DISCRETE SEMICONDUCTORS ## DATA SHEET **PEMB11; PUMB11** PNP/PNP resistor-equipped transistors; R1 = 10 kΩ, R2 = 10 kΩ Product specification Supersedes data of 2001 Sep 13 2003 Oct 03 TYP. MAX. UNIT ### PNP/PNP resistor-equipped transistors; R1 = 10 k Ω , R2 = 10 k Ω PEMB11; PUMB11 #### **FEATURES** - Built-in bias resistors - · Simplified circuit design - Reduction of component count - · Reduced pick and place costs. #### **APPLICATIONS** - · Low current peripheral drivers - Replacement of general purpose transistors in digital applications - · Control of IC inputs. | V _{CEO} | collector-emitter voltage | _ | -50 | V | |------------------|---------------------------|----|------|----| | Io | output current (DC) | _ | -100 | mA | | TR1 | PNP | _ | _ | _ | | TR2 | PNP | _ | _ | _ | | R1 | bias resistor | 10 | _ | kΩ | | R2 | bias resistor | 10 | _ | kΩ | **PARAMETER** QUICK REFERENCE DATA SYMBOL #### **DESCRIPTION** PNP/PNP resistor-equipped transistors (see "Simplified outline, symbol and pinning" for package details). #### **PRODUCT OVERVIEW** | TYPE NUMBER | PACE | (AGE | MARKING CODE(1) | NPN/PNP | NPN/NPN | |---------------|---------|-------|-----------------|------------|------------| | I TPE NOWIBER | PHILIPS | EIAJ | WARKING CODE | COMPLEMENT | COMPLEMENT | | PEMB11 | SOT666 | _ | B1 | PEMD3 | PEMH11 | | PUMB11 | SOT363 | SC-88 | B*1 | PUMD3 | PUMH11 | #### Note - 1. * = p: Made in Hong Kong. - * = t: Made in Malaysia. - * = W: Made in China. #### SIMPLIFIED OUTLINE, SYMBOL AND PINNING | TYPE NUMBER | SIMPLIFIED OUTLINE AND SYMBOL | | PINNING | |--------------|--|-----|---------------| | I TPE NUMBER | SIMPLIFIED OUTLINE AND STMBOL | PIN | DESCRIPTION | | PEMB11 | 6 5 4 | 1 | emitter TR1 | | PUMB11 | 6 5 4 | 2 | base TR1 | | | R1 R2 | 3 | collector TR2 | | | TR2 | 4 | emitter TR2 | | | TR1 | 5 | base TR2 | | | $\left[\begin{array}{c c} & R2 \\ \hline \end{array}\right]$ R2 R1 | 6 | collector TR1 | | | | | | | | 1 2 3 Top view MAM477 | | | | | I OP VICTY INJUSTEE! | | | | | | | | # PNP/PNP resistor-equipped transistors; R1 = 10 k Ω , R2 = 10 k Ω PEMB11; PUMB11 #### **ORDERING INFORMATION** | TYPE NUMBER | | PACKAGE | | |--------------|------|--|---------| | I TPE NOWBER | NAME | DESCRIPTION | VERSION | | PEMB11 | _ | plastic surface mounted package; 6 leads | SOT666 | | PUMB11 | _ | plastic surface mounted package; 6 leads | SOT363 | #### **LIMITING VALUES** In accordance with the Absolute Maximum Rating System (IEC 60134). | SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT | | | | |------------------|-------------------------------|--------------------------|------|------|------|--|--|--| | Per transistor | | | | | | | | | | V _{CBO} | collector-base voltage | open emitter | _ | -50 | V | | | | | V _{CEO} | collector-emitter voltage | open base | _ | -50 | V | | | | | V _{EBO} | emitter-base voltage | open collector | _ | -10 | V | | | | | VI | input voltage | | | | | | | | | | positive | | _ | +10 | V | | | | | | negative | | _ | -40 | V | | | | | Io | output current (DC) | | _ | -100 | mA | | | | | I _{CM} | peak collector current | | _ | -100 | mA | | | | | P _{tot} | total power dissipation | T _{amb} ≤ 25 °C | | | | | | | | | SOT363 | note 1 | _ | 200 | mW | | | | | | SOT666 | notes 1 and 2 | _ | 200 | mW | | | | | T _{stg} | storage temperature | | -65 | +150 | °C | | | | | Tj | junction temperature | | _ | 150 | °C | | | | | T _{amb} | operating ambient temperature | | -65 | +150 | °C | | | | | Per device | • | • | | • | | | | | | P _{tot} | total power dissipation | T _{amb} ≤ 25 °C | | | | | | | | | SOT363 | note 1 | - | 300 | mW | | | | | | SOT666 | notes 1 and 2 | _ | 300 | mW | | | | #### **Notes** - 1. Device mounted on an FR4 printed-circuit board, single-sided copper, standard footprint. - 2. Reflow soldering is the only recommended soldering method. # PNP/PNP resistor-equipped transistors; R1 = 10 k Ω , R2 = 10 k Ω PEMB11; PUMB11 #### THERMAL CHARACTERISTICS | SYMBOL | PARAMETER | CONDITIONS | VALUE | UNIT | |---------------------|---|--------------------------|-------|------| | Per transist | or | | | | | R _{th j-a} | thermal resistance from junction to ambient | T _{amb} ≤ 25 °C | | | | | SOT363 | note 1 | 625 | K/W | | | SOT666 | notes 1 and 2 | 625 | K/W | | Per device | | | | | | R _{th j-a} | thermal resistance from junction to ambient | T _{amb} ≤ 25 °C | | | | | SOT363 | note 1 | 416 | K/W | | | SOT666 | note 1 | 416 | K/W | #### **Notes** - 1. Device mounted on an FR4 printed-circuit board, single-sided copper, standard footprint. - 2. Reflow soldering is the only recommended soldering method. #### **CHARACTERISTICS** T_{amb} = 25 °C unless otherwise specified. | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |--------------------|-----------------------------------|---|------|------|------|------| | I _{CBO} | collector-base cut-off current | $V_{CB} = -50 \text{ V}; I_E = 0$ | _ | _ | -100 | nA | | I _{CEO} | collector-emitter cut-off current | $V_{CE} = -30 \text{ V}; I_B = 0$ | _ | _ | -1 | μΑ | | | | $V_{CE} = -30 \text{ V}; I_{B} = 0; T_{j} = 150 ^{\circ}\text{C}$ | _ | _ | -50 | μΑ | | I _{EBO} | emitter-base cut-off current | $V_{EB} = -5 \text{ V}; I_C = 0$ | _ | _ | -400 | μΑ | | h _{FE} | DC current gain | $V_{CE} = -5 \text{ V}; I_{C} = -5 \text{ mA}$ | 30 | _ | _ | | | V _{CEsat} | saturation voltage | $I_C = -10 \text{ mA}; I_B = -0.5 \text{ mA}$ | _ | _ | -150 | mV | | $V_{i(off)}$ | input-off voltage | $V_{CE} = -5 \text{ V}; I_{C} = -100 \mu\text{A}$ | _ | -1.1 | -0.8 | V | | V _{i(on)} | input-on voltage | $V_{CE} = -0.3 \text{ V}; I_{C} = -10 \text{ mA}$ | -2.5 | -1.8 | _ | V | | R1 | input resistor | | 7 | 10 | 13 | kΩ | | R2
R1 | resistor ratio | | 0.8 | 1 | 1.2 | | | C _c | collector capacitance | $I_E = i_e = 0$; $V_{CB} = -10 \text{ V}$; $f = 1 \text{ MHz}$ | _ | _ | 3 | pF | ## PNP/PNP resistor-equipped transistors; R1 = 10 k Ω , R2 = 10 k Ω PEMB11; PUMB11 #### **PACKAGE OUTLINES** Plastic surface mounted package; 6 leads SOT666 | OUTLINE | | REFER | EUROPEAN | ICCUE DATE | | | |---------|-----|-------|----------|------------|------------|----------------------------------| | VERSION | IEC | JEDEC | EIAJ | | PROJECTION | ISSUE DATE | | SOT666 | | | | | | -01-01-04
01-08-27 | # PNP/PNP resistor-equipped transistors; R1 = 10 k Ω , R2 = 10 k Ω PEMB11; PUMB11 #### Plastic surface mounted package; 6 leads **SOT363** | UN | т | A | A ₁
max | bp | С | D | E | е | e ₁ | HE | Lp | Q | ٧ | w | у | |----|---|------------|-----------------------|--------------|--------------|------------|--------------|-----|----------------|------------|--------------|--------------|-----|-----|-----| | mr | n | 1.1
0.8 | 0.1 | 0.30
0.20 | 0.25
0.10 | 2.2
1.8 | 1.35
1.15 | 1.3 | 0.65 | 2.2
2.0 | 0.45
0.15 | 0.25
0.15 | 0.2 | 0.2 | 0.1 | | OUTLINE | | REFER | RENCES | EUROPEAN | ISSUE DATE | | |---------|-----|-------|--------|----------|------------|------------| | VERSION | IEC | JEDEC | EIAJ | | PROJECTION | ISSUE DATE | | SOT363 | | | SC-88 | | | 97-02-28 | ### PNP/PNP resistor-equipped transistors; R1 = 10 k Ω , R2 = 10 k Ω PEMB11; PUMB11 #### **DATA SHEET STATUS** | LEVEL | DATA SHEET
STATUS ⁽¹⁾ | PRODUCT
STATUS(2)(3) | DEFINITION | |-------|-------------------------------------|-------------------------|--| | I | Objective data | Development | This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. | | II | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. | | III | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). | #### **Notes** - 1. Please consult the most recently issued data sheet before initiating or completing a design. - 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. - 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. #### **DEFINITIONS** **Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. #### **DISCLAIMERS** Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. ### Philips Semiconductors – a worldwide company #### **Contact information** For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com. © Koninklijke Philips Electronics N.V. 2003 SCA75 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands R75/02/pp8 Date of release: 2003 Oct 03 Document order number: 9397 750 11805 Let's make things better. Philips Semiconductors ### **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Bipolar Transistors - Pre-Biased category: Click to view products by NXP manufacturer: Other Similar products are found below: MMUN2217LT1G FP101-TL-E RN1607(TE85L,F) DRC9A14E0L DTA124GKAT146 DTA144WETL DTA144WKAT146 DTC113EET1G DTC115TETL DTC115TKAT146 DTC124TETL DTC144ECA-TP DTC144VUAT106 MUN5241T1G BCR158WH6327XTSA1 NSBA114TDP6T5G NSBA143TF3T5G NSBA143ZF3T5G NSBC114EF3T5G NSBC114YF3T5G NSBC123TF3T5G NSBC143TF3T5G NSVMUN2212T1G NSVMUN5111DW1T3G NSVMUN5314DW1T3G NSVUMC2NT1G SMMUN2134LT1G SMUN2212T1G SMUN5235T1G SMUN5330DW1T1G SSVMUN5312DW1T2G 2SC3650-TD-E RN1303(TE85L,F) RN4605(TE85L,F) BCR135SH6327XT TTEPROTOTYPE79 UMC3NTR DTA113EET1G EMA2T2R EMH15T2R SDTA114YET1G SMMUN2111LT3G SMMUN2113LT1G SMMUN2114LT1G SMMUN2211LT3G SMUN2214T3G SMUN5113DW1T1G SMUN5335DW1T1G NSBA114YF3T5G NSBC114TF3T5G