

DEVICE DESCRIPSION

The TL431 is a three-terminal adjustable shunt regulator offering excellent temperature stability . This device has a typical dynamic output impedance of 0.2Ω . The device can be used as a replacement for zener diodes in many applications.

FEATURES

- The output voltage can be adjusted to 36V
- Low dynamic output impedance, its typical value is 0.2Ω
- Trapping current capability is 1 to 100mA
- Low output noise voltage
- Fast on -state response
- The effective temperature compensation in the working range of full temperature
- The typical value of the equivalent temperature factor in the whole temperature scope is 50 ppm/°C

APPLICATION

- Shunt Regulator
- High-Current Shunt Regulator
- Precision Current Limiter

ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)

Parameter	Symbol	Value	Units	
Cathode Voltage	V _{KA}	37	V	
Cathode Current Range (Continuous)	I _{KA}	-100~+150	mA	
Reference Input Current Range	Iref	0.05~+10	mA	
Power Dissipation	PD	350	mW	
Operating temperature	Topr	-40~+85	°C	
Storage temperature Range	Tstg	-65~+150	°C	

MARKING

Page

Revised Date Revision

2013/05/13

Document ID Issued Date

AS-222645 2008/02/10

ELECTRICAL CHARACTERISTICS (T_a=25 $^{\circ}$ C unless otherwise specified)

Parameter	Symbol	Test conditions		Min	Тур	Max	Unit
Reference Input Voltage (Fig.1)	V _{ref}	V _{KA} =V _{REF} , I _{KA} =10mA		2.487	2.5	2.513	V
Deviation of reference input Voltage Over temperature (note) (Fig.1)	$ riangle V_{ref} / riangle T$	V _{KA} =V _{REF} , I _{KA} =10mA T _{min} ≤T _a ≤T _{max}			3.0	17	mV
Ratio Of Change in Reference InputVoltage to the change in CathodeVoltage (Fig.2)		I _{KA} =10mA	∆V _{KA} =10V~V _{REF}		-1.0	-2.7	mV/V
	∠ V ref / ∠ V KA		△V _{KA} =36V~ 10V		-0.5	-2.0	mV/V
Reference Input Current (Fig.2)	I _{ref}	I _{KA} = 10mA,R₁=10 KΩ R₂=∞			1.5	4	μA
Deviation Of Reference Input Current Over Full Temperature Range (Fig.2)	∆I _{ref} /∆T	I _{KA} =10mA, R₁=10 KΩ R₂=∞ T _a =full Temperature			0.4	1.2	μA
Minimum cathode current for Regulation (Fig.1)	I _{KA(min)}	V _{KA} =V _{REF}			0.45	1.0	mA
Off-state cathode Current (Fig.3)	I _{KA(OFF)}	V _{KA} =36V,V _{REF} =0			0.05	1.0	μA
Dynamic Impedance	Zĸa	V _{KA} =V _{REF,} I _{KA} =1 to 100mA f≤1.0KHz			0.15	0.5	Ω

note: T_{MIN}=0°C ,T_{MAX}=+70°C

CLASSIFICATION OF V_{ref}

Rank	0.5%			
Range	2.487-2.513			

Figure 1. Test Circuit for VKA = Vref

Figure 2. Test Circuit for VKA > Vref

Figure 3. Test Circuit for Ioff

Input O-VKA

Test Circuit for V_{KA}=V_{ref}

Test Circuit for V_{KA}=V_{ref}(1+R1/R2)+R1*I_{ref}

Test Circuit for I_{ref}

Test Circuit for Ioff

APPICATION INFORMATION

1. Shunt Regulator

Note A : R Should provide cathode current 1mA to the TL431 at minimum $V_{\text{I(BATT)}}$

2. Output Control of a Three-Terminal Fixed Regulator

3. High-Current Shunt Regulator

4. Efficient 5-V Precision Regulator

NOTE A : R_B Should provide cathode current≥1mA to the TL431.

5. Precision Current Limiter

6. Precision Constant-Current Sink

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Linear Voltage Regulators category:

Click to view products by AnBon manufacturer:

Other Similar products are found below :

LV56831P-E LV5684PVD-XH MAX202ECWE-LF MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R 636416C NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR NCV78M05ABDTRKG NCV78M08BDTRKG NCP7808TG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G MC78M12CDTT5G L9468N