TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7S66F, TC7S66FU

Bilateral Switch

The TC7S66 is a high Speed C^{2} MOS Bilateral Switch fabricated with silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology.

It consists of a high speed switch capable of controlling either digital or analog signals while maintaining the $\mathrm{C}^{2} \mathrm{MOS}$ low power dissipation.

Control input (C) is provided to control the switch.
The switch turns ON while the C input is high, and the switch turns OFF while low.

Input is equipped with protection circuits against static discharge or transient excess voltage.

Features

- High speed: $\mathrm{t}_{\mathrm{pd}}=7 \mathrm{~ns}$ (typ.) @VCC $=5 \mathrm{~V}$
- Low power dissipation: ICC $=1 \mu \mathrm{~A}(\max) @ \mathrm{Ta}=25^{\circ} \mathrm{C}$
- High noise immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}(\mathrm{min})$
- Low ON resistance: RON = 100Ω (typ.) @VCC $=9 \mathrm{~V}$
- Low T.H.D: THD $=0.05 \%$ (typ.) $@ \mathrm{VCC}=5 \mathrm{~V}$
- Pin and function compatible with TC4S66F

Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
DC Supply voltage	V_{CC}	-0.5 to 13	V
Control input voltage	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Switch I/O voltage	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Control diode current	I_{CK}	± 20	mA
I/O diode current	$\mathrm{I}_{\mathrm{IOK}}$	± 20	mA
Through I/O current	I_{T}	± 12.5	mA
DC $\mathrm{V}_{\mathrm{CC}} /$ ground current	I_{CC}	± 25	mA
Power dissipation	P_{D}	200	mW
Storage temperature range	$\mathrm{T}_{\mathrm{Stg}}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Lead temperature (10 s)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Marking

Logic Diagram

Pin Configuration (top view)

Truth Table

Control	Switch Function
H	ON
L	OFF

Operating Ranges

Characteristics	Symbol	Rating	Unit
Supply voltage	$V_{C C}$	2 to 12	V
Control input voltage	$\mathrm{V}_{\text {IN }}$	0 to V_{Cc}	V
Switch I/O voltage	$\mathrm{V}_{1 / \mathrm{O}}$	0 to V_{CC}	V
Operating temperature range	Topr	-40 to 85	${ }^{\circ} \mathrm{C}$
Input rise and fall time	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	0 to $1000\left(\mathrm{~V}_{\mathrm{CC}}=2.0 \mathrm{~V}\right)$	ns
		0 to $500\left(\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right)$	
		0 to $400\left(\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}\right)$	
		0 to $250\left(\mathrm{~V}_{\mathrm{CC}}=10.0 \mathrm{~V}\right)$	

Electrical Characteristics
DC Electrical Characteristics

Characteristics	Symbol	Test Condition		$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\begin{aligned} & \mathrm{Ta}=-40 \\ & \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		Unit
			$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Min	Typ.	Max	Min	Max	
Control input voltage	VIHC	-	2.0	1.5	-	-	1.5	-	V
			4.5	3.15	-	-	3.15	-	
			9.0	6.3	-	-	6.3	-	
			12.0	8.4	-	-	8.4	-	
	VILC	-	2.0	-	-	0.5	-	0.5	
			4.5	-	-	1.35	-	1.35	
			9.0	-	-	2.7	-	2.7	
			12.0	-	-	3.6	-	3.6	
ON resistance	RON	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHC}} \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { to GND } \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}} \leq 1 \mathrm{~mA} \end{aligned}$	4.5	-	192	340	-	400	Ω
			9.0	-	110	170	-	200	
			12.0	-	90	160	-	180	
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHC}} \\ & \mathrm{~V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{I} / \mathrm{O}} \leq 1 \mathrm{~mA} \end{aligned}$	2.0	-	320	-	-	-	
			4.5	-	140	200	-	260	
			9.0	-	100	150	-	190	
			12.0	-	90	140	-	180	
Input/output leakage current (switch off)	IOFF	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\text {IS }}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {ILC }} \end{aligned}$	12.0	-	-	± 100	-	± 1000	nA
Switch input leakage current (switch on, output open)	IIZ	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHC}} \end{aligned}$	12.0	-	-	± 100	-	± 1000	nA
Control input current	In	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	12.0	-	-	± 100	-	± 1000	nA
Quiescent device current	I_{CC}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0	-	-	1.0	-	10.0	$\mu \mathrm{A}$
			9.0	-	-	4.0	-	40.0	
			12.0	-	-	8.0	-	80.0	

AC Electrical Characteristics ($\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$, input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{6 n s}$)

Characteristics	Symbol	Test Condition		$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\begin{aligned} & \mathrm{Ta}=-40 \\ & \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		Unit
			$\mathrm{V}_{\text {cc }}(\mathrm{V})$	Min	Typ.	Max	Min	Max	
Phase difference between input and output	¢ $\mathrm{l}-\mathrm{O}$	-	2.0	-	20	75	-	100	ns
			4.5	-	7	15	-	20	
			9.0	-	4	12	-	15	
			12.0	-	4	11	-	14	
Output enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{pZL}} \\ & \mathrm{t}_{\mathrm{pZH}} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	2.0	-	20	150	-	190	ns
			4.5	-	13	30	-	38	
			9.0	-	9	18	-	33	
			12.0	-	8	18	-	27	
Output disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{pLZ}} \\ & \mathrm{t}_{\mathrm{pHZ}} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	2.0	-	40	170	-	220	ns
			4.5	-	11	35	-	44	
			9.0	-	10	30	-	38	
			12.0	-	9	27	-	33	
Maximum control input frequency	-	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{OUT}}=1 / 2 \mathrm{~V} \mathrm{CC} \end{aligned}$	2.0	-	30	-	-	-	MHz
			4.5	-	30	-	-	-	
			9.0	-	30	-	-	-	
			12.0	-	30	-	-	-	
Control input capacitance	$\mathrm{CIN}^{\text {N }}$	-		-	5	10	-	10	pF
Switch terminal capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$	-		-	6	-	-	-	pF
Feedthrough capacitance	CIOS	-		-	0.5	-	-	-	pF
Power dissipation capacitance	CPD		(Note)	-	15	-	-	-	pF

Note: $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation:

$$
\mathrm{I}_{\mathrm{CC}}(\mathrm{opr})=\mathrm{C}_{\mathrm{PD}} \cdot \mathrm{~V}_{\mathrm{CC}} \cdot \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}}
$$

Analog Switch Characteristics (GND = $0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$) (Note)

Characteristics	Symbol	Test Condition	$\mathrm{V}_{\text {Cc }}(\mathrm{V})$	Typ.	Unit
Total harmonic distortion (T.H.D)	-	$\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\left(\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IN}}=8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\left(\mathrm{~V}_{\mathrm{CC}}=9.0 \mathrm{~V}\right) \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	4.5	0.05	\%
			9.0	0.04	
Maximum propagation frequency (switch on)	$\mathrm{f}_{\text {MAX }}$	Adjust fin voltage to obtain 0 dBm at V_{OS} increase fiN frequency until dB meter reads -3dB.$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$$\mathrm{fin}=1 \mathrm{MHz} \text {, Sine wave }$	4.5	200	MHz
			9.0	200	
Feedthrough (switch on)	-	V_{IN} is centered at $\mathrm{V}_{\mathrm{CC}} / 2$ adjust input for 0 dBm$\begin{aligned} & R_{L}=600 \Omega, C_{L}=50 \mathrm{pF} \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \text {, Sine wave } \end{aligned}$	4.5	-60	dB
			9.0	-60	
Crosstalk (control switch)	-	$\begin{aligned} & R_{L}=600 \Omega, C_{L}=50 \mathrm{pF} \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz}, \text { Pulse }\left(\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right) \end{aligned}$	4.5	60	mV
			9.0	100	

Note: These characteristics are determined by design of devices.

Package Dimensions

Weight: 0.016 g (typ.)

Package Dimensions

SSOP5-P-0.65A
Unit : mm

Weight: 0.006 g (typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switch ICs - Various category:
Click to view products by Toshiba manufacturer:

Other Similar products are found below :
BCM56226B0IPBG LC824206XA-VH 80HCPS1432RM FSA806UMX BCM56152A0IFSBLG 80HCPS1432CHMHI MAX4936ACTO+ 80HSPS1616CHMGI NL3S325FCT2G BCM56152A0KFSBLG BCM56150A0KFSBLG BCM56024B0KPBG CPC7583BA NC7SZ157P6X ACST12-7CG-TR FSA9280AUMX MAX14626ETT+T NL7SZ19DFT2G SRC0CS25D MAX14808ETK MAX4937CTN+ DG2788ADN-T1-GE4 DGQ2788AEN-T1-GE4 LTC6943IGN\#PBF MCZ33999EKR2 LTC1471CS\#PBF LTC1472CS\#PBF LTC1043CSW\#PBF PI4MSD5V9548ALEX NCX8200UKZ LTC6943HGN\#PBF PI3CH480QE HT1204 89H48T12G2ZCBLG PI3C3245QE ADG409BRZREEL7 ADG5462FBRUZ-RL7 ADN4604ASVZ LTC1043CN LTC1043CN\#PBF LTC1470ES8\#PBF PI4MSD5V9548AZDEX AP2280-2FMG-7 AZV5001RA4-7 PI3B3253QEX PI3CH480QEX 74HC4053N 74HC139N 74HC138N XD74LS138

