1N4148W

Features

\star Fast Switching Speed
\& Surface Mount Package Ideally Suited for Automatic Insertion
\diamond For General Purpose Switching Applications
\& High Conductance

Mechanical Data

\triangleleft Case: SOD-123, Molded Plastic
\& Polarity: Cathode Band
\triangleleft Marking: Date Code only or Date Code and Type Code
Type Code: T4
\& Weight: 0.01 grams (approx.)

SOD-123

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Rating at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified.

Maximum Ratings

Type Number	Symbol	1N4148W	Unit
Non-Repetitive Peak Reverse Voltage	$V_{\text {RM }}$	100	V
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{RRM}} \\ & \mathrm{~V}_{\mathrm{RWMM}} \\ & \mathrm{~V}_{\mathrm{R}} \end{aligned}$	75	V
RMS Reverse Voltage	$\mathrm{V}_{\mathrm{R} \text { (RMS) }}$	53	V
Forward Continuous Current (Note 1)	IFM	300	mA
Average Rectified Output Current (Note 1)	10	150	mA
Non-Repetitive Peak Forward Surge Current $\begin{array}{l}@ \\ \mathrm{t}=1.0 \mu \mathrm{~s} \\ \mathrm{t}=1.0 \mathrm{~s}\end{array}$	IFSM	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	A
Power Dissipation (Note 1)	P_{d}	350	mW
Thermal Resistance Junction to Ambient Air (Note 1)	$\mathrm{R}_{\text {өJA }}$	357	K/W
Operating and Storage Temperature Range	T_{j}, $\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Type Number	Symbol	Min	Max	Unit	Test Condition
Maximum Forward Voltage	$V_{\text {FM }}$	-	$\begin{gathered} 0.715 \\ 0.855 \\ 1.0 \\ 1.25 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA} \end{aligned}$
Maximum Peak Reverse Current	IRM	-	$\begin{aligned} & 2.5 \\ & 50 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{AA} \end{aligned}$	$\begin{aligned} & V_{R}=75 \mathrm{~V} \\ & V_{R}=75 \mathrm{~V}, T_{j}=150^{\circ} \mathrm{C} \\ & V_{R}=25 \mathrm{~V}, T_{j}=150^{\circ} \mathrm{C} \\ & V_{R}=20 \mathrm{~V} \end{aligned}$
Junction Capacitance	C_{j}	-	2.0	pF	$\mathrm{V}_{\mathrm{R}}=0, \mathrm{f}=1.0 \mathrm{MHz}$
Reverse Recovery Time	$t_{\text {rr }}$	-	4.0	ns	$\begin{aligned} & I_{F}=I_{R}=10 \mathrm{~mA}, \\ & I_{r r}=0.1 \times I_{R}, R_{L}=100 \Omega \end{aligned}$

[^0]
V_{F}, INSTANTANEOUS FORWARD VOLTAGE (V)
Fig. 1 Forward Characteristics

Fig. 2 Leakage Current vs Junction Temperature

PACKAGE	SPQ/PCS	CARTON SPQ/PCS	CARTON SIZE/CM	CARTON GW/KG	CARTON NW/KG
SOD-123	$3000 /$ REEL	90000	$40 \times 20 \times 22$	5.00	4.00

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Diodes - General Purpose, Power, Switching category:
Click to view products by LGE manufacturer:
Other Similar products are found below :
MCL4151-TR3 MMBD3004S-13-F RD0306T-H RD0506LS-SB-1H RGP30G-E373 DSE010-TR-E BAQ333-TR BAQ335-TR BAQ33GS18 BAS1602VH6327XT BAV17-TR BAV19-TR BAV301-TR BAW27-TAP HSC285TRF-E NSVBAV23CLT1G NTE525 1SS181-TP 1SS184-TP 1SS193,LF 1SS193-TP 1SS400CST2RA SBAV99LT3G SDAA13 LL4448-GS18 SHN2D02FUTW1T1G LS4150GS18 LS4151GS08 SMMBD7000LT3G FC903-TR-E 1N4449 1N4934-E3/73 1SS226-TP APT100DL60HJ RFUH20TB3S RGP30G-E354 RGP30M-E3/73 D291S45T MCL4151-TR BAS 16-02V H6327 BAS 21U E6327 BAS 28 E6327 BAS33-TAP BAS 70-02V H6327 BAV300-TR BAV303-TR3 BAW27-TR BAW56DWQ-7-F BAW56M3T5G BAW75-TAP

[^0]: Notes: 1. Valid provided that terminals are kept at ambient temperature.

