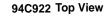
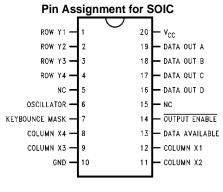


74C92216-Key Encoder74C92320-Key Encoder


General Description

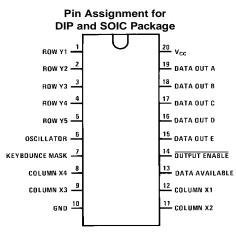
The 74C922 and 74C923 CMOS key encoders provide all the necessary logic to fully encode an array of SPST switches. The keyboard scan can be implemented by either an external clock or external capacitor. These encoders also have on-chip pull-up devices which permit switches with up to 50 k Ω on resistance to be used. No diodes in the switch array are needed to eliminate ghost switches. The internal debounce circuit needs only a single external capacitor and can be defeated by omitting the capacitor. A Data Available output goes to a high level when a valid keyboard entry has been made. The Data Available output returns to a low level when the entered key is released, even if another key is depressed. The Data Available will return high to indicate acceptance of the new key after a normal debounce period; this two-key roll-over is provided between any two switches.


An internal register remembers the last key pressed even after the key is released. The 3-STATE outputs provide for easy expansion and bus operation and are LPTTL compatible.


Features

- 50 kΩ maximum switch on resistance
- On or off chip clock
- On-chip row pull-up devices
- 2 key roll-over
- Keybounce elimination with single capacitor
- Last key register at outputs
- 3-STATE output LPTTL compatible
- Wide supply range: 3V to 15V
- Low power consumption

Connection Diagrams



74C922 Top View

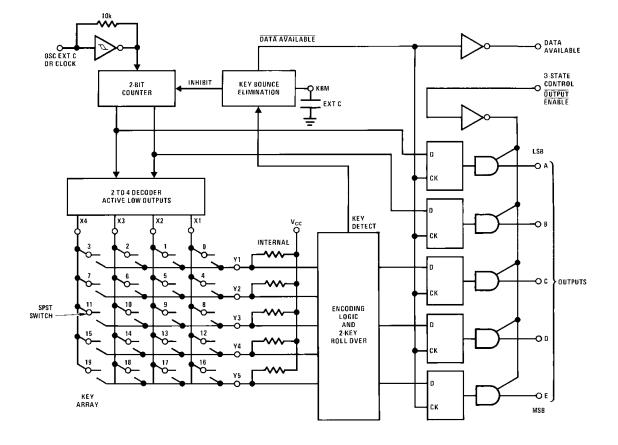
Connection Diagrams (Continued)

74C923 Top View

Truth Tables

(Pins 0 through 11)

	Switch	0	1	2	3	4	5	6	7	8	9	10	11
I	Position	Y1,X1	Y1,X2	Y1,X3	Y1,X4	Y2,X1	Y2,X2	Y2,X3	Y2,X4	Y3,X1	Y3,X2	Y3,X3	Y3,X4
D													
Α	А	0	1	0	1	0	1	0	1	0	1	0	1
Т	В	0	0	1	1	0	0	1	1	0	0	1	1
Α	С	0	0	0	0	1	1	1	1	0	0	0	0
0	D	0	0	0	0	0	0	0	0	1	1	1	1
U	E (Note 1)	0	0	0	0	0	0	0	0	0	0	0	0
Т													


(Pins 12 through 19)

	Switch	12	13	14	15	16	17	18	19
	osition	Y4,X1	Y4,X2	Y4,X3	Y4,X4	Y5(Note 1), X1	Y5 (Note 1), X2	Y5 (Note 1), X3	Y5 (Note 1), X4
D									
А	А	0	1	0	1	0	1	0	1
Т	В	0	0	1	1	0	0	1	1
А	С	1	1	1	1	0	0	0	0
0	D	1	1	1	1	0	0	0	0
U	E (Note 1)	0	0	0	0	1	1	1	1
Т									

Note 1: Omit for 74C922

Block Diagram

74C922/74C923

Absolute Maximum Ratings(Note 2)

Voltage at Any Pin	V_{CC} – 0.3V to V $_{CC}$ + 0.3V
Operating Temperature Range	
74C922, 74C923	−40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW

Operating V _{CC} Range	3V to 15V
V _{CC}	18V
Lead Temperature	
(Soldering, 10 seconds)	260°C

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
смоѕ то о	CMOS		I I			1
V _{T+}	Positive-Going Threshold Voltage	$V_{CC} = 5V$, $I_{IN} \ge 0.7 \text{ mA}$	3.0	3.6	4.3	V
	at Osc and KBM Inputs	$V_{CC} = 10V, I_{IN} \ge 1.4 \text{ mA}$	6.0	6.8	8.6	V
		$V_{CC} = 15V$, $I_{IN} \ge 2.1 \text{ mA}$	9.0	10	12.9	V
V _{T-}	Negative-Going Threshold Voltage	$V_{CC} = 5V$, $I_{IN} \ge 0.7 \text{ mA}$	0.7	1.4	2.0	V
	at Osc and KBM Inputs	$V_{CC} = 10V, I_{IN} \ge 1.4 \text{ mA}$	1.4	3.2	4.0	V
		$V_{CC} = 15V$, $I_{IN} \ge 2.1 \text{ mA}$	2.1	5	6.0	V
V _{IN(1)}	Logical "1" Input Voltage,	$V_{CC} = 5V$	3.5	4.5		V
	Except Osc and KBM Inputs	$V_{CC} = 10V$	8.0	9		V
		$V_{CC} = 15V$	12.5	13.5		V
V _{IN(0)}	Logical "0" Input Voltage,	$V_{CC} = 5V$		0.5	1.5	V
	Except Osc and KBM Inputs	$V_{CC} = 10V$		1	2	V
		$V_{CC} = 15V$		1.5	2.5	V
rp	Row Pull-Up Current at Y1, Y2,	$V_{CC} = 5V, V_{IN} = 0.1 V_{CC}$		-2	-5	μΑ
	Y3, Y4 and Y5 Inputs	$V_{CC} = 10V$		-10	-20	μΑ
		$V_{CC} = 15V$		-22	-45	μA
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \ \mu A$	4.5			V
		$V_{CC} = 10V, I_{O} = -10 \ \mu A$	9			V
		$V_{CC} = 15V, I_{O} = -10 \ \mu A$	13.5			V
VOUT(0)	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = 10 \ \mu A$			0.5	V
		$V_{CC} = 10V, I_{O} = 10 \ \mu A$			1	V
		$V_{CC} = 15V, I_{O} = 10 \ \mu A$			1.5	V
R _{on}	Column "ON" Resistance at	$V_{CC} = 5V, V_{O} = 0.5V$		500	1400	Ω
	X1, X2, X3 and X4 Outputs	$V_{CC} = 10V, V_{O} = 1V$		300	700	Ω
		$V_{CC} = 15V, V_{O} = 1.5V$		200	500	Ω
lcc	Supply Current	$V_{CC} = 5V$		0.55	1.1	mA
	Osc at 0V, (one Y low)	$V_{CC} = 10V$		1.1	1.9	mA
		$V_{CC} = 15V$		1.7	2.6	mA
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
	at Output Enable					
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
	at Output Enable					
CMOS/LPT		·				•
V _{IN(1)}	Except Osc and KBM Inputs	$V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Except Osc and KBM Inputs	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	I _O = -360 μA				
		$V_{CC} = 4.75V$	2.4			V
		$I_O = -360 \ \mu A$				
V _{OUT(0)}	Logical "0" Output Voltage	I _O = -360 μA				İ
		$V_{CC} = 4.75V$			0.4	V
		$I_{O} = -360 \mu A$				

1

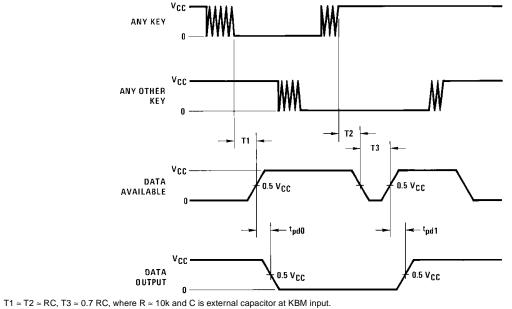
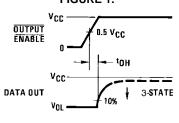
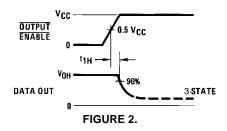
DC Electrical Characteristics (Continued)

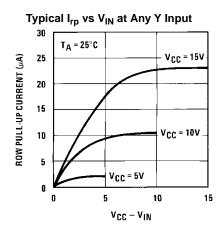
Symbol	Parameter	Conditions	Min	Тур	Max	Units
OUTPUT D	RIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				
SOURCE	Output Source Current	$V_{CC} = 5V, V_{OUT} = 0V,$	-1.75	-3.3		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V,$	-8	-15		mA
	(P-Channel)	$T_A = 25^{\circ}C$				
SINK	Output Sink Current	$V_{CC} = 5V, V_{OUT} = V_{CC},$	1.75	3.6		mA
	(N-Channel)	$T_A = 25^{\circ}C$				
SINK	Output Sink Current	$V_{CC} = 10V, V_{OUT} = V_{CC},$	8	16		mA
	(N-Channel)	$T_A = 25^{\circ}C$				
			Min	Tvp	Max	Units
$T_{\Lambda} = 25^{\circ}$	C, $C_L = 50$ pF, unless otherwise	noted				
			Min	Turn	Max	Unito
Symbol	Parameter	Conditions	Min	Тур	Max	Units
Symbol	Parameter Propagation Delay Time to	Conditions C _L = 50 pF (Figure 1)	Min			
Symbol	Parameter Propagation Delay Time to Logical "0" or Logical "1"	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline C_L = 50 \mbox{ pF (Figure 1)} \\ \hline V_{CC} = 5V \end{tabular}$	Min	60	150	ns
Symbol	Parameter Propagation Delay Time to	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline C_L = 50 \ pF \ (Figure 1) \\ \hline V_{CC} = 5V \\ \hline V_{CC} = 10V \\ \hline \end{tabular}$	Min	60 35	150 80	
	Parameter Propagation Delay Time to Logical "0" or Logical "1" from D.A.	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline C_L = 50 \ pF \ (Figure 1) \\ \hline V_{CC} = 5V \\ \hline V_{CC} = 10V \\ \hline V_{CC} = 15V \\ \hline \end{tabular}$	Min	60	150	ns
Symbol	Parameter Propagation Delay Time to Logical "0" or Logical "1"	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline C_L = 50 \ pF \ (Figure 1) \\ \hline V_{CC} = 5V \\ \hline V_{CC} = 10V \\ \hline \end{tabular}$	Min	60 35	150 80	ns ns
Symbol	Parameter Propagation Delay Time to Logical "0" or Logical "1" from D.A.	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline C_L = 50 \ pF \ (Figure 1) \\ \hline V_{CC} = 5V \\ \hline V_{CC} = 10V \\ \hline V_{CC} = 15V \\ \hline \end{tabular}$	Min	60 35	150 80	ns ns
Symbol	Parameter Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from	$\begin{tabular}{ c c c c c } \hline C onditions \\ \hline $C_L = 50 \ \mbox{pF} (Figure 1) \\ $V_{CC} = 5V \\ $V_{CC} = 10V \\ $V_{CC} = 10V \\ $V_{CC} = 15V \\ \hline $R_L = 10k, \ C_L = 10 \ \mbox{pF} (Figure 2) \\ \hline \end{tabular}$	Min	60 35 25	150 80 60	ns ns ns
Symbol	Parameter Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1"	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline C_L = 50 \ pF \ (Figure \ 1) \\ \hline V_{CC} = 5V \\ \hline V_{CC} = 10V \\ \hline V_{CC} = 15V \\ \hline R_L = 10k, \ C_L = 10 \ pF \ (Figure \ 2) \\ \hline V_{CC} = 5V, \ R_L = 10k \\ \hline \end{tabular}$	Min	60 35 25	150 80 60	ns ns ns
Symbol pd0, t _{pd1}	Parameter Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1"	$\begin{tabular}{ c c c c } \hline C on $ditions $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	Min	60 35 25 80	150 80 60 200	ns ns ns ns
Symbol pd0, t _{pd1}	Parameter Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1" into High Impedance State	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline C_L = 50 \ pF \ (Figure 1) \\ \hline V_{CC} = 5V \\ \hline V_{CC} = 10V \\ \hline V_{CC} = 15V \\ \hline R_L = 10k, \ C_L = 10 \ pF \ (Figure 2) \\ \hline V_{CC} = 5V, \ R_L = 10k \\ \hline V_{CC} = 10V, \ C_L = 10 \ pF65150ns \\ \hline V_{CC} = 15V \\ \hline \end{tabular}$	Min	60 35 25 80	150 80 60 200	ns ns ns ns
Symbol	Parameter Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1" into High Impedance State Propagation Delay Time from	$\begin{tabular}{ c c c c c } \hline Conditions \\ \hline C_L = 50 \ pF \ (Figure 1) \\ \hline V_{CC} = 5V \\ \hline V_{CC} = 10V \\ \hline V_{CC} = 15V \\ \hline R_L = 10k, \ C_L = 10 \ pF \ (Figure 2) \\ \hline V_{CC} = 5V, \ R_L = 10k \\ \hline V_{CC} = 10V, \ C_L = 10 \ pF65150ns \\ \hline V_{CC} = 15V \\ \hline R_L = 10k, \ C_L = 50 \ pF \ (Figure 2) \\ \hline \end{tabular}$	Min	60 35 25 80 50	150 80 60 200 110	ns ns ns ns
Symbol pd0, t _{pd1}	Parameter Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1" into High Impedance State Propagation Delay Time from High Impedance State to a	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline C_L = 50 \ pF \ (Figure \ 1) \\ \hline V_{CC} = 5V \\ \hline V_{CC} = 10V \\ \hline V_{CC} = 15V \\ \hline R_L = 10k, \ C_L = 10 \ pF \ (Figure \ 2) \\ \hline V_{CC} = 5V, \ R_L = 10k \\ \hline V_{CC} = 10V, \ C_L = 10 \ pF65150ns \\ \hline V_{CC} = 15V \\ \hline R_L = 10k, \ C_L = 50 \ pF \ (Figure \ 2) \\ \hline V_{CC} = 5V, \ R_L = 10k \\ \hline \end{tabular}$	Min	60 35 25 80 50	150 80 60 200 110 250	ns ns ns ns ns
Symbol pd0, t _{pd1}	Parameter Propagation Delay Time to Logical "0" or Logical "1" from D.A. Propagation Delay Time from Logical "0" or Logical "1" into High Impedance State Propagation Delay Time from High Impedance State to a	$\begin{tabular}{ c c c c } \hline Conditions \\ \hline C_L = 50 \ pF \ (Figure 1) \\ \hline V_{CC} = 5V \\ \hline V_{CC} = 10V \\ \hline V_{CC} = 15V \\ \hline R_L = 10k, \ C_L = 10 \ pF \ (Figure 2) \\ \hline V_{CC} = 5V, \ R_L = 10k \\ \hline V_{CC} = 10V, \ C_L = 10 \ pF65150ns \\ \hline V_{CC} = 15V \\ \hline R_L = 10k, \ C_L = 50 \ pF \ (Figure 2) \\ \hline V_{CC} = 5V, \ R_L = 10k \\ \hline V_{CC} = 10V, \ C_L = 50 \ pF \end{tabular}$	Min	60 35 25 80 50 100 55	150 80 60 200 110 250 125	ns ns ns ns ns ns

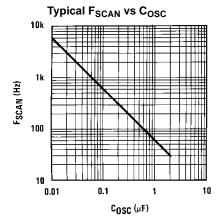
Note 3: AC Parameters are guaranteed by DC correlated testing.

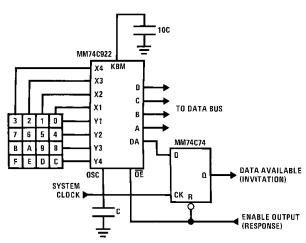
Note 4: Capacitance is guaranteed by periodic testing.

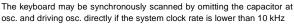
Switching Time Waveforms

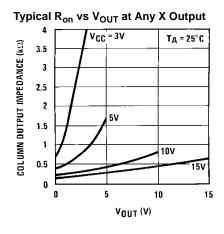




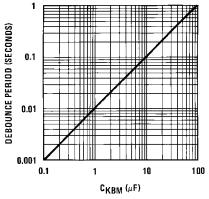

FIGURE 1.

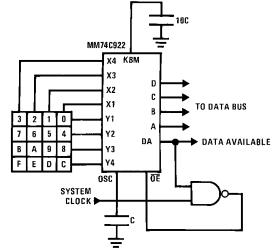



Typical Performance Characteristics

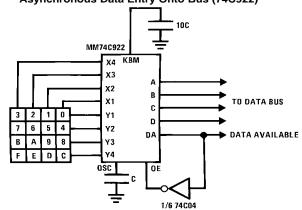





Synchronous Handshake (74C922)

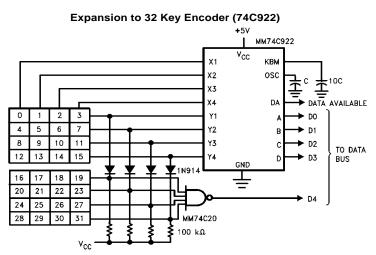


Typical Debounce Period vs C_{KBM}



Synchronous Data Entry Onto Bus (74C922)

Outputs are enabled when valid entry is made and go into 3-STATE when key is released.


The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz $\,$

Asynchronous Data Entry Onto Bus (74C922)

Outputs are in 3-STATE until key is pressed, then data is placed on bus. When key is released, outputs return to 3-STATE.

Theory of Operation

The 74C922/74C923 Keyboard Encoders implement all the logic necessary to interface a 16 or 20 SPST key switch matrix to a digital system. The encoder will convert a key switch closer to a 4(74C922) or 5(74C923) bit nibble. The designer can control both the keyboard scan rate and the key debounce period by altering the oscillator capacitor, C_{OSE} , and the key bounce mask capacitor, C _{MSK}. Thus, the 74C922/74C923's performance can be optimized for many keyboards.

The keyboard encoders connect to a switch matrix that is 4 rows by 4 columns (74C922) or 5 rows by 4 columns (74C923). When no keys are depressed, the row inputs are pulled high by internal pull-ups and the column outputs sequentially output a logic "0". These outputs are open drain and are therefore low for 25% of the time and otherwise off. The column scan rate is controlled by the oscillator input, which consists of a Schmitt trigger oscillator, a 2-bit decoder.

When a key is depressed, key 0, for example, nothing will happen when the X1 input is off, since Y1 will remain high. When the X1 column is scanned, X1 goes low and Y1 will go low. This disables the counter and keeps X1 low. Y1

going low also initiates the key bounce circuit timing and locks out the other Y inputs. The key code to be output is a combination of the frozen counter value and the decoded Y inputs. Once the key bounce circuit times out, the data is latched, and the Data Available (DAV) output goes high.

If, during the key closure the switch bounces, Y1 input will go high again, restarting the scan and resetting the key bounce circuitry. The key may bounce several times, but as soon as the switch stays low for a debounce period, the closure is assumed valid and the data is latched.

A key may also bounce when it is released. To ensure that the encoder does not recognize this bounce as another key closure, the debounce circuit must time out before another closure is recognized.

The two-key roll-over feature can be illustrated by assuming a key is depressed, and then a second key is depressed. Since all scanning has stopped, and all other Y inputs are disabled, the second key is not recognized until the first key is lifted and the key bounce circuitry has reset.

The output latches feed 3-STATE, which is enabled when the Output Enable (\overline{OE}) input is taken low.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Interface - CODECs category:

Click to view products by HGSEMI manufacturer:

Other Similar products are found below :

CS4205-KQZ ZL38015QCG1 MAX98090AEWJ+T WM9713CLGEFLV LE58QL061BVC MAX9867ETJ+G3U ADAU1777BCBZRL WM8944BECS/R TDA7293V-E WM8998ECS/R WM8778SEDS/V CS42L73-CRZR WM8750CJLGEFL STA529Q SSM2603CPZ-REEL TLV320AIC14IDBT TLV320AIC23BIPWRQ1 TLV320AIC23IPW TVP5151PBSR MAX98090BETL+ MAX98089ETN+ MAX98089ETNT TLV320AIC34IZASR TLV320AIC3262IYZFR SA612AD/01.112 ADAU1372BCPZ-RL MAX98090AETL+ MAX9880AETM WM8962ECSN/R TLV320DAC3203IRGER WM8904CGEFL/RV 6PAIC3106IRGZRQ1 CS42436-DMZ TSCS25A3X1NDGXZAX BU94502CMUV-E2 TDA8932BT/N2.112 TDA8954J/N1.112 ICS512MLF 92HD73C1T5PRGIC1X 92HD73C1X5PRGXC1X SSM2167-1RMZ AD1836AASZ AD1836ACSZ AD1928YSTZ AD1937WBSTZ AD1938WBSTZ AD1939WBSTZ AD73311ARSZ AD73311ARZ AD73311LARUZ