LM2596
 SIMPLE SWITCHER Power Converter 150 kHz 3A Step-Down Voltage Regulator

General Description

The LM2596 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 3A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensationt, and a fixed-frequency oscillator.
The LM2596 series operates at a switching frequency of 150 kHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Available in a standard 5-lead TO-220 package with several different lead bend options, and a 5-lead TO-263 surface mount package.
A standard series of inductors are available from several different manufacturers optimized for use with the LM2596 series. This feature greatly simplifies the design of switch-mode power supplies.
Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. External shutdown is included, featuring typically $80 \mu \mathrm{~A}$ standby current. Self protection features include a two stage frequency reducing current limit for the output switch and an over temperature shutdown for complete protection under fault conditions.

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}$, 12 V , and adjustable output versions
- Adjustable version output voltage range, 1.2 V to 37 V $\pm 4 \%$ max over line and load conditions
- Available in TO-220 and TO-263 packages
- Guaranteed 3A output load current
- Input voltage range up to 40 V
- Requires only 4 external components
- Excellent line and load regulation specifications
- 150 kHz fixed frequency internal oscillator
- TTL shutdown capability
- Low power standby mode, I_{Q} typically $80 \mu \mathrm{~A}$
- High efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

- Simple high-efficiency step-down (buck) regulator
- On-card switching regulators
- Positive to negative converter

Note: †Patent Number 5,382,918.

Typical Application (Fixed Output Voltage

Versions)

Connection Diagrams and Ordering Information

Order Number LM2596T-3.3, LM2596T-5.0,
LM2596T-12 or LM2596T-ADJ
See NS Package Number T05D

Order Number LM2596S-3.3, LM2596S-5.0, LM2596S-12 or LM2596S-ADJ See NS Package Number TS5B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Maximum Supply Voltage
$\overline{\text { ON }}$ /OFF Pin Input Voltage
Feedback Pin Voltage
Output Voltage to Ground (Steady State)

Power Dissipation
StorageTemperatureRange
ESD Susceptibility HumanBodyModel
45 V
$-0.3 \leq \mathrm{V} \leq+25 \mathrm{~V}$
$-0.3 \leq \mathrm{V} \leq+25 \mathrm{~V}$
-1 V

Internally limited
$-65^{\circ} \mathrm{Cto}+150^{\circ} \mathrm{C}$
2kV

Lead Temperature	
S Package	
\quad Vapor Phase $(60 \mathrm{sec})$.	$+215^{\circ} \mathrm{C}$
\quad Infrared $(10 \mathrm{sec})$.	$+245^{\circ} \mathrm{C}$
T Package (Soldering, 10 sec.)	$+260^{\circ} \mathrm{C}$
Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$

Operating Conditions

Temperature Range	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$
Supply Voltage	4.5 V to 40 V

LM2596-3.3

Electrical Characteristics

Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range

Symbol	Parameter	Conditions	LM2596-3.3		Units (Limits)
			$\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$	Limit (Note 4)	
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1					
Vout	Output Voltage	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$	3.3		\checkmark
				3.168/3.135	V (min)
				3.432/3.465	V (max)
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	73		\%

LM2596-5.0

Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range

Symbol	Parameter	Conditions	LM2596-5.0		Units (Limits)
			$\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$	Limit (Note 4)	
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$	5.0	$\begin{aligned} & 4.800 / 4.750 \\ & 5.200 / 5.250 \end{aligned}$	
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	80		\%

LM2596-12

Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range

Symbol	Parameter	Conditions	LM2596-12		Units (Limits)
			Typ (Note 3)	Limit (Note 4)	
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1					
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$	12.0		V
				11.52/11.40	V (min)
				12.48/12.60	V (max)
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	90		\%

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range

Symbol	Parameter	Conditions	LM2596-ADJ		Units (Limits)
			$\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$	Limit (Note 4)	
SYSTEM PARAMETERS (Note 5) Test Circuit Figure 1					
$\mathrm{V}_{\text {FB }}$	Feedback Voltage	$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 3 \mathrm{~A}$ $\mathrm{V}_{\text {Out }}$ programmed for 3 V . Circuit of Figure 1	1.230	$\begin{aligned} & 1.193 / 1.180 \\ & 1.267 / 1.280 \end{aligned}$	
η	Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=3 \mathrm{~A}$	73		\%

All Output Voltage Versions Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version and $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$ for the 12 V version. $\mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$

Symbol	Parameter	Conditions	LM2596-XX		Units (Limits)
			Typ (Note 3)	Limit (Note 4)	
DEVICE PARAMETERS					
I_{b}	Feedback Bias Current	Adjustable Version Only, $\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$	10	50/100	$\begin{gathered} \mathrm{nA} \\ \mathrm{nA}(\max) \end{gathered}$
f_{0}	Oscillator Frequency	(Note 6)	150	$\begin{aligned} & 127 / 110 \\ & 173 / 173 \end{aligned}$	
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {Out }}=3 \mathrm{~A}($ Notes 7, 8)	1.16	1.4/1.5	$\begin{gathered} \mathrm{V} \\ \mathrm{~V}(\max) \end{gathered}$
DC	Max Duty Cycle (ON) Min Duty Cycle (OFF)	$\begin{aligned} & \hline \text { (Note 8) } \\ & \text { (Note 9) } \end{aligned}$	$\begin{gathered} 100 \\ 0 \end{gathered}$		\%
ICL	Current Limit	Peak Current (Notes 7, 8)	4.5	$\begin{aligned} & 3.6 / 3.4 \\ & 6.9 / 7.5 \end{aligned}$	
I_{L}	Output Leakage Current	Output = 0V (Notes 7, 9)		50	$\mu \mathrm{A}$ (max)
		Output $=-1 \mathrm{~V}$ (Note 10)	2	30	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\max) \end{gathered}$
I_{Q}	Quiescent Current	(Note 9)	5	10	
$\mathrm{I}_{\text {STBY }}$	Standby Quiescent Current	ON/OFF pin $=5 \mathrm{~V}$ (OFF) ((l (e 10)	80	200/250	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \end{gathered}$
$\begin{aligned} & \theta_{\mathrm{JC}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JA}} \end{aligned}$	Thermal Resistance	TO-220 or TO-263 Package, Junction to Case TO-220 Package, Junction to Ambient (Note 11) TO-263 Package, Junction to Ambient (Note 12) TO-263 Package, Junction to Ambient (Note 13) TO-263 Package, Junction to Ambient (Note 14)	$\begin{gathered} \hline 2 \\ 50 \\ 50 \\ 30 \\ 20 \end{gathered}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
ON/OFF CONTROL Test Circuit Figure 1					
$\begin{aligned} & \mathrm{v}_{\mathrm{IH}} \\ & \mathrm{v}_{\mathrm{IL}} \end{aligned}$	$\overline{\mathrm{ON}}$ /OFF Pin Logic Input Threshold Voltage	Low (Regulator ON) High (Regulator OFF)	1.3	$\begin{aligned} & 0.6 \\ & 2.0 \end{aligned}$	V $V(\max)$ $\mathrm{V}(\min)$

All Output Voltage Versions

Electrical Characteristics (Continued)

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and Adjustable version and $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$ for the 12 V version. $\mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA}$

Symbol	Parameter	Conditions	LM2596-XX		Units (Limits)
			$\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 4) } \end{gathered}$	
I_{H}	$\overline{\text { ON /OFF Pin Input Current }}$	$\mathrm{V}_{\text {LOGIC }}=2.5 \mathrm{~V}$ (Regulator OFF)	5	15	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \end{gathered}$
I_{L}		$\mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V}$ (Regulator ON)	0.02	5	$\begin{gathered} \mu \mathrm{A} \\ \mu \mathrm{~A}(\max) \end{gathered}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 k resistor into each pin.
Note 3: Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Note 5: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator system performance. When the LM2596 is used as shown in the Figure 1 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 6: The switching frequency is reduced when the second stage current limit is activated.
Note 7: No diode, inductor or capacitor connected to output pin.
Note 8: Feedback pin removed from output and connected to OV to force the output transistor switch ON.
Note 9: Feedback pin removed from output and connected to 12 V for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and the ADJ. version, and 15 V for the 12 V version, to force the output transistor switch OFF.

Note 10: $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$.
Note 11: Junction to ambient thermal resistance (no external heat sink) for the TO-220 package mounted vertically, with the leads soldered to a printed circuit board with (1 oz.) copper area of approximately $1 \mathrm{in}^{2}$.
Note 12: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single printed circuit board with $0.5 \mathrm{in}^{2}$ of (1 oz.) copper area.
Note 13: Junction to ambient thermal resistance with the TO-263 package tab soldered to a single sided printed circuit board with $2.5 \mathrm{in}^{2}$ of (1 oz.) copper area.
Note 14: Junction to ambient thermal resistance with the TO-263 package tab soldered to a double sided printed circuit board with 3 in 2 of (1 oz.) copper area on the LM2596S side of the board, and approximately $16 \mathrm{in}^{2}$ of copper on the other side of the p-c board. See Application Information in this data sheet and the thermal model in Switchers Made Simple ${ }^{\text {TM }}$ version 4.3 software.

Typical Performance Characteristics (Circuit of Figure 1)

Efficiency

Typical Performance Characteristics (Circuit of Figure 1) (Continued)

Operating

Switch Current Limit

Shutdown

Quiescent Current

$\overline{\mathrm{ON}} /$ OFF Pin Current (Sinking)

Dropout Voltage

Minimum Operating

Supply Voltage

Switching Frequency

LM2596 SeriesBuckRegulatorDesignProcedure(FixedOutput)

(Continued)

Conditions			Inductor		Output Capacitor					
			Through Hole Electrolytic	Surface Mount Tantalum						
Output Voltage (V)	Load Current (A)	Max Input Voltage (V)			Inductance ($\mu \mathrm{H}$)	Inductor (\#)	Panasonic HFQ Series ($\mu \mathrm{F} / \mathrm{V}$)	Nichicon PL Series ($\mu \mathrm{F} / \mathrm{V}$)	AVX TPS Series ($\mu \mathrm{F} / \mathrm{V}$)	Sprague 595D Series ($\mu \mathrm{F} / \mathrm{V}$)
3.3	3	5	22	L41	470/25	560/16	330/6.3	390/6.3		
		7	22	L41	560/35	560/35	330/6.3	390/6.3		
		10	22	L41	680/35	680/35	330/6.3	390/6.3		
		40	33	L40	560/35	470/35	330/6.3	390/6.3		
	2	6	22	L33	470/25	470/35	330/6.3	390/6.3		
		10	33	L32	330/35	330/35	330/6.3	390/6.3		
		40	47	L39	330/35	270/50	220/10	330/10		
5	3	8	22	L41	470/25	560/16	220/10	330/10		
		10	22	L41	560/25	560/25	220/10	330/10		
		15	33	L40	330/35	330/35	220/10	330/10		
		40	47	L39	330/35	270/35	220/10	330/10		
	2	9	22	L33	470/25	560/16	220/10	330/10		
		20	68	L38	180/35	180/35	100/10	270/10		
		40	68	L38	180/35	180/35	100/10	270/10		
12	3	15	22	L41	470/25	470/25	100/16	180/16		
		18	33	L40	330/25	330/25	100/16	180/16		
		30	68	L44	180/25	180/25	100/16	120/20		
		40	68	L44	180/35	180/35	100/16	120/20		
	2	15	33	L32	330/25	330/25	100/16	180/16		
		20	68	L38	180/25	180/25	100/16	120/20		
		40	150	L42	82/25	82/25	68/20	68/25		

FIGURE 2. LM2596 Fixed Voltage Quick Design Component Selection Table
LM2596 SeriesBuckRegulatorDesignProcedure(AdjustableOutput)

Output Voltage (\mathbf{V})	Through Hole Output Capacitor		Surface Mount Output Capacitor			
	Panasonic HFQ Series $(\boldsymbol{\mu F} / \mathbf{V})$	Nichicon PL Series $(\boldsymbol{\mu F} / \mathbf{V})$	Feedforward Capacitor	AVX TPS Series $(\boldsymbol{\mu F} / \mathbf{V})$	Sprague 595 D Series $(\boldsymbol{\mu F} / \mathbf{V})$	Feedforward Capacitor
$\mathbf{2}$	$820 / 35$	$820 / 35$	33 nF	$330 / 6.3$	$470 / 4$	33 nF
$\mathbf{4}$	$560 / 35$	$470 / 35$	10 nF	$330 / 6.3$	$390 / 6.3$	10 nF
$\mathbf{6}$	$470 / 25$	$470 / 25$	3.3 nF	$220 / 10$	$330 / 10$	3.3 nF
$\mathbf{9}$	$330 / 25$	$330 / 25$	1.5 nF	$100 / 16$	$180 / 16$	1.5 nF
$\mathbf{1 2}$	$330 / 25$	$330 / 25$	1 nF	$100 / 16$	$180 / 16$	1 nF
$\mathbf{1 5}$	$220 / 35$	$220 / 35$	680 pF	$68 / 20$	$120 / 20$	680 pF
$\mathbf{2 4}$	$220 / 35$	$150 / 35$	560 pF	$33 / 25$	$33 / 25$	220 pF
$\mathbf{2 8}$	$100 / 50$	$100 / 50$	390 pF	$10 / 35$	$15 / 50$	220 pF

FIGURE 3. Output Capacitor and Feedforward Capacitor Selection Table

LM2596 SeriesBuckRegulatorDesignProcedure

INDUCTOR VALUE SELECTION GUIDES (For Continuous Mode Operation)

FIGURE4.LM2596-3.3

MAXIMUM LOAD CURRENT (A)
01258325

FIGURE5.LM2596-5.0

01258326

FIGURE6.LM2596-12

MAXIMUM LOAD CURRENT (A)
01258327

FIGURE7.LM2596-ADJ

Test Circuit and Layout Guidelines (Continued)

HEAVY LINES MUST BE KEPT SHORT AND USE GROUND PLANE CONSTRUCTION FOR BEST RESULTS

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R_{2}}{R_{1}}\right)
$$

where $\mathrm{V}_{\mathrm{REF}}=1.23 \mathrm{~V}$

$$
R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)
$$

Select R_{1} to be approximately $1 \mathrm{k} \Omega$, use a 1% resistor for best stability.
$\mathrm{C}_{\mathrm{IN}}-470 \mu \mathrm{~F}, 50 \mathrm{~V}$, Aluminum Electrolytic Nichicon "PL Series"
Cout - $220 \mu \mathrm{~F}, 35 \mathrm{~V}$ Aluminum Electrolytic, Nichicon "PL Series"
D1 - 5A, 40V Schottky Rectifier, 1N5825
L1 $-68 \mu \mathrm{H}, \mathrm{L} 38$
R1 $-1 \mathrm{k} \Omega, 1 \%$
C_{FF}-See Application Information Section

FIGURE 1. Standard Test Circuits and Layout Guides

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines should be wide printed circuit traces and should be kept as short as possible. For best results, external components should be located as close to the switcher IC as possible using ground plane construction or single point grounding.
If open core inductors are used, special care must be taken as to the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC groundpath and $\mathrm{C}_{\text {Out }}$ wiring can cause problems.

When using the adjustable version, special care must be taken as to the location of the feedback resistors and the associated wiring. Physically locate both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor. (See application section for more information.)

LM2596 Series Buck Regulator Design Procedure (Adjustable Output)

PROCEDURE (Adjustable Output Voltage Version)

Given:

$\mathrm{V}_{\text {Out }}=$ Regulated Output Voltage
$\mathrm{V}_{\mathrm{IN}}($ max $)=$ Maximum Input Voltage
$\mathrm{I}_{\text {LOAD }}(\mathrm{max})=$ Maximum Load Current
$\mathrm{F}=$ Switching Frequency (Fixed at a nominal 150 kHz).

1. Programming Output Voltage (Selecting R_{1} and R_{2}, as shown in Figure 1)
Use the following formula to select the appropriate resistor values.

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R_{2}}{R_{1}}\right) \text { where } V_{\text {REF }}=1.23 \mathrm{~V}
$$

Select a value for R_{1} between 240Ω and $1.5 \mathrm{k} \Omega$. The lower resistor values minimize noise pickup in the sensitive feedback pin. (For the lowest temperature coefficient and the best stability with time, use 1% metal film resistors.)

$$
R_{2}=R_{1}\left(\frac{V_{\mathrm{OUT}}}{V_{\mathrm{REF}}}-1\right)
$$

2. Inductor Selection (L1)

A. Calculate the inductor Volt • microsecond constant E•T (V - $\mu \mathrm{s}$), from the following formula:
$E \bullet T=\left(V_{I N}-V_{\text {OUT }}-V_{S A T}\right) \cdot \frac{V_{\text {OUT }}+V_{D}}{V_{I N}-V_{S A T}+V_{D}} \cdot \frac{1000}{150 \mathrm{kHz}}(\mathrm{V} \bullet \mu \mathrm{S})$
where $\mathrm{V}_{\text {SAT }}=$ internal switch saturation voltage $=1.16 \mathrm{~V}$ and $V_{D}=$ diode forward voltage drop $=0.5 \mathrm{~V}$
B. Use the E•T value from the previous formula and match it with the E•T number on the vertical axis of the Inductor Value Selection Guide shown in Figure 7.
C. on the horizontal axis, select the maximum load current.
D. Identify the inductance region intersected by the $\mathrm{E} \cdot \mathrm{T}$ value and the Maximum Load Current value. Each region is identified by an inductance value and an inductor code (LXX).
E. Select an appropriate inductor from the four manufacturer's part numbers listed in Figure 8.

EXAMPLE (Adjustable Output Voltage Version)

Given:
$\mathrm{V}_{\text {OUt }}=20 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}($ max $)=28 \mathrm{~V}$
$\mathrm{I}_{\text {LOAD }}(\max)=3 \mathrm{~A}$
$\mathrm{F}=$ Switching Frequency (Fixed at a nominal 150 kHz).

1. Programming Output Voltage (Selecting R_{1} and R_{2}, as shown in Figure 1)
Select R_{1} to be $1 \mathrm{k} \Omega, 1 \%$. Solve for R_{2}.

$$
R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right)=1 k\left(\frac{20 \mathrm{~V}}{1.23 \mathrm{~V}}-1\right)
$$

$R_{2}=1 \mathrm{k}(16.26-1)=15.26 \mathrm{k}$, closest 1% value is $15.4 \mathrm{k} \Omega$. $R_{2}=15.4 \mathrm{k} \Omega$.

2. Inductor Selection (L1)

A. Calculate the inductor Volt • microsecond constant (E•T),

$$
\begin{aligned}
& E \cdot T=(28-20-1.16) \cdot \frac{20+0.5}{28-1.16+0.5} \cdot \frac{1000}{150}(\mathrm{~V} \bullet \mu \mathrm{~s}) \\
& E \bullet T=(6.84) \cdot \frac{20.5}{27.34} \bullet 6.67(\mathrm{~V} \bullet \mu \mathrm{~s})=34.2(\mathrm{~V} \bullet \mu \mathrm{~s})
\end{aligned}
$$

B. $E \cdot T=34.2(V \cdot \mu \mathrm{~s})$
C. $\mathrm{I}_{\text {LOAD }}(\max)=3 \mathrm{~A}$
D. From the inductor value selection guide shown in Figure 7, the inductance region intersected by the $34(\mathrm{~V} \cdot \mu \mathrm{~s})$ horizontal

L39.
E. From the table in Figure 8, locate line L39, and select an bers.

FIGURE 12.

Application Information

PIN FUNCTIONS

$+\mathrm{V}_{\text {IN }}$ - This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.
Ground - Circuit ground.
Output - Internal switch. The voltage at this pin switches between (+ $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{SAT}}$) and approximately -0.5 V , with a duty cycle of approximately $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}$. To minimize coupling to sensitive circuitry, the PC board copper area connected to this pin should be kept to a minimum.
Feedback - Senses the regulated output voltage to complete the feedback loop.
$\overline{\mathbf{O N}}$ /OFF - Allows the switching regulator circuit to be shut down using logic level signals thus dropping the total input supply current to approximately $80 \mu \mathrm{~A}$. Pulling this pin below a threshold voltage of approximately 1.3 V turns the regulator on, and pulling this pin above 1.3 V (up to a maximum of 25 V) shuts the regulator down. If this shutdown feature is not needed, the $\overline{O N} / O F F$ pin can be wired to the ground pin or it can be left open, in either case the regulator will be in the ON condition.

EXTERNAL COMPONENTS INPUT CAPACITOR

$\mathbf{C}_{\text {IN }}$ - A low ESR aluminum or tantalum bypass capacitor is needed between the input pin and ground pin. It must be located near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current needed each time the switch turns on.

The important parameters for the Input capacitor are the voltage rating and the RMS current rating. Because of the
relatively high RMS currents flowing in a buck regulator's input capacitor, this capacitor should be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating.
The RMS current rating of a capacitor could be viewed as a capacitor's power rating. The RMS current flowing through the capacitors internal ESR produces power which causes the internal temperature of the capacitor to rise. The RMS current rating of a capacitor is determined by the amount of current required to raise the internal temperature approximately $10^{\circ} \mathrm{C}$ above an ambient temperature of $105^{\circ} \mathrm{C}$. The ability of the capacitor to dissipate this heat to the surrounding air will determine the amount of current the capacitor can safely sustain. Capacitors that are physically large and have a large surface area will typically have higher RMS current ratings. For a given capacitor value, a higher voltage electrolytic capacitor will be physically larger than a lower voltage capacitor, and thus be able to dissipate more heat to the surrounding air, and therefore will have a higher RMS current rating.

Application Information
 (Continued)

FIGURE 21. Delayed Startup

for Inverting Regulator
FIGURE 23. Undervoltage Lockout

DELAYED STARTUP

The circuit in Figure 21 uses the the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin to provide a time delay between the time the input voltage is applied and the time the output voltage comes up (only the circuitry pertaining to the delayed start up is shown). As the input voltage rises, the charging of capacitor C 1 pulls the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin high, keeping the regulator off. Once the input voltage reaches its final value and the capacitor stops charging, and resistor R_{2} pulls the $\overline{O N} / O F F$ pin low, thus allowing the circuit to start switching. Resistor R_{1} is included to limit the maximum voltage applied to the $\overline{\mathrm{ON}}$ /OFF pin (maximum of 25 V), reduces power supply noise sensitivity, and also limits the capacitor, C 1 , discharge current. When high input ripple voltage exists, avoid long delay time, because this ripple can be coupled into the $\overline{\mathrm{ON}}$ /OFF pin and cause problems.
This delayed startup feature is useful in situations where the input power source is limited in the amount of current it can deliver. It allows the input voltage to rise to a higher voltage before the regulator starts operating. Buck regulators require less input current at higher input voltages.

FIGURE 22. Undervoltage Lockout for Buck Regulator

UNDERVOLTAGE LOCKOUT

Some applications require the regulator to remain off until the input voltage reaches a predetermined voltage. An undervoltage lockout feature applied to a buck regulator is shown in Figure 22, while Figure 23 and 24 applies the same feature to an inverting circuit. The circuit in Figure 23 fea-
tures a constant threshold voltage for turn on and turn off (zener voltage plus approximately one volt). If hysteresis is needed, the circuit in Figure 24 has a turn ON voltage which is different than the turn OFF voltage. The amount of hysteresis is approximately equal to the value of the output voltage. If zener voltages greater than 25 V are used, an additional $47 \mathrm{k} \Omega$ resistor is needed from the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin to the ground pin to stay within the 25 V maximum limit of the $\overline{\mathrm{ON}}$ /OFF pin.

INVERTING REGULATOR

The circuit in Figure 25 converts a positive input voltage to a negative output voltage with a common ground. The circuit operates by bootstrapping the regulator's ground pin to the negative output voltage, then grounding the feedback pin, the regulator senses the inverted output voltage and regulates it.

This example uses the LM2596-5.0 to generate a -5V output, but other output voltages are possible by selecting other output voltage versions, including the adjustable version. Since this regulator topology can produce an output voltage that is either greater than or less than the input voltage, the maximum output current greatly depends on both the input and output voltage. The curve shown in Figure 26 provides a guide as to the amount of output load current possible for the different input and output voltage conditions.

Application Information (Continued)

FIGURE 24. Undervoltage Lockout with Hysteresis for Inverting Regulator

$\mathrm{C}_{\mathrm{IN}} \quad-68 \mu \mathrm{~F} / 25 \mathrm{~V}$ Tant. Sprague 595D
$470 \mu \mathrm{~F} / 50 \mathrm{~V}$ Elec. Panasonic HFQ
Cout $-47 \mu \mathrm{~F} / 20 \mathrm{~V}$ Tant. Sprague 595D
$220 \mu \mathrm{~F} / 25 \mathrm{~V}$ Elec. Panasonic HFQ

FIGURE 25. Inverting -5V Regulator with Delayed Startup

FIGURE 26. Inverting Regulator Typical Load Current
Because of differences in the operation of the inverting regulator, the standard design procedure is not used to select the inductor value. In the majority of designs, a $33 \mu \mathrm{H}$, 3.5A inductor is the best choice. Capacitor selection can also
be narrowed down to just a few values. Using the values shown in Figure 25 will provide good results in the majority of inverting designs.
This type of inverting regulator can require relatively large amounts of input current when starting up, even with light loads. Input currents as high as the LM2596 current limit (approx 4.5 A) are needed for at least 2 ms or more, until the output reaches its nominal output voltage. The actual time depends on the output voltage and the size of the output capacitor. Input power sources that are current limited or sources that can not deliver these currents without getting loaded down, may not work correctly. Because of the relatively high startup currents required by the inverting topology, the delayed startup feature ($\mathrm{C} 1, \mathrm{R}_{1}$ and R_{2}) shown in Figure 25 is recommended. By delaying the regulator startup, the input capacitor is allowed to charge up to a higher voltage before the switcher begins operating. A portion of the high input current needed for startup is now supplied by the input capacitor ($\mathrm{C}_{\text {IN }}$). For severe start up conditions, the input capacitor can be made much larger than normal.

Application Information (Continued)

INVERTING REGULATOR SHUTDOWN METHODS

To use the $\overline{\mathrm{ON}}$ /OFF pin in a standard buck configuration is simple, pull it below 1.3 V (@25 ${ }^{\circ} \mathrm{C}$, referenced to ground) to turn regulator ON , pull it above 1.3 V to shut the regulator

OFF. With the inverting configuration, some level shifting is required, because the ground pin of the regulator is no longer at ground, but is now setting at the negative output voltage level. Two different shutdown methods for inverting regulators are shown in Figure 27 and 28.

FIGURE 27. Inverting Regulator Ground Referenced Shutdown

FIGURE 28. Inverting Regulator Ground Referenced Shutdown using Opto Device

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Isolated DC/DC Converters category:
Click to view products by Huaguan manufacturer:

Other Similar products are found below :
ESM6D044440C05AAQ FMD15.24G PSL486-7LR PSR152.5-7IR Q48T30020-NBB0 AVO240-48S12B-6L AVO250-48S28B-6L NAN0505 HW-L16D JAHW100Y1 217-1617-001 22827 SPB05C-12 SQ24S15033-PS0S $18952 \underline{19-130041}$ CE-1003 CE-1004 GQ2541-7R PSE1000DCDC-12V RDS180245 MAU228 419-2065-201 449-2075-101 TME 0303S TME 0505S TME 1205S TME 1212S TME 2405S TME 2412S J80-0041NL V300C24C150BG 419-2062-200 419-2063-401 419-2067-101 419-2067-501 419-2068-001 DCG40-5G DFC15U48D15 449-2067-000 XGS-0512 XGS-1205 XGS-1212 XGS-2412 XGS-2415 XKS-1215 033456 NCT1000N040R050B SPB05B-15 SPB05C-15

