12.5X25	1000
						1650	18X35.5	1600	16X35.5	2200
								1780	18X35.5	3300

WV Cap	250		350		400		450			
(μF)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple		
0.47	6.3X11	8	6.3X11	8						
1	6.3X11	16	6.3X11	16	6.3X11	16	8X11.5	15		
2.2	6.3X11	30	8X11.5	31	10X12.5	31	10X12.5	25		
3.3	8X11.5	43	10X12.5	45	10X12.5	41	10X16	33		
4.7	8X11.5	53	10X12.5	55	10X16	55	10X20	42		
10	10X16	90	10X20	95	12.5X20	85	12.5X20	67		
22	12.5X20	150	12.5X25	175	12.5X25	170	16X25	115		
33	12.5X20	200	16X25	220	16X25	220	16X31.5	155		
47	12.5X25	240	16X31.5	260	16X31.5	275	16X35.5	185		
100	16X31.5	400	18X40	415	18X40	415				

YXA SERIES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by Rubycon manufacturer:

Other Similar products are found below :

NRELS102M35V16X16C.140LLF ESRG160ETC100MD07D 227RZS050M 335CKR250M 476CKH100MSA 477CKR100M 107CKR010M 107CKH063MSA RJH-25V222MI9# RJH-35V221MG5# B43827A1106M8 RJH-50V221MH6# EKYA500ELL470MF11D B41022A5686M6 ESRG250ELL101MH09D EKMA160EC3101MF07D RJB-10V471MG3# ESMG160ETD221MF11D EKZH160ETD152MJ20S RJH-35V122MJ6# EGXF630ELL621ML20S RBD-25V100KE3#N EKMA350ELL100ME07D ESMG160ETD101ME11D ELXY100ETD102MJ20S EGXF500ELL561ML15S EKMG350ETD471MJ16S 35YXA330MEFC10X12.5 RXW471M1ESA-0815 ELXZ630ELL221MJ25S ERR1HM1R0D110T LPE681M30060FVA LPL471M22030FVA HFE221M25030FVA LKMD1401H221MF B41888G6108M000 EKMA160ETD470MF07D UHW1J102MHD6 EKMG500ETD221MJC5S LKMK2502W101MF LKMD1401H181MF LKMI2502G820MF LKMJ2001J122MF LKML2501C472MF LKMJ4002C681MF 450MXH330MEFCSN25X45 450MXK330MA2RFC22X50 63ZLH560MEFCG412.5X30 ELH2DM331025KT ELH2DM471P30KT