

LM358 Dual Operational Amplifiers

1 Features

- Wide Supply Ranges
 - Single Supply: 3 V to 32 V (26 V for LM2904)
 - Dual Supplies: ±1.5 V to ±16 V (±13 V for LM2904)
- Low Supply-Current Drain, Independent of Supply Voltage: 0.7 mA Typical
- Wide Unity Gain Bandwidth: 0.7 MHz
- Common-Mode Input Voltage Range Includes Ground, Allowing Direct Sensing Near Ground
- Low Input Bias and Offset Parameters
 - Input Offset Voltage: 3 mV Typical A Versions: 2 mV Typical
 - Input Offset Current: 2 nA Typical
 - Input Bias Current: 20 nA Typical A Versions: 15 nA Typical
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage: 32 V (26 V for LM2904)
- Open-Loop Differential Voltage Gain: 100 dB Typical
- Internal Frequency Compensation
- On Products Compliant to MIL-PRF-38535, All Parameters are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

2 Applications

- Blu-ray Players and Home Theaters
- Chemical and Gas Sensors
- DVD Recorder and Players
- Digital Multimeter: Bench and Systems
- Digital Multimeter: Handhelds
- Field Transmitter: Temperature Sensors
- Motor Control: AC Induction, Brushed DC, Brushless DC, High-Voltage, Low-Voltage, Permanent Magnet, and Stepper Motor
- Oscilloscopes
- TV: LCD and Digital
- Temperature Sensors or Controllers Using Modbus
- Weigh Scales

3 Description

These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply or split supply over a wide range of voltages.

Device Information ⁽¹⁾									
PART NUMBER	PACKAGE	BODY SIZE (NOM)							
	VSSOP (8)	3.00 mm × 3.00 mm							
	SOIC (8)	4.90 mm × 3.90 mm							
LMx58, LMx58x,	SO (8)	5.20 mm × 5.30 mm							
	TSSOP (8)	3.00 mm × 4.40 mm							
	PDIP (8)	9.81 mm × 6.35 mm							
LMx58, LMx58x,	CDIP (8)	9.60 mm × 6.67 mm							
LM2904V	LCCC (20)	8.89 mm × 8.89 mm							

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Symbol (Each Amplifier)

5 Pin Configuration and Functions

D, DGK, P, PS, PW and JG Package 8-Pin SOIC, VSSOP, PDIP, SO, TSSOP and CDIP (Top View)

	F 2	FK Pa 0-Pin (Top \	ckag LCC /iew)	e C)	
	S	10UT NC	V cc+	z	
1					
NC	14^{3}	21	20 1	і9 18 Г	NC
1IN-	15			17 [20UT
NC	6			16	NC
1IN+	7			15	2IN-
NC	8			14	NC
	- 9	10 11	12 1	3	
			<u> </u>	· \	1
	ž	ΖZ	źź	ž	
		(")	Ā		

NC - No internal connection

Pin Functions

	PIN			
NAME	LCCC NO.	SOIC, SSOP, CDIP, PDIP SO, TSSOP, CFP NO.	I/O	DESCRIPTION
1IN-	5	2	I	Negative input
1IN+	7	3	I	Positive input
10UT	2	1	0	Output
2IN-	15	6	I	Negative input
2IN+	12	5	I	Positive input
2OUT	17	7	0	Output
GND	10	4	—	Ground
	1	-		
	3	_		
	4	_		
	6	-		
	8	-		
NC	9		_	Do not connect
	11	_		
	13			
	14			
	16			
	18			
	19			
V _{CC}	_	8	_	Power supply
V _{CC+}	20		_	Power supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

				LMx58 LM	, LMx58x, 2904V	LM	2904	UNIT
				MIN	MAX	MIN	MAX	
V _{CC} V _{ID} V _I T _A T _J		Supply voltage ⁽²⁾		-0.3	±16 or 32	-0.3	±13 or 26	V
V _{CC} V _{ID} V _I		Differential input voltage ⁽³⁾		-32	32	-26	26	V
VI	either input	Input voltage		-0.3	32	-0.3	26	V
		Duration of output short circuit (o (or below) $T_A = 25^{\circ}C$, $V_{CC} \le 15 V^{(4)}$	ne amplifier) to ground at		Unlimited		Unlimited	S
			LM158, LM158A	-55	125			
-		Operating free air temperature	LM258, LM258A	-25	85			**
IA		Operating free air temperature	LM358, LM358A	0	70			
			LM2904	-40	125	-40	125	
TJ		Operating virtual junction temperation	ature		150		150	°C
		Case temperature for 60 seconds	FK package		260			°C
		Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds	JG package		300		300	°C
T _{stg}		Storage temperature		-65	150	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND. (2)

(3) (4) Differential voltages are at IN+, with respect to IN-.

Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatio disabarga	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±500	V
V _(ESD) E	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101	±1000	v

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. (1)

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			LMx58, L LM29	.Mx58x, 04V	LM	2904	UNIT
			MIN	MAX	MIN	MAX	
V _{CC}	Supply voltage		3	30	3	26	V
V _{CM}	Common-mode voltage		0	$V_{CC}-2$	0	$V_{CC}-2$	V
		LM158	-55	125			
т	Operating free air temperature	LM2904	-40	125	-40	125	ŝ
IA	Operating nee an temperature	LM358	0	70			C
		LM258	-25	85			

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾			LMx58, LM	LMx58, LMx58x, LM2904 V	LMx58, LMx58x, LM2904 V	UNIT			
		D (SOIC)	DGK (VSSOP)	P (PDIP)	P (PDIP) PS (SO) PW (TSSOP)			JG (CDIP)	
		8 PINS	8 PINS	8 PINS	8 PINS	8 PINS	20 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	97	172	85	95	149	—	_	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	72.2	_	_	_	_	5.61	14.5	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics for LMx58

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONF		T. ⁽²⁾		LM158 LM258			LM358		UNIT
				. 4	MIN	TYP ⁽³⁾	MAX	MIN	TYP ⁽³⁾	MAX	
		$V_{CC} = 5 V$ to MAX,		25°C		3	5		3	7	
V _{IO}	Input offset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 V$		Full range			7			9	mV
αV_{IO}	Average temperature coefficient of input offset voltage			Full range		7			7		µV/°C
	Input offect current	V = 1.4 V	/o = 1.4 V			2	30		2	50	nA
'IO	input onset current	V ₀ = 1.4 V		Full range			100			150	
αI_{IO}	Average temperature coefficient of input offset current			Full range		10			10		pA/°C
l	Input bias current	$V_{-} = 1.4 V_{-}$		25°C		-20	-150		-20	-250	nA
'IB		•0 •		Full range			-300			-500	103
V				25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			V
VICR	Common-mode input voltage range	$v_{CC} = 5 \ v$ to MAX		Full range	0 to V _{CC} – 2			0 to V _{CC} – 2			v
		$R_L \ge 2 k\Omega$	L ≥ 2 kΩ		V _{CC} – 1.5			V _{CC} - 1.5			
V	High-level output voltage	$R_L \ge 10 \ k\Omega$		25°C							V
♥ OH	ngn-level output voltage	Voc = MAX	$R_L = 2 \ k\Omega$	Full range	26			26			v
		· (c) =	$R_L \ge 10 \ k\Omega$	Full range	27	28		27	28		
V _{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20		5	20	mV
Α	Large-signal differential	$V_{CC} = 15 V$ V ₀ = 1 V to 11 V		25°C	50	100		25	100		V/mV
, vo	voltage amplification	$R_L \ge 2 k\Omega$		Full range	25			15			•////•
CMRR	Common-mode rejection ratio	$\begin{array}{l} V_{CC} = 5 \ V \ to \ MAX, \\ V_{IC} = V_{ICR(min)} \end{array} \end{array} \label{eq:V_CC}$		25°C	70	80		65	80		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{DD} / \Delta V_{IO})$	V_{CC} = 5 V to MAX		25°C	65	100		65	100		dB
V ₀₁ / V ₀₂	Crosstalk attenuation	f = 1 kHz to 20 kHz	2	25°C		120			120		dB
		V _{CC} = 15 V,		25°C	-20	-30		-20	-30		
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			-10			mA
lo	Output current	$V_{CC} = 15 V,$	O'ala	25°C	10	20		10	20		
		$V_{ID} = -1 V$, Sink $V_0 = 15 V$		Full range	5			5			
		$V_{\rm ID} = -1 \text{V}, \text{V}_{\rm O} = 200 \text{mV}$		25°C	12	30		12	30		μΑ
I _{os}	Short-circuit output current	V_{CC} at 5 V, GND at $V_{O} = 0$:−5 V,	25°C		±40	±60		±40	±60	mA
	Supply current	$V_0 = 2.5 V$, No load	b	Full range		0.7	1.2		0.7	1.2	
Icc	(two amplifiers)	$V_{CC} = MAX, V_O = 0$ No load	.5 V _{CC} ,	Full range		1	2		1	2	mA

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 30 V for the others.
 Full range is -55°C to 125°C for LM158, -25°C to 85°C for LM258, and 0°C to 70°C for LM358, and -40°C to 125°C for LM2904.

(3) All typical values are at $T_A = 25^{\circ}C$

6.6 Electrical Characteristics for LM2904

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	DADAMETER	TEST CONDITI		T (2)	LN	12904		
	PARAMETER	TEST CONDITI	UNS."	I _A (-7	MIN	TYP ⁽³⁾	MAX	UNIT
			Non-A-suffix	25°C		3	7	
		$V_{CC} = 5 V \text{ to MAX},$	devices	Full range			10	
V _{IO}	Input offset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 V$		25°C		1	2	mv
		0	A-suffix devices	Full range			4	
αV _{IO}	Average temperature coefficient of input offset voltage			Full range		7		µV/°C
				25°C		2	50	
	logut offert current	N 44N	Non-v device	Full range			300	~ ^
IIO	input onset current	$v_0 = 1.4 v$		25°C		2	50	nA
			v-suffix device	Full range			150	
αl _{IO}	Average temperature coefficient of input offset current			Full range		10		pA/°C
	Input bios ourrent	$\gamma = 1.4 \gamma$		25°C		-20	-250	~
IB	input bias current	$v_0 = 1.4 v$		Full range			-500	nA
	Common-mode input			25°C	0 to V _{CC} – 1.5			
VICR	voltage range			Full range	0 to V _{CC} – 2			v
	$R_L \ge 10 \ k\Omega$			25°C	V _{CC} - 1.5			
		$V_{CC} = MAX,$	$R_L = 2 k\Omega$	Full range	22			
V _{OH}	High-level output voltage	Non-V device	$R_L \ge 10 \ k\Omega$	Full range	23	24		V
		V _{CC} = MAX	$R_L = 2 k\Omega$	Full range	26			
		V-suffix device	$R_L \ge 10 \ k\Omega$	Full range	27	28		
V _{OL}	Low-level output voltage	$R_{L} \le 10 \ k\Omega$		Full range		5	20	mV
	Large-signal differential	V _{CC} = 15 V,		25°C	25	100		
A _{VD}	voltage amplification	$V_0 = 1 V \text{ to } 11 V,$ $R_L \ge 2 k\Omega$		Full range	15			V/mV
CMRR	Common-mode rejection ratio	$V_{CC} = 5V$ to MAX,	Non-V device	25°C	50	80		dB
OMINI		$V_{IC} = V_{ICR(min)}$	V-suffix device	25°C	65	80		GD
k _{svr}	Supply-voltage rejection ratio $(\Delta V_{CC} / \Delta V_{IO})$	$V_{CC} = 5 V$ to MAX		25°C	65	100		dB
V ₀₁ / V ₀₂	Crosstalk attenuation	f = 1 kHz to 20 kHz		25°C		120		dB
		V _{CC} = 15 V,		25°C	-20	-30		
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			mA
1-		V _{CC} = 15 V,		25°C	10	20		IIIA
10	ouput current	$V_{ID} = -1 V$, Sink $V_{O} = 15 V$ Non-	Sink	Full range	5			
			Non-V device	25°C		30		uА
		·ID = 1 •, •0 = 200 III •	V-suffix device	25°C	12	40		μ.,
l _{os}	Short-circuit output current	V_{CC} at 5 V, V_{O} = 0, GND at -5	5 V	25°C		±40	±60	mA
lee	Supply current	V_{O} = 2.5 V, No load		Full range		0.7	1.2	mA
·UU	(tour amplifiers)	V_{CC} = MAX, V_{O} = 0.5 V_{CC} , No	load	Full range		1	2	

(1) All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 32 V for LM2902V. Full range is -55°C to 125°C for LM158, -25°C to 85°C for LM258, 0°C to 70°C for LM358, and -40°C to 125°C for LM2904.

(2)

All typical values are at $T_A = 25^{\circ}C$. (3)

6.7 Electrical Characteristics for LM158A and LM258A

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	DADAMETED	TEST CONDITIONS ⁽¹⁾	T (1)	LM1	58A		LI	M258A		
PARAMETER		TEST CONDITIONS ?	IA.,	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNIT
V _{IO} Input offset voltage		$V_{CC} = 5 V \text{ to } 30 V,$	25°C			2		2	3	
	Input offset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 V$	Full range			4			4	mV

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX (1) V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.

(2) All typical values are at $T_A = 25^{\circ}C$.

Electrical Characteristics for LM158A and LM258A (continued)

at s	pecified	free-air	temperature,	$V_{\rm CC} = 5$	V (unless	otherwise	noted)
					•			/

	DADAMETED	TEAT OOL		T (1)	LM	158A		LN	1258A		
	PARAMETER	TEST COM	IDITIONS."	IA'''	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNIT
αV _{IO}	Average temperature coefficient of input offset voltage			Full range		7	15 ⁽³⁾		7	15	µA/°C
ha	Input offset current	Vo = 1.4 V		25°C		2	10		2	15	nA
10		-0		Full range			30			30	
αl _{IO}	Average temperature coefficient of input offset current			Full range		10	200		10	200	pA/°C
l	Input bias current	V 14 V		25°C		-15	-50		-15	-80	nΑ
'IB	input bias current	v ₀ = 1.4 v		Full range			-100			-100	ПА
Vice	Common-mode input	V 30 V		25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			V
V ICR	voltage range	V _{CC} = 30 V		Full range	0 to V _{CC} – 2			0 to V _{CC} – 2			v
		$R_L \ge 2 k\Omega$		25°C	V _{CC} – 1.5			$V_{CC} - 1.5$			
V _{OH}	High-level output voltage	V	$R_L=2k\Omega$	Full range	26			26			V
	0	V _{CC} = 30 V	R _L ≥ 10kΩ	Full range	27	28		27	28		
V _{OL}	Low-level output voltage	$R_L \le 10 \ k\Omega$		Full range		5	20		5	20	mV
	Large-signal	V _{CC} = 15 V, V _O =	= 1 V to 11 V,	25°C	50	100		50	100		
A _{VD}	differential voltage amplification	$R_L \ge 2 k\Omega$		Full range	25			25			V/mV
CMRR	Common-mode rejection ratio			25°C	70	80		70	80		dB
k _{svr}	Supply-voltage rejection ratio $(\Delta V_D / \Delta V_{IO})$			25°C	65	100		65	100		dB
V ₀₁ / V ₀₂	Crosstalk attenuation	f = 1 kHz to 20 k	Hz	25°C		120			120		dB
		V _{CC} = 15 V,		25°C	-20	-30	-60	-20	-30	-60	
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			-10			m۵
I _O	Output current	V _{CC} = 15 V,		25°C	10	20		10	20		ША
		$V_{ID} = -1 V,$ $V_{O} = 15 V$	Sink	Full range	5			5			
		$V_{ID} = -1 V, V_O =$	200 mV	25°C	12	30		12	30		μA
I _{os}	Short-circuit output current	V_{CC} at 5 V, GNE $V_{O} = 0$	9 at –5 V,	25°C		±40	±60		±40	±60	mA
	Cumply average	V ₀ = 2.5 V, No I	oad	Full range		0.7	1.2		0.7	1.2	
I _{cc}	(four amplifiers)	V _{CC} = MAX V, V No load	_o = 0.5 V,	Full range		1	2		1	2	mA

(3) On products compliant to MIL-PRF-38535, this parameter is not production tested.

6.8 Electrical Characteristics for LM358A

at specified free-air temperature, $V_{CC} = 5 V$ (unless otherwise noted)

		TEST CONDITIONS(1)	T (2)	LM358A			
PARAMETER		TEST CONDITIONS ⁽⁷⁾	IA.,	MIN	TYP ⁽³⁾	MAX	UNIT
V _{IO}	Input offset voltage	$ \begin{aligned} V_{CC} &= 5 \ V \ to \ 30 \ V, \\ V_{IC} &= V_{ICR(min)}, \\ V_{O} &= 1.4 \ V \end{aligned} $	25°C		2	3	mV
			Full range			5	
αV_{IO}	Average temperature coefficient of input offset voltage		Full range		7	20	µA/°C
I _{IO}	Input offset current	V ₀ = 1.4 V	25°C		2	30	nA
			Full range			75	
αl _{IO}	Average temperature coefficient of input offset current		Full range		10	300	pA/°C

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.

(2) All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.

(3) All typical values are at $T_A = 25^{\circ}C$.

Electrical Characteristics for LM358A (continued)

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

PARAMETER		тгет	TEST CONDITIONS(1)	T (2)	LM358A			UNUT
		TEST	TEST CONDITIONS ⁽⁷⁾		MIN	TYP ⁽³⁾	MAX	UNIT
I _{IB}	lanut higo current	V 4 4 V	V ₀ = 1.4 V			-15	-100	nA
	input bias current	$v_0 = 1.4 v$					-200	
V _{ICR}	Common-mode input	N 20 V		25°C	0 to V _{CC} – 1.5			V
	voltage range	$v_{\rm CC} = 30$ v	$v_{cc} = 30 \text{ V}$		0 to V _{CC} – 2			
		$R_L \ge 2 k\Omega$		25°C	V _{CC} – 1.5			
V _{OH}	High-level output voltage	V 20.V	$R_L = 2k\Omega$	Full range	26			V
		$v_{CC} = 30 v$	R _L ≥ 10kΩ	Full range	27	28		
V _{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20	mV
A _{VD}	Large-signal differential	V _{CC} = 15 V, V _O =	$V_{CC} = 15 \text{ V}, V_O = 1 \text{ V} \text{ to } 11 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$		25	100		V/mV
	voltage amplification	$R_L \ge 2 \ k\Omega$			15			
CMRR	Common-mode rejection ratio			25°C	65	80		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{DD} / \Delta V_{IO})$			25°C	65	100		dB
V ₀₁ / V ₀₂	Crosstalk attenuation	f = 1 kHz to 20 k	f = 1 kHz to 20 kHz			120		dB
ι _o		$V_{CC} = 15 \text{ V},$ $V_{ID} = 1 \text{ V},$ $V_{O} = 0$	Source	25°C	-20	-30	-60	- mA
	Output current			Full range	-10			
		$V_{CC} = 15 \text{ V},$ $V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$		25°C	10	20		
			Sink	Full range	5			
		$V_{ID} = -1 V, V_O =$	200 mV	25°C		30		μΑ
I _{os}	Short-circuit output current	V _{CC} at 5 V, GND V _O = 0	V_{CC} at 5 V, GND at –5 V, V _O = 0			±40	±60	mA
	Quere la compart	V ₀ = 2.5 V, No I	$V_0 = 2.5 V$, No load			0.7	1.2	mA
I _{cc}	Supply current (four amplifiers)	$V_{CC} = MAX V, V_O = 0.5 V,$ No load		Full range		1	2	

6.9 Operating Conditions

 $V_{CC} = \pm 15 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
SR	Slew rate at unity gain	$R_L = 1 M\Omega$, $C_L = 30 pF$, $V_I = \pm 10 V$ (see Figure 11)	0.3	V/µs
B ₁	Unity-gain bandwidth	$R_L = 1 M\Omega$, $C_L = 20 pF$ (see Figure 11)	0.7	MHz
Vn	Equivalent input noise voltage	$R_S = 100 \Omega$, $V_I = 0 V$, f = 1 kHz (see Figure 12)	40	nV/√Hz

LM358

6.10 Typical Characteristics

LM358

Typical Characteristics (continued)

7 Parameter Measurement Information

Figure 11. Unity-Gain Amplifier

Figure 12. Noise-Test Circuit

8 Detailed Description

8.1 Overview

These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is $3 \vee to 32 \vee (3 \vee to 26 \vee for the LM2904 device)$, and V_{CC} is at least 1.5 \vee more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Unity-Gain Bandwidth

The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without greatly distorting the signal. These devices have a 0.7-MHz unity-gain bandwidth.

8.3.2 Slew Rate

The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. These devices have a 0.3-V/µs slew rate.

8.3.3 Input Common Mode Range

The valid common mode range is from device ground to V_{CC} - 1.5 V (V_{CC} - 2 V across temperature). Inputs may exceed V_{CC} up to the maximum V_{CC} without device damage. At least one input must be in the valid input common mode range for output to be correct phase. If both inputs exceed valid range then output phase is undefined. If either input is less than -0.3 V then input current should be limited to 1mA and output phase is undefined.

8.4 Device Functional Modes

These devices are powered on when the supply is connected. This device can be operated as a single supply operational amplifier or dual supply amplifier depending on the application.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The LMx58 and LM2904 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before V_{CC} for flexibility in multiple supply circuits.

9.2 Typical Application

A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive.

Figure 13. Application Schematic

9.2.1 Design Requirements

The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application will scale a signal of ± 0.5 V to ± 1.8 V. Setting the supply at ± 12 V is sufficient to accommodate this application.

9.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:

$$A_{v} = \frac{VOUT}{VIN}$$
(1)
$$A_{v} = \frac{1.8}{-0.5} = -3.6$$
(2)

Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is desirable because the amplifier circuit will use currents in the milliamp range. This ensures the part will not draw too much current. This example will choose 10 k Ω for RI which means 36 k Ω will be used for RF. This was determined by Equation 3.

$$A_v = -\frac{RF}{RI} \tag{3}$$

Typical Application (continued)

9.2.3 Application Curve

Figure 14. Input and Output Voltages of the Inverting Amplifier

10 Power Supply Recommendations

CAUTION

Supply voltages larger than 32 V for a single supply (26 V for the LM2904), or outside the range of ± 16 V for a dual supply (± 13 V for the LM2904) can permanently damage the device (see the *Absolute Maximum Ratings*).

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, refer to the *Layout*.

11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single supply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in *Layout Examples*.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

11.2 Layout Examples

Figure 15. Operational Amplifier Board Layout for Noninverting Configuration

Figure 16. Operational Amplifier Schematic for Noninverting Configuration

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by HGSEMI manufacturer:

Other Similar products are found below :

 OPA2991IDSGR
 OPA607IDCKT
 007614D
 633773R
 635798C
 635801A
 702115D
 709228FB
 741528D
 NCV33072ADR2G

 SC2902DTBR2G
 SC2903DR2G
 SC2903VDR2G
 LM258AYDT
 LM358SNG
 430227FB
 430228DB
 460932C
 AZV831KTR-G1
 409256CB

 430232AB
 LM2904DR2GH
 LM358YDT
 LT1678IS8
 042225DB
 058184EB
 070530X
 SC224DR2G
 SC2902DG

 SCYA5230DR2G
 714228XB
 714846BB
 873836HB
 MIC918YC5-TR
 TS912BIYDT
 NCS2004MUTAG
 NCV33202DMR2G

 M38510/13101BPA
 NTE925
 SC2904DR2G
 SC358DR2G
 LM358EDR2G
 AZV358MTR-G1
 AP4310AUMTR-AG1
 HA1630D02MMEL-E

 NJM358CG-TE2
 HA1630S01LPEL-E
 LM324AWPT
 HA1630Q06TELL-E
 E
 M34510/13101BPA
 ME
 ME