

SGM4552 1-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications

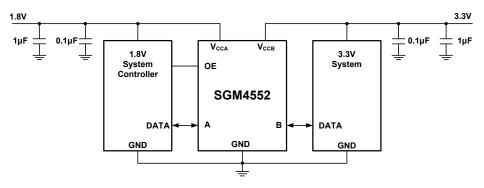
GENERAL DESCRIPTION

This one-bit non-inverting translator uses two separate configurable power-supply rails. The A port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.65V to 5.5V. The B port is designed to track V_{CCB} . V_{CCA} must be less than or equal to V_{CCB} . V_{CCB} accepts any supply voltage from 2.3V to 5.5V. This allows for low-voltage bidirectional translation between any of the 1.8V, 2.5V, 3.3V, and 5V voltage nodes.

When the output-enable (OE) input is low, all outputs are placed in the high-impedance state, which significantly reduces the power-supply quiescent current consumption. OE has an internal pull-down current source, as long as V_{CCA} is powered.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SGM4552 is available in the Green SOT-23-6, SC70-6 and UTDFN-1.45×1-6L packages. It operates over an ambient temperature range of -40° C to $+85^{\circ}$ C.


TYPICAL APPLICATION CIRCUIT

FEATURES

- No Direction-Control Signal Needed
- Data Rates
 24Mbps (Push-Pull)
 2Mbps (Open-Drain)
- 1.65V to 5.5V on A Port and 2.3V to 5.5V on B Port (V_{CCA} ≤ V_{CCB})
- V_{cc} Isolation: If Either V_{cc} is at GND, Both Ports are in the High-Impedance State
- No Power-Supply Sequencing Required: Either V_{CCA} or V_{CCB} can be Ramped First
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- Available in Green UTDFN-1.45×1-6L, SOT-23-6 and SC70-6 Packages

APPLICATIONS

I²C/SMBus UART GPIO

SG Micro Corp www.sg-micro.com

1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
	SC70-6	SGM4552YC6G/TR	SL1XX	Tape and Reel, 3000
SGM4552	SOT-23-6	SGM4552YN6G/TR	SL3XX	Tape and Reel, 3000
	UTDFN-1.45×1-6L	SGM4552YUDL6G/TR	NAX	Tape and Reel, 5000

NOTE: X = Date Code, XX = Date Code.

MARKING INFORMATION

<u>SYY</u> X X

Date code - Month ("A" = Jan. "B" = Feb. ··· "L" = Dec.)
 Date code - Year ("A" = 2010, "B" = 2011 ···)
 Chip I.D.

For example: SL1DB (2013, February)

ABSOLUTE MAXIMUM RATINGS

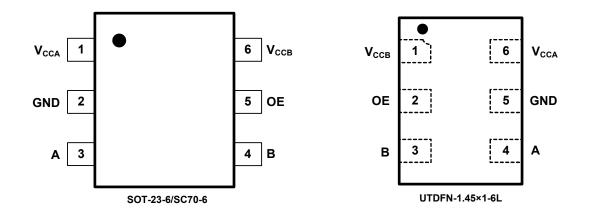
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Impedance or Power-Off State (2)
A Port0.3V to 6V
B Port0.3V to 6V
V _o , Voltage Range Applied to Any Output in the High or Low
State ^{(2) (3)}
A Port0.3V to V _{CCA} + 0.3V
B Port0.3V to V _{CCB} + 0.3V
I_{IK} , Input Clamp Current (V_l < 0)50mA

I_{OK} , Output Clamp Current (V _O < 0) I_{O} , Continuous Output Current	
Continuous Current through V_{CCA} , V_{CCB} , or GNE	
Operating Temperature Range	40°C to +85°C
Junction Temperature	150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (Soldering, 10sec)	260°C
ESD Susceptibility	
HBM	4000V
MM	300V

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute Maximum rating conditions for extended periods may affect device reliability. 2. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. 3. The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications

PIN CONFIGURATIONS (TOP VIEW)

PIN DESCRIPTION

Р	IN	NAME	FUNCTION
SOT-23-6/SC70-6	UTDFN-1.45×1-6L		FUNCTION
1	6	V_{CCA}	A Port Supply Voltage. 1.65V \leq V _{CCA} \leq 5.5V and V _{CCA} \leq V _{CCB} .
2	5	GND	Ground.
3	4	А	Input/Output A. Referenced to V _{CCA} .
4	3	В	Input/Output B. Referenced to V _{CCB} .
5	2	OE	Output Enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA} .
6	1	V _{CCB}	B Port Supply Voltage. $2.3V \le V_{CCB} \le 5.5V$.

1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications

ELECTRICAL CHARACTERISTICS

 $(V_{CCA} = 1.65V \text{ to } 5.5V, V_{CCB} = 2.3V \text{ to } 5.5V, \text{Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{typical values are at } T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER		CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
RECOMMENDED OPERAT	TING CONDITION	ONS (1) (2)						
Supply Voltage ⁽³⁾				Full	1.65		5.5	v
Supply voltage	V _{CCB}			Full	2.3		5.5	v
	A Dort I/O	V _{CCA} = 1.65V to 1.5	95V, V _{CCB} = 2.3V to 5.5V	Full	V _{CCI} - 0.2		V _{CCI}	
High-Level Input Voltage	A Port I/O	V _{CCA} = 2.3V to 5.5	V, V _{CCB} = 2.3V to 5.5V	Full	V _{CCI} - 0.4		V _{CCI}	N/
(V _{IH})	B Port I/O			Full	V _{CCI} - 0.4		V _{CCI}	V
	OE Input			Full	V _{CCA} × 0.8		5.5	
	A Port I/O			Full	0		0.15	
Low-Level Input Voltage (V _{IL})	B Port I/O			Full	0		0.15	V
(*12)	OE Input			Full	0		V _{CCA} × 0.25	
		A Port I/O Push-P	ull Driving	Full			10	
Input Transition Rise or Fall	Rate (Δt/ΔV)	B Port I/O Push-P	ull Driving	Full			10	ns/V
		Control Input		Full			10	
ELECTRICAL CHARACTE	RISTICS							
A Port High Level Output Vo	oltage (V _{OHA})	I_{OH} = -20µA, $V_{IB} \ge V_{CCB}$ - 0.4V		Full	V _{CCA} × 0.7			V
A Port Low Level Output Vo	ltage (V _{OLA})	I _{OL} = 1mA, V _{IB} ≤ 0.15V		Full			0.4	
B Port High Level Output Vo	oltage (V _{онв})	I_{OH} = -20µA, $V_{IA} \ge V_{CCA}$ - 0.4V		Full	V _{CCB} × 0.7			
B Port Low Level Output Vo	ltage (V _{OLB})	$I_{OL} = 1mA, V_{IA} \le 0.15V$		Full			0.4	
Innut Lookogo Current (I.)	05			+25°C			±1	
Input Leakage Current (I ₁)	OE			Full			±1.5	μA
	A D 1	Port $V_{CCA} = 0V, V_{CCB} = 0V \text{ to } 5.5V$		+25°C			±0.5	μA
Power Off Leakage	A Port			Full			±1	
Current (I _{OFF})				+25°C			±0.5	
	B Port	$V_{CCA} = 0V$ to 5.5V,	$V_{\rm CCB} = 0V$	Full			±1	
3-State Output		05 01/		+25°C			±0.6	
Leakage (I _{oz})	A or B Port	OE = 0V		Full			±1	μA
			V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			5.5	
Quiescent Supply Current (CCA)	$V_1 = V_0 = OPEN,$ $I_0 = 0$	$V_{\rm CCA} = 5.5 V, V_{\rm CCB} = 0 V$	Full			5.5	μA
			$V_{CCA} = 0V, V_{CCB} = 5.5V$	Full			-1	
			V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			15	μA
Quiescent Supply Current (ссв)	$V_1 = V_0 = OPEN,$ $I_0 = 0$	V_{CCA} = 5.5V, V_{CCB} = 0V	Full			-1	
			$V_{CCA} = 0V, V_{CCB} = 5.5V$	Full			6	
Quiescent Supply Current (_{CCA} + I _{CCB})	$V_1 = V_0 = OPEN,$ $I_0 = 0$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			20	μA

1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications

ELECTRICAL CHARACTERISTICS

 $(V_{CCA} = 1.65V \text{ to } 5.5V, V_{CCB} = 2.3V \text{ to } 5.5V, \text{Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ typical values are at } T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER	CON	TEMP	MIN	TYP	MAX	UNITS	
Quiescent Supply Current (I _{CCZA})	$V_{I} = V_{CCI} \text{ or } 0V,$ $I_{O} = 0, \text{ OE} = 0V$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			5.5	μA
Quiescent Supply Current (I _{CCZB})	$V_{I} = V_{CCI} \text{ or } 0V,$ $I_{O} = 0, \text{ OE} = 0V$	V_{CCA} = 1.65V to V_{CCB} , V_{CCB} = 2.3V to 5.5V	Full			5.5	μA
OE Input Capacitance (C ₁)	V_{CCA} = 3.3V, V_{CCB}	V _{CCA} = 3.3V, V _{CCB} = 3.3V			4		pF
Input/Output Capacitance A Port (CIO)	V _{CCA} = 3.3V, V _{CCB} = 3.3V		125%		5		рF
Input/Output Capacitance B Port (C _{IO})	$v_{CCA} - 3.3V, V_{CCB}$	+25℃		5		рг	

NOTES:

1. V_{CCI} is the V_{CC} associated with the input port.

2. V_{CCO} is the V_{CC} associated with the output port.

3. V_{CCA} must be less than or equal to $V_{\text{CCB}},$ and V_{CCA} must not exceed 5.5V.

1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications

TIMING REQUIREMENTS

			V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	
			ТҮР	ТҮР	ТҮР	UNITS
$(T_A = +25^{\circ}C, V_{CCA} = 1.)$	8V, unless otherwise no	ted.)				
Data Rate	Push-Pull Driving		21	22	24	Mhaa
Dala Rale	Open-Drain Driving		2	2	2	- Mbps
Dulas Duration (t.)	Push-Pull Driving	- Data Inputs	47	45	41	- ns
Pulse Duration (t_W)	Open-Drain Driving		500	500	500	115
(T _A = +25°C, V _{CCA} = 2.	5V, unless otherwise no	ted.)				
Data Rate	Push-Pull Driving		20	22	24	Mhno
	Open-Drain Driving		2	2	2	– Mbps
Pulse Duration (t _w)	Push-Pull Driving	Deta Inputa	50	45	41	
Pulse Duration (l_W)	Open-Drain Driving	 Data Inputs 	500	500	500	- ns
$(T_A = +25^{\circ}C, V_{CCA} = 3.)$	3V, unless otherwise no	ted.)				•
Data Rate	Push-Pull Driving			23	24	- Mbps
Dala Rale	Open-Drain Driving			2	2	
Pulso Duration (t)	Push-Pull Driving	Deta Inputa		43	41	20
Pulse Duration (t _w)	Open-Drain Driving	 Data Inputs 		500	500	- ns
$(T_A = +25^{\circ}C, V_{CCA} = 5)$	/, unless otherwise note	d.)				•
Data Pata	Push-Pull Driving				24	Mhaa
Data Rate	Open-Drain Driving				2	- Mbps
Pulso Duration (t)	Push-Pull Driving	Data Inputa			41	20
Pulse Duration (t_w)	Open-Drain Driving	 Data Inputs 			500	– ns

1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.8V, unless otherwise noted.)

PARAMETER	FROM	то	TEST	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNITS	
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	ТҮР	ТҮР	ТҮР	UNITS	
			Push-Pull Driving	2.4	3.0	4.3		
t _{PHL}	A	В	Open-Drain Driving	26.0	26.3	26.7		
+	A	D	Push-Pull Driving	4.0	3.6	3.5	ns	
t _{PLH}			Open-Drain Driving	175	145	110		
+			Push-Pull Driving	2.0	1.9	2.1		
t _{PHL}	в	А	Open-Drain Driving	26.0	26.1	26.2		
+	Б	A	Push-Pull Driving	1.7	1.5	1.4	ns	
t _{PLH}			Open-Drain Driving	133	69	51		
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		24	20	18	50	
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		1200	1200	1200	ns	
t _{rA}	A Port Rise Time		Push-Pull Driving	6.6	5.8	5.4	20	
ιrA	AFOILF	lise nine	Open-Drain Driving	89	31	10	ns	
4 -	P. Dort [Rise Time	Push-Pull Driving	5.6	4.6	3.9	50	
t _{rB}	БРОЦГ	lise nine	Open-Drain Driving	128	98	58	ns	
t _{fA}	A Port	Fall Time	Push-Pull Driving	2.9	2.7	2.6	ns	
ЧА	AFUILI		Open-Drain Driving	1.9	1.7	1.6	115	
+	P. Dort J	Fall Time	Push-Pull Driving	4.6	5.9	8.0	ns	
۴B	t _{fB} B Port F		Open-Drain Driving	2.2	2.3	2.9	115	
Data Rate			Push-Pull Driving	21	22	24	Mbps	
			Open-Drain Driving	2	2	2	Mbps	

1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 2.5V, unless otherwise noted.)

PARAMETER	FROM	то	TO TEST	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNITS	
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	ТҮР	ТҮР	ТҮР		
			Push-Pull Driving	2.7	3.3	4.8		
t _{PHL}	A	В	Open-Drain Driving	26.2	26.4	26.7		
+	A	В	Push-Pull Driving	2.6	2.4	2.3	ns	
t _{PLH}			Open-Drain Driving	169	144	110		
+			Push-Pull Driving	2.4	2.3	2.4		
t _{PHL}	в	А	Open-Drain Driving	26.3	26.4	26.5		
+	Б	A	Push-Pull Driving	2.0	1.9	1.8	ns	
t _{PLH}			Open-Drain Driving	165	118	55		
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		23	19	16	50	
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		1200	1200	1200	ns	
t _{rA}	A Port F	Rise Time	Push-Pull Driving	3.2	2.8	2.6	ns	
ιrA	APOILF	lise nine	Open-Drain Driving	120	70	10		
+ _	P. Dort F	Rise Time	Push-Pull Driving	4.5	3.4	2.6		
t _{rB}	БРОЦГ	lise nine	Open-Drain Driving	122	96	62	ns	
+	A Dort	Fall Time	Push-Pull Driving	4.9	5.0	4.8	ns	
t _{fA}	AFUILI		Open-Drain Driving	2.0	1.9	1.7	115	
4	P. Dort	Fall Time	Push-Pull Driving	4.8	6.1	8.3	50	
lfΒ	t _{fB} B Port F		Open-Drain Driving	1.9	2.1	2.7	ns	
Data Rate			Push-Pull Driving	20	22	24	Mbpg	
			Open-Drain Driving	2	2	2	Mbps	

1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 3.3V, unless otherwise noted.)

		то	TEST	V _{CCB} = 3.3V	V _{CCB} = 5V	
(INPUT	(INPUT)	(OUTPUT)	CONDITIONS	ТҮР	ТҮР	UNITS
			Push-Pull Driving	3.5	4.9	
t _{PHL}	•	B -	Open-Drain Driving	26.3	26.7	
	A	В	Push-Pull Driving	2.2	2.0	ns
t _{PLH}			Open-Drain Driving	133	104	
			Push-Pull Driving	3.0	3.2	
t _{PHL}			Open-Drain Driving	26.6	26.8	
4	В	A	Push-Pull Driving	1.8	1.7	ns
t _{PLH}			Open-Drain Driving	132	83	
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		18	15	
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		1200	1200	ns ns
	A Dort [Rise Time	Push-Pull Driving	2.2	2.0	
t _{rA}	APOILE	Kise Time	Open-Drain Driving	87	36	ns
	D Dort [Diao Timo	Push-Pull Driving	2.9	2.3	
t _{rB}	B Port F	Rise Time	Open-Drain Driving	87	56	ns
	A Dort	Fall Time	Push-Pull Driving	6.2	5.8	
t _{fA}	APOILI		Open-Drain Driving	2.3	2.0	ns
+	P. Dort	Fall Time	Push-Pull Driving	6.5	8.2	20
t _{fB}	вноп		Open-Drain Driving	2.0	2.5	ns
Data Bata			Push-Pull Driving	23	24	Mhpc
Data Rate			Open-Drain Driving	2	2	Mbps

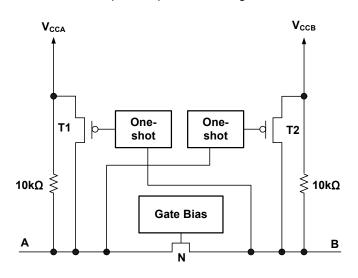
1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications

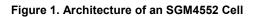
SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 5V, unless otherwise noted.)

PARAMETER	FROM	то	TEST	V _{CCB} = 5V	UNITS	
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	ТҮР		
			Push-Pull Driving	5.4		
t _{PHL}	A	В	Open-Drain Driving	26.7		
t _{PLH}		D	Push-Pull Driving	1.9	– ns	
^L PLH			Open-Drain Driving	120		
t			Push-Pull Driving	5.6		
t _{PHL}	в	А	Open-Drain Driving	27.3		
4		A	Push-Pull Driving	1.7	- ns	
t _{PLH}			Open-Drain Driving	126	1	
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		16	– ns	
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		1200	115	
t _{rA}	A Dort B	lise Time	Push-Pull Driving	1.8	– ns	
ιrA	Aron		Open-Drain Driving	79		
t _{rB}	B Dort D	ise Time	Push-Pull Driving	2.2	– ns	
ιrΒ	BFOILK		Open-Drain Driving	73	115	
t _{fA}	A Port F	all Time	Push-Pull Driving	8.7		
чĄ	APOILE		Open-Drain Driving	2.7	ns	
t _{fB}	B Port F	all Time	Push-Pull Driving	8.6	– ns	
чfВ	B Port Fall Time		Open-Drain Driving	2.4	115	
Data Rate			Push-Pull Driving	24	Mbra	
Dala Rale			Open-Drain Driving	2	- Mbps	

APPLICATION INFORMATION


Applications


The SGM4552 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The SGM4552 is ideal for use in applications where an open-drain driver is connected to the data I/Os.

Architecture

The SGM4552 architecture (see Figure 1) does not require a direction-control signal to control the direction of data flow from A to B or from B to A.

Each A port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCA} , and each B port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCB} . The output one-shots detect rising edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors (T1, T2) for a short duration, which speeds up the low-to-high transition.

Input Driver Requirements

The fall time (t_{fA} , t_{fB}) of a signal depends on the output impedance of the external device driving the data I/Os of the SGM4552. Similarly, the t_{PHL} and data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} , and maximum data rates in the datasheet assume that the output impedance of the external driver is less than 50 Ω .

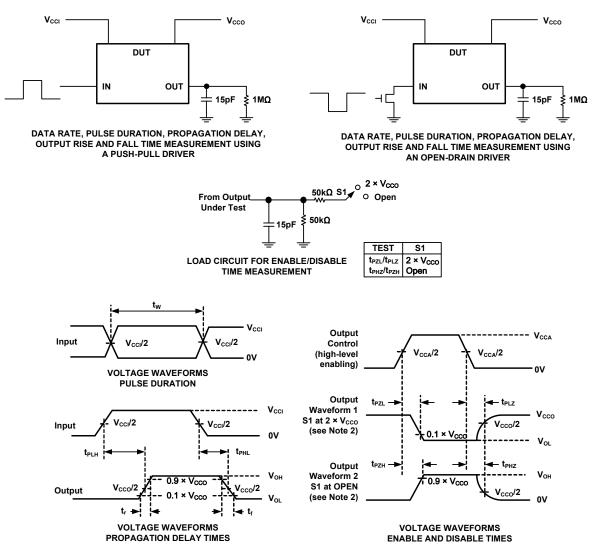
Power Up

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} > V_{CCB}$ does not damage the device, so any power supply can be ramped up first.

Output Load Considerations

We recommend careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper one-shot (O.S.) triggering takes place. PCB signal trace-lengths should be kept short enough such that the round trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic I_{CC}, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the SGM4552 output sees, so it is recommended that this lumped-load capacitance be considered to avoid O.S. retriggering, bus contention, output signal oscillations, or other adverse system-level affects.

Enable and Disable


The SGM4552 has an OE input that is used to disable the device by setting OE low, which places all I/Os in the high-impedance state (Hi-Z). OE has an internal pull-down current source, as long as V_{CCA} is powered. The disable time (t_{DIS}) indicates the delay between the time when OE goes low and when the outputs actually get disabled (Hi-Z). The enable time (t_{EN}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pull-Up or Pull-Down Resistors on I/O Lines

Each A port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCA} , and each B port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCB} . If a smaller value of pull-up resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal $10k\Omega$ resistors).

PARAMETER MEASUREMENT INFORMATION

NOTES:

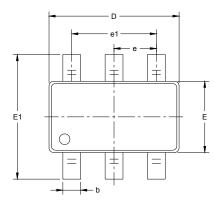
1. C_L includes probe and jig capacitance.

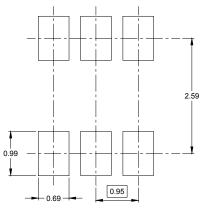
2. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. 3. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, $Z_0 = 50\Omega$, dv/dt \geq 1V/ns.

4. The outputs are measured one at a time, with one transition per measurement.

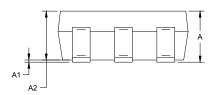
- 5. t_{PLZ} and t_{PHZ} are the same as t_{DIS} .
- 6. t_{PZL} and t_{PZH} are the same as t_{EN} .
- 7. t_{PLH} and t_{PHL} are the same as t_{PD} .
- 8. V_{CCI} is the V_{CC} associated with the input port.
- 9. V_{CCO} is the V_{CC} associated with the output port.

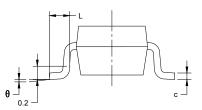
10. All parameters and waveforms are not applicable to all devices.


Figure 2. Load Circuit and Voltage Waveforms

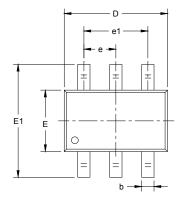


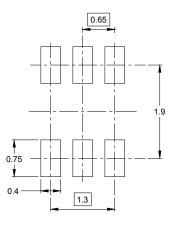
1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications


PACKAGE OUTLINE DIMENSIONS

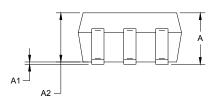

SOT-23-6

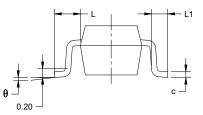
RECOMMENDED LAND PATTERN (Unit: mm)


Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037	BSC	
e1	1.900) BSC	0.075	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

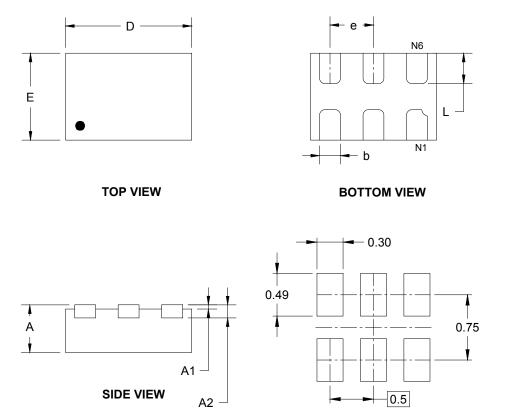


1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications


PACKAGE OUTLINE DIMENSIONS


SC70-6

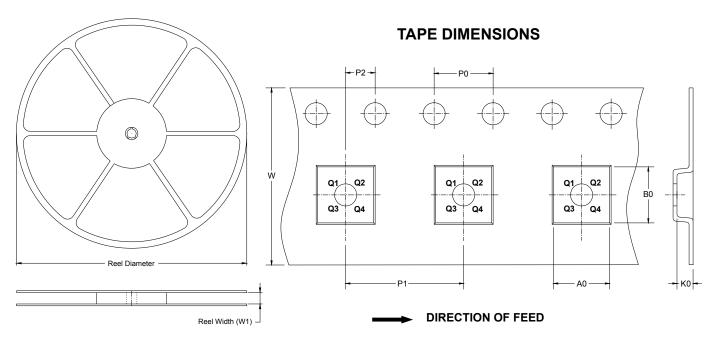
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	-	nsions imeters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	0.900	1.100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.000	0.035	0.039		
b	0.150	0.350	0.006	0.014		
С	0.080	0.150	0.003	0.006		
D	2.000	2.200	0.079	0.087		
E	1.150	1.350	0.045	0.053		
E1	2.150	2.450	0.085	0.096		
е	0.65	TYP	0.026 TYP			
e1	1.300	BSC	0.051 BSC			
L	0.525	0.525 REF		0.021 REF		
L1	0.260	0.460	0.010	0.018		
θ	0°	8°	0°	8°		

PACKAGE OUTLINE DIMENSIONS

UTDFN-1.45×1-6L

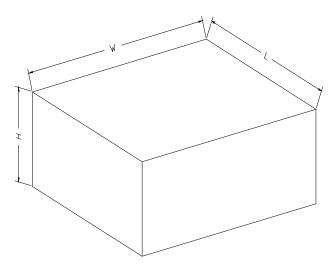

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions imeters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	0.450	0.550	0.018	0.022		
A1	0.000	0.050	0.000	0.002		
A2	0.15	0 REF	0.006 REF			
D	1.374	1.526	0.054	0.060		
E	0.924	1.076	0.036	0.042		
b	0.180	0.300	0.007	0.012		
е	0.50	0 TYP	0.020 TYP			
L	0.274	0.426	0.011	0.017		

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.


KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-6	7″	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
SC70-6	7″	9.5	2.4	2.5	1.2	4.0	4.0	2.0	8.0	Q3
UTDFN-1.45×1-6L	7"	9.5	1.15	1.6	0.75	4.00	4.00	2.00	8.00	Q1

1-Bit Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
7" (Option)	368	227	224	8
7"	442	410	224	18

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by SGMICRO manufacturer:

Other Similar products are found below :

NLJVHC1GT08DFT2G NLSX4373DMR2G NLSX5012MUTAG HV583GA-G MC10H641FNR2G NLSX0102FCT1G NLSX0102FCT2G NLSX4302EBMUTCG NLVSX4373DR2G PCA9306FMUTAG SY10H351JZ MC100EPT622MNG MAX9374AEKA+T MAX3378EETD+ MAX34405BEZT+ NLSX3014MUTAG NVT4556BUKZ NLSV4T244EMUTAG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG MAX34405BEZT+T NLSV4T3144MUTAG NSV12200LT1G NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T MAX3008EUP+T NLVPCA9306AMUTCG NLSX3013BFCT1G MAX9378EUA+T NLV7WBD3125USG NLV14504BDTG NLSX3012DMR2G NLSX5012DR2G MAX3391EEUD+T MAX3379EETD+ PI4ULS3V4857GEAEX MAX3391EEBC+T MAX14842ATE+T 74AVCH1T45FZ4-7 CLVC16T245MDGGREP HEF4104BT TC74LCX16245(EL,F) MC10H124FNG CAVCB164245MDGGREP 7WBD383USG NVT2001GM,115 CLVC8T245MRHLTEP 74LVC1G175GS,132