EMI LEADED FILTERS

Page

EMI LEADED FILTERS

Based on more than 30 years of ceramic and ferrite technology experience, Murata Electronics' full range of leaded EMI filters have been designed to meet today's electronic industry requirements.

Murata's leaded devices consist of ferrite bead inductors, feed-thru capacitors, 3 terminal capacitors, varistor/capacitors common mode chokes and block filters.

Equivalent

Circuit

-M

-0

0

Ferrite Bead	BLO				°	248 - 249
3-Terminal	DS(S)306			I	and the	250-251, 254
Capacitor	DS(S/T)310/H				J	252 - 254
2 Terminal	VFR303					255
Varistor/	DSS706					256
Gapacitor	DSS710					257 - 258
Block	BNP			I	L L L L L L L L L L L L L L L L L L L	259
Filter BNX	BNX			I		260 - 261
Common Mode Chokes	PLT					262 - 263
	Sub Mini DF/TF				\sim	264 - 265

Effective Frequency (MHz)

100

1000

10000

20000

TABLE OF CONTENTS

Series

TF318/H/418

ΕA

FS

.1

1

10

Description

NE

Feed-Thru Capacitor

EMC Absorber

Ferrite

266

267

268

EMI LEADED FILTERS FERRITE BEAD INDUCTORS

APPLICATIONS

Micro computer, switching regulators, digital control equipment, car radios, car stereos, etc.

PART NUMBERING SYSTEM

Ferrite beads are used for noise suppression in car radios, digital control equipment and for the prevention of spurious oscillation in radio frequency amplifiers. These ferrite bead inductors are devices which can effectively be used on printed circuit boards where high component density is essential. Taped and reeled types are also available for automatic insertion. Radial leaded units can be classified into two types — one using a single ferrite bead and the other using two ferrite beads.

muRata Innovator in Electronics

BL01, BL02 & BL03 Series

FEATURES

- High component density potential
- Double bead BL02RN2 types offered for more effective noise suppression
- Taped and reeled radial and axial types for automatic insertion can be provided as well as ammo packaging.
- Axial lead version BL01RN1-A62 available

DIMENSIONS: mm

 5.0 ± 0.8

*Standard

CONFIGURATIONS

Part Number	Form
★BL01RN1-A62	Axial, Single bead
★BL01RN1-A62B1	Axial, Single bead, Bent
★BL01RN1-A62T5	Axial, Single bead, Taped
★BL01RN1-A63T6	Axial, Single bead, Taped
★BL02RN1-R62	Radial, Single bead
★BL02RN2-R62	Radial, Double bead
★BL02RN1-R62T4	Radial, Single bead, (Ammo)
★BL02RN2-R62T4	Radial, Double bead, (Ammo)
★BL03RN2-R62	Radial, Double bead
★BL03RN2-R62T4	Radial, Double bead, Ammo

Operating Temperature: -25°C to +85°C

SPECIFICATIONS

5.0 ± 0.8

Item		Characteristics	
Permeability	(μi)	550	
Saturation Magnetic	(Bs)	3100 (gauss)	
Residual Magnetic Flux Density	(Brs)	1700 (gauss)	
Coercive Force	(Hc)	0.3 (Oe)	
Curie Point	(Tc)	130 (°C)	
Temp. Coefficient	(αμr)	20 x 10 ⁻⁶	
Balativa Loss Factor	(DE/i)	13 x 10⁻ ⁶	
	(DI/µI)	0.5 (MHz)	
Resistivity	(ho)	107 (Ohms ^{-cm})	
Max. Rated Current BL01 and BL0	12 (A) (Bulk)	7A	
BL01 and BL0	BL01 and BL02 (A) (Taped)		
BL03 (Taped o	or Bulk)	6A	

*Available as standard through authorized Murata Electronics Distributors.

EMI LEADED FILTERS FERRITE BEAD INDUCTORS

BL01, BL02 & BL03 Series

muRata

TYPICAL IMPEDANCE CHARACTERISTICS

TAPE DIMENSIONS: mm

ltem	Code	Dimensio	ns: mm	
Pitch of Component	Р	12.	7	
Pitch of Sprocket Hole	P ₀	12.7 ±	0.2	
Lead Spacing	F	5.0 <u>+</u>	0.8 0.2	
Length from Hole Center to Lead	P ₁	3.85 ±	0.7	
Length from Hole Center to Component Center	P ₂	6.35 ±	1.3	
Width of Body	D	BL02RN1 BL02RN2 BL03RN2	7.5 max. 9.0 max. 8.3 max.	
Height of Bead	Н	BL02 BL03	7.5 max. 6.5 max.	
Deviation along Tape, Left or Right	ΔS	±1.0		
Carrier Tape Width	W	18.0 ±	0.5	
Position of Sprocket Hole	W ₁	9.0	+0 -0.5	
Lead Length	H ₁	T2= 16.5 T3= 20.0 T4= 18.5	5 ± 0.5) ± 0.5 5 ± 0.5	
Protrusion Length	l	+0.5 to	-1.0	
Diameter of Sprocket Hole	D ₀	4.0 ±	0.1	
Lead Diameter	d	0.60 ± 0.5		
Total Tape Thickness	t	0.7 ± 0.2		
Deviation Across Tape	Δh	±1.0 max.		
Portion to Cut in Case of Defect	L	11.0	+0 -1.0	
Hold Down Tape Width	W ₀	12.0 ±	0.5	
Hold Down Tape Position	W ₂	1.5 ±	1.5	
Body Thickness	Т	BL02 BL03	3.4 ± 0.2 2.3 max.	

EMI LEADED FILTERS EMI SUPPRESSION FILTER COMPACT DISC-TYPE

APPLICATIONS

- Computer and peripherals interfaces
 Compact digital equipment
 Compact PPC, electronic typewriters, other electronic equipment and appliances
- Helps all electronic equipment and appliances meet FCC, VDE and CISPR regulations
 STD footprint for high density mounting

PART NUMBERING SYSTEM

	DS	30)6 –	55 Y58	<u> </u>	M	100		_
DISC TYPE	FERRITE BEAD Blank = None S = Inside	SERIES TYPE	LEAD CONFIGU 55 = Bulk 91 = Tape 351 = Bu 431 = Taj	IRATION (c ed Ik (Inside Crimp ped (Inside Crim	TEMPERATUR CHARACTERI	RE Stics	CAPACITANCE	CAPACITANCE TOLERANCE	RATED VOLTAGE

SPECIFICATIONS

		Capa	citor	Formito		Incortion	
Part Number	Capacitance	W.V.	T.C. –25 to +85°C	Beads	Dimensions	Loss	
*D\$306-55Y5\$220M50	22pF ± 20%		±22%				
*DS306-55Y5S330M50	33pF ± 20%		±22%				
*DS306-55Y5S470M50	47pF ± 20%		±22%				
*DS306-55Y5S101M50	100pF ± 20%		±22%	Nono	Fig. 1	Fig. 4	
*DS306-55Y5S271M50	270pF ± 20%	20000	±22%	None	FIG. I	FIQ. 4	
*DS306-55Y5S102M50	1000pF ± 20%		±22%				
*DS306-55Y5S222M50	2200pF ± 20%		±22%				
*DS306-55FZ103Z50	10000pF + 80%, -20%		+30%, -85%				
*DSS306-55Y5S220M100	22pF ± 20%		±22%	_			
*DSS306-55Y5S330M100	33pF ± 20%		±22%				
* DSS306-55Y5S470M100	47pF ± 20%		±22%				
*DSS306-55Y5S101M100	100pF ± 20%		±22%				
*DSS306-55Y5S151M100	150pF ± 20%		±22%				
*DSS306-55Y5S221M100	220pF ± 20%	100VDC	±22%	Internal	Fig. 2	Fig. 5	
*DSS306-55Y5S271M100	270pF ± 20%		±22%	Internal Fig. 2 Fig. 4	rig. o		
*DSS306-55Y5S471M100	470pF ± 20%		±22%				
*DSS306-55Y5S102M100	1000pF ± 20%		±22%				
*DSS306-55Y5U222Z100	2200pF + 80%, -20%		+22%, -56%				
*DSS306-55FZ103N100	10000pF ± 30%		+30%, -85%				
*DSS306-55F223Z16	22000pF + 80%, -20%	16VDC	+30%, -80%				
*DSS306-351Y5S220M100	22pF ± 20%		±22%				
*DSS306-351Y5S330M100	33pF ± 20%		±22%				
*DSS306-351Y5S470M100	47pF ± 20%		±22%				
*DSS306-351Y5S101M100	100pF ± 20%		±22%				
*DSS306-351Y5S151M100	150pF ± 20%		±22%				
*DSS306-351Y5S221M100	220pF ± 20%	100VDC	±22%	Internal	Fig. 3	Fig. 6	
*DSS306-351Y5S271M100	270pF ± 20%		±22%	intornal	rig. o	rig. o	
*DSS306-351Y5S471M100	470pF ± 20%		±22%				
*DSS306-351Y5S102M100	1000pF ± 20%		±22%				
*DSS306-351Y5U222Z100	2200pF + 80%, -20%		+22%, -56%				
*DSS306-351FZ103N100	10000pF ± 30%		+30%, -85%				
*DSS306-351F223Z16	22000pF + 80%, -20%	16VDC	+30%, -80%				

Note: "55" in part number denotes Bulk packaging. For Taped Product, replace with appropriate number from chart on page 254. All units are rated 6 amp. *Available as standard through authorized Murata Electronics Distributors.

EMI LEADED FILTERS EMI SUPPRESSION FILTER COMPACT DISC-TYPE

DIMENSIONS: mm

Innovator in Electronics DS306 & DSS306 Series

TYPICAL INSERTION LOSS CHARACTERISTICS

EMI LEADED FILTERS EMI SUPPRESSION FILTERS DISC-TYPE

Disc-type EMIFIL[®] DS310, DST310 and DSS310 are T-type EMI suppression filters. The disc-type EMIFIL increases the self-resonant frequency of the capacitor by attaching two lead wires to one of the electrodes of the capacitor and increases the insertion loss by adding inductance to the lead in the DST and DSS types only. Frequencies to be suppressed can be selected by choosing the capacitance. They are also recommended for use as by-pass capacitors.

PART NUMBERING SYSTEM

	DS	□ <u>3</u> 1	0 – <u>55</u>	<u>Y5S 271 M</u>	<u>100</u>		
DISC TYPE	FERRITE BEAD Blank = None T = Outside S = Inside	SERIES TYPE	LEAD CONFIGURATION 55 = Bulk 91 = Taped	TEMPERATURE CHARACTERISTICS	CAPACITANCE	CAPACITANCE Tolerance	RATED VOLTAGE

SPECIFICATIONS

		Cap	acitor	Formito		Incontion	
Part Number	Capacitance	W.V.	T.C. –25°C to +85°C	Beads	Dimensions	Loss	
FOR GENERAL APPLIC	CATIONS						
* D\$310-55Y5\$271M100	270pF ± 20%	100V					
*D\$310-55Y5\$222M100	2200pF ± 20%	100V	+22%	None	Fig. 1	Fig. 4	
*D\$310-55Y5\$223\$50	22000pF + 50%, -20%	50V	- ±22%			i ig. Ŧ	
*DS310-55Y5S104M16	100000pF ± 20%	16V					
*DST310-55Y5S271M100	270pF ± 20%	100V	±22%	External	Fig. 2		
*DST310-55Y5S222M100	2200pF ± 20%	100V				Fig. 5	
*DST310-55Y5S223S50	22000pF + 50%, -20%	50V					
*DSS310-55Y5S220M100	22pF ± 20%	100V		Internal	Fig. 3		
*DSS310-55Y5S470M100	47pF ± 20%	100V					
*DSS310-55Y5S101M100	100pF ± 20%	100V	+22%			Fig. 6	
*DSS310-55Y5S271M100	270pF ± 20%	100V	±22 /0			rig. o	
*DSS310-55Y5S222M100	2200pF ± 20%	100V					
*DSS310-55Y5S223S50	22000pF + 50%, -20%	50V	1				
FOR AUDIO CIRCUITS	(LOW DISTORTION T	YPE)					
*DSS310-55BL222M100	2200pF ± 20%	100V	±10%	Internally	Fig. 3	Fig. 9	
*DSS310-55DL223S50	22000pF + 50%, -20%	50V	+20%, -30%	ппетнану	riy. 5	гiy. 9	

Part Number	Canacitance	T.	C.	Ferrite	Dimonsions*	Insertion Loss
	oupuonanoo	–25°C to +85°C	–40°C to +105°C	Beads	Dimensions	
FOR HIGH TEMPERATU	IRE APPLICATIONS					
*D\$310H-55B220M250				None	Fig. 1	Fig. 7
*DST310H-55B220M250	22pF ± 20%		±20%	External	Fig. 2	Fig. 8
*DSS310H-55B220M250				Internal	Fig. 3	Fig. 10
*DS310H-55B101M250		±10%		None	Fig. 1	Fig. 7
*DST310H-55B101M250	100pF ± 20%			External	Fig. 2	Fig. 8
*DSS310H-55B101M250				Internal	Fig. 3	Fig. 10
*DS310H-55B271M250				None	Fig. 1	Fig. 7
*DST310H-55B271M250	270pF ± 20%			External	Fig. 2	Fig. 8
*DSS310H-55B271M250				Internal	Fig. 3	Fig. 10
*D\$310H-55B222M250				None	Fig. 1	Fig. 7
*DST310H-55B222M250	2200pF ± 20%		±30%	External	Fig. 2	Fig. 8
*DSS310H-55B222M250				Internal	Fig. 3	Fig. 10

*Note: DS□310 Series Footprint for Bulk and Tape & Reel are different. Consult your local Murata Electronics Sales Office. All DS□310H units are rated at 7A max. and 250VDC. Current rating is 7Amps for bulk packaged units, 6 Amps for tape and reel.

 \star Available as standard through authorized Murata Electronics Distributors.

EMI LEADED FILTERS EMI SUPPRESSION FILTERS DISC-TYPE

DS310/H, DST310/H & DSS310/H Series

EMI LEADED FILTERS

DIMENSIONS: mm (See Note)

DSS310/310H TYPE Fig. 3

TYPICAL INSERTION LOSS CHARACTERISTICS

Note: DS 310 Series Footprint for Bulk and Tape are different. Consult your local Murata Electronics Sales Office for details.

EMI LEADED FILTERS EMI SUPPRESSION FILTERS TAPE & REEL

TAPE DIMENSIONS: mm

DST310-91 Type

DSS306-91 Type

DSS306-431 Type

DS 306, DS 310/310H Series

muRata

PART NUMBERING, DS306 & DSS310 SERIES

DST 310	– 55 Y5S	271 M 100					
T = Ferrite Bead Outside S S = Ferrite Bead Inside	eries 55 = Bulk Pkg. 9⊡ = Tape (See Char	Temp. Cap. Tolerance Rated Char. Value Voltag rt)					
TAPING CODES							
Ca	de	н					
Straight Leads	Crimped Leads	Tape & Reel					
91	_	20.0					
00	421	16.5					
92	761	10.0					

*Three types of H dimensions (lead length) are available for various types of insertion machines.

DSS310-91 Type

(Taping for DSS type is only DSS310-91 Type)

ltem	Code	Dimensions: mm	Remarks	
Taping Pitch	Р	12.7	Product Inclination ΔS Determines Tolerance	
Guide Pitch	P ₀	12.7 ± 0.2		
Hole Center to Lead	P ₁	3.85 ± 0.7		
Hole Center to Component Center	P ₂	6.35 ±1.3	Shift in Tape in Direction of Feed	
		7.0 [9.5]	DS max. []	
Diameter of Body	D	8.0 [9.5]	DST max. DS 310	
		8.0 [12]	DSS max. Series	
Deviation of Body Center	ΔS	0 ± 1.0		
Width of Base Tape	W	18.0 ± 0.5		
Feed Hole Position to Capacitor Lead	W ₁	9.0 ⁺⁰ _{-0.5}	Tape Widthwise Shift	
Protrusion Length	l	+0.5 to -1.0		
Diameter of Feed Hole	D ₀	4.0 ± 0.1		
Diameter of Lead	d	0.6		
Total Thickness of Tape	t ₁	0.7 ± 0.2	Includes Thickness	
iotal fillokiless of tape	t ₂	1.5 max.	of Bonding Tape	
Deviation Across Tapa	Δh_1	1.0 max.		
Deviation Across Tape	Δh_2	1.0 max.		
Length of Snipped Lead	L	11.0 ⁺⁰ -1.0		
Width of Hold Position	W ₀	12.0 ± 0.5		
Hold-down Tape Position	W ₂	1.5 ± 1.5		
Lead Distance Between Reference and Bottom Planes	Н	18.5 ± 1.0	16.5 & 20.0mm Lengths are also available	
Lead Spacing	F	$5.0^{+0.8}_{-0.2}$		
Leau Spacing	F ₁	2.5 +0.4 -0.2		

PACKAGING TYPE AND NUMBERS

Part Number	Quantity (Pcs.)				
	Flat Pack	Reel			
DS 306 Series	2000	—			
DS310/310H Series	2000				
DST310/310H Series	-	1000*			
DSS310/310H Series	_	800			
🛿 Non Standard					

EMI LEADED FILTERS EMI SUPPRESSION FILTERS WITH SEMICONDUCTOR SURGE PROTECTION

The VFR303 Series is an EMI suppression filter with a built-in varistor function designed to protect semiconductors, such as C-MOS and TTI, from ESD surge rushes. The VFR303 series works well as EMI suppression filter.

FEATURES

- Absorbs ESD surges, provides IC protection.
 Excellent signal line EMI suppression filter.

TYPICAL INSERTION LOSS

Thin and low height enables high density mounting.

APPLICATIONS

Elimination of noise and protection of semiconductors in office automation equipment, including computers and their peripheral equipment, copy machines, and communication terminals.

PART NUMBERING SYSTEM

DIMENSIONS: mm

SPECIFICATIONS

Part Number	Capacitance (1kHz) (Between Terminals 1-2)	DC Resistance (Ohms) (Between Terminals 1-3)	Rated Voltage (Between Terminals 1-2)	Rated Current (Between Terminals 1-3)	Varistor Voltage	Peak Pulse Current (Between Terminals 1-2) 8/20µs	Operating Temp. Range
★VFR303-351 AY 25	130pF ± 20%	150 ± 35%	25VDC	20mA	50VDC ± 20% (V1mA)	15A	–25 to +85°C

*Available as standard through authorized Murata Electronics Distributors.

EMI LEADED FILTERS EMI SUPPRESSION FILTERS VARISTOR-CAPACITOR

The DSS706 Varistor-Capacitor is a three-terminal filter which suppresses noise emission from electronic equipment while controlling incoming surges of static electricity. Its small size enables 2.5mm pitch mounting.

APPLICATIONS

Elimination of noise and protection of semiconductors in office automation equipment, including computers, peripheral equipment, copy machines, and communication terminals.

FEATURES

- Protects circuits from electrical surges and acts as a filter for signal lines.
- Effectively suppresses high-frequency noise from signal lines. (Performance equivalent to conventional three-terminal capacitor.)
 Small size enables it to be mounted at 2.5mm pitch.
- Three-terminal structure leads to superior high-frequency characteristics.
- Built-in ferrite bead provides excellent EMI suppression.

PART NUMBERING SYSTEM

DIMENSIONS: mm

TYPICAL INSERTION LOSS CHARACTERISTICS

SPECIFICATIONS

Part Number	Capacitance	Capacitance Temp. Char.	Rated Voltage	Max. Rated Current	Varistor Voltage	Peak Pulse Current	Operating Temp. Range
*DSS706-351D221M25-50	220pF ± 20%	+20%, -30%	25VDC	6 Amps	50 ± 20%	100A	-40 to +105°C

*Available as standard through authorized Murata Electronics Distributors.

256

EMI LEADED FILTERS EMI SUPPRESSION FILTERS VARISTOR-CAPACITOR

PART NUMBERING SYSTEM

The DSS710 uses a capacitor element which provides the varistor function. This varistor-capacitor not only works as a bypass capacitor but also lets high-voltage surges flow to ground.

The varistor-capacitor used in the DSS710 has a 3-lead structure, so that its high frequency functions are substantially better than those of conventional capacitors. Furthermore, it is combined with ferrite bead to form a T-shaped filter circuit that most effectively suppresses EMI.

The DSS710 efficiently removes fast-rising transients and high-frequency EMI above 50 or 60 MHz which conventional capacitors and varistor-capacitors are incapable of removing.

Varistor-capacitors are used even where conventional EMI-filters fail. They are self-healing and effective in circuits having 500-600V impulses.

DIMENSIONS: mm

Note: Footprint for Bulk and Tape & Reel are different. Consult your local Murata Electronics Sales Office.

SPECIFICATIONS

Part Number	*DSS710 D223 S 12-22
Capacitance	22000pF ⁺⁵⁰ %
DF	5.0% max.
Insulation Resistance	1M Ohms min.
lc (max.)	7 A
Rated Voltage	12VDC
Varistor Voltage	22VDC ± 20% (V1mA)
Voltage Nonlinear Factor	1.25 max. (V10mA/V1mA)
Temperature Characteristics	⁺²⁰ ₋₃₀ % (-25°C to +85°C)
Operating Temperature Range	-40°C to +100°C
Inductance	0.8μH x 2 (1kHz)

 \star Available as standard through authorized Murata Electronics Distributors.

TYPICAL INSERTION LOSS CHARACTERISTICS

VOLTAGE – CURRENT CURVE

EMI LEADED FILTERS EMI SUPPRESSION FILTERS VARISTOR-CAPACITORS

3-TERMINAL STRUCTURE

The reason the 3-terminal structure provides excellent high frequency characteristics.

Bypass capacitors should logically be able to remove more noise as frequency increases. In actual fact, the electrodes and lead wires of the capacitor have series inductance as shown in Fig. 3, and this causes an LC resonance when the frequency is between 1MHz and 50MHz. As a result, when the frequency is higher than the self-resonance frequency, the noise suppression capability of the bypass capacitor is drastically reduced because the capacitor functions as inductor. To solve this problem, the DSS series has one side of the capacitor electrodes connected to two lead wires. This eliminates the series inductance to the capacitor. Furthermore, a ferrite bead is attached to each lead wire to form a T-shaped filter, thus providing efficient noise suppression.

NOISE ABSORPTION EFFECT OF VARISTOR-CAPACITOR

The Varistor-Capacitor is capable of removing even 1200V surges and will withstand 2000V impulses.

APPLICATIONS

Systems Lines to be connected to		Effects
Engine Controllers Power lines, I/O for low-frequency current		Protection of systems from excessive voltage. Prevents ignition noise, lightning surges, etc. from causing malfunctions.
Automobile Audio Equipment	Power lines, audio output lines	Protection of system from excessive voltage. Prevents ignition noise from influencing audio current.
Computers	Power lines, I/O lines for low-frequency current	Protection of systems from excessive voltage. Prevents radiation and conduction noise.
DC Motors	Power lines	Prevention of brush noise.

EMI LEADED FILTERS EMI SUPPRESSION FILTERS **BLOCK FILTERS**

Innovator in Electronics BNP002/004 Series

FEATURES

- The EMIFIL BNP002 incorporates feed-thru type barrier layer capacitors in Pi circuits, obtaining significantly large insertion losses over an extremely wide frequency range — from 15MHz up to 1GHz.
- The cut-off frequency is designed to be at several MHz, which is ideal for eliminating noise from any circuit in which the signal frequency and the noise frequency are relatively close together.

Block-type BNP002 filters completely eliminate noise from extremely wide frequency bands. The BNP002 is ideal for eliminating noise in logic signal circuits and is designed to perform superbly through the use of through-type barrier layer capacitors, and bead inductors.

Each block contains a number of compact EMI suppression filters. In addition, the input/output terminals and the grounding terminal are aligned in the same direction, thus permitting fast and easy assembly on any type of PC board.

APPLICATIONS

Noise elimination from signal lines and DC power sources in engine control units, digital equipment and computer terminals.

- Since all noise in parallel signal lines can be eliminated by one filter block, minimum board space is utilized.
- There are no connections in the feed-thru current circuits, thus ensuring highly reliable performance.
- Both the input/output terminals and the grounding terminal are aligned in the same direction, permitting fast and easy installation on any type of PC board.

SPECIFICATIONS

ltem	Specifications			
Part Number	*BNP002-02	★BNP002-03	*BNP004-02	
Number of Circuits	2	3	2	
Circuit Construction		π		
Operating Temperature Range	-40°C to +100°C			
Rated Voltage	50VDC			
Withstand Voltage	300VDC		125VDC	
Maximum Current Capacity	10ADC			
Insulation Resistance	1000M Ohms min.			
DC Resistance	0.05 Ohms max., (20°C to 25°C)			
Insertion Loss	20MHz to 500MHz: 40dB 300 (20°C to 25°C) min.		300MHz to 1GHz 40dB min.	

EQUIVALENT CIRCUIT

*Available as standard through authorized Murata Electronics Distributors.

RECOMMENDED P.C. BOARD PATTERN

TYPICAL INSERTION LOSS CHARACTERISTICS

EMI LEADED FILTERS EMI SUPPRESSION FILTERS BLOCK FILTERS

FEATURES

- The BNX002 incorporates feed-thru-type barrier layer capacitor and a chip capacitor which are interconnected. This combination enables the BNX002 to achieve a significantly large insertion loss throughout the extremely wide frequency range of 0.5MHz to 1GHz, which covers the AM and UHF-TV broadcast frequency bands.
- Non polarized—but care must be taken to ensure that terminal with inductor on ground line faces EMI source.

DIMENSIONS: mm

Block-type BNX002 filters completely eliminate noise from extremely wide frequency bands. The BNX002 is perfect for use in DC power circuits and is designed to perform superbly—through the use of through-type barrier layer capacitors, monolithic chip capacitors and bead inductors.

Each block contains a number of compact EMI suppression filters. In addition, the input/output terminals and the grounding terminal are aligned in the same direction, thus permitting fast and easy assembly on any type of PC board.

APPLICATIONS

Noise elimination from signal lines and DC power sources in a variety of switching power sources, engine control units, digital equipment and computer terminals.

- The filter is extremely compact since only one filter block is needed to completely eliminate noise from both the positive and ground lines.
- There are no connections in the feed-thru current circuits, thus ensuring highly reliable performance.
- Both the input/output terminals and the grounding terminal are aligned in the same direction, permitting fast and easy installation on any type of PC board.

SPECIFICATIONS

ltem		Specifications	
Part Number	*BNX002-01	*BNX003-01	*BNX005-01
Operating Temperature Range			
Rated Voltage	50VDC	150VDC	50VDC
Test Voltage	125VDC	375VDC	125VDC
Maximum Current Capacity	10A	15ADC	
Insulation Resistance		1000M Ohms min.	
Insertion Loss	1MHz to 1GHz 40dB min.	5MHz to 1GHz 40dB min.	1MHz to 1GHz 40dB min.
		20°C to 25°C Line Impedance = 50 Ohms	

EQUIVALENT CIRCUIT

RECOMMENDED P.C. BOARD PATTERN

Available as standard through authorized Murata Electronics Distributors.

EMI LEADED FILTERS EMI SUPPRESSION FILTERS BLOCK FILTERS

USING THE BNX SERIES EFFECTIVELY

The block type filter effectively prevents unwanted reflections and external noise from entering the equipment circuitry and power lines by grounding all the high frequency components which make up the noise.

To maximize performance, proper grounding is required. To insure proper grounding, observe the following points:

When designing the PC board, use all the available grounding terminals and arrange the circuit to maximize the area of the ground pattern.

APPLICATION

BNX002/003/005 Series

muRata

Innovator in Electronics

- Minimize the distance between the PC board ground and the filter's grounding plate.
- Insert the filter into the PC board up to the terminal roots.
- Do not externally connect PSG to CG.

TYPICAL INSERTION LOSS CHARACTERISTICS

EMI LEADED FILTERS EMI SUPPRESSION FILTERS DC COMMON MODE CHOKE COIL

DIMENSIONS: mm

PART NUMBERING SYSTEM

TYPES

Part Number	Inductance (µH) min.	Self-resonance Frequency (MHz)*	Marking Code
* PLTOR53C	0.5	1000 min.	В
★PLT1R53C	1.5	250	А
*PLT2003C	20.0	10	С
*Typical Value			

SPECIFICATIONS

Item	Rating
Rated Voltage	50VDC
Rated Current	3A
Withstand Voltage	125VDC (1 to 5 seconds)
Operating Temp. Range	-25°C to +60°C

*Available as standard through authorized Murata Electronics Distributors.

Compact, lightweight, common mode choke coil for DC power supplies for common mode noise suppression from several MHz to several hundred MHz.

muRata Innovator in Electronics PLT Series

FEATURES

- Ideal for suppression of common mode noise in high frequencies ranging from several MHz to several hundred MHz.
- PCB mount type makes mounting simple.
- Only negligible influence on 10MHz high frequency signals (PLT0R53C only).

APPLICATIONS

To meet FCC regulations on digital equipment such as computers and computer terminal equipment.

To meet VDE regulations on hand-held digital appliances using AC adapters (suppression of unwanted radiation from power cords).

Suppression of radiated noise from cable between AC adapters and sets.

Suppression of radiated noise from DC power supply and interface cables.

TYPICAL INSERTION LOSS CHARACTERISTICS

EMI LEADED FILTERS NOISE FILTERS DC COMMON MODE CHOKE COIL

FEATURES

- Extended self-resonant frequency
- Meets FCC, CISPR, VCCI noise requirements
- High current rating 3A max.
- High density mounting

APPLICATIONS

Switching power supplies, digital equipment, CTV, VCR, ECR and other electronic equipment and appliances.

CIRCUIT DIAGRAM

PART NUMBERING SYSTEM

APPLICATIONS

Suppression of radiated noise from DC power supply and interface cables.

DIMENSIONS: mm

SPECIFICATIONS

50VDC
125VDC (1 min.)
3.0
10M Ohms min. (100VDC 1 minute)
0.03
20µH
-40°C to +85°C
20°C ⁺⁸⁰ ₋₅₀ % (-25°C ~ +60°C)

TYPICAL INSERTION LOSS CHARACTERISTICS

*Available as standard through authorized Murata Electronics Distributors.

muRata

Innovator in Electronics

PLT09H Series

EMI LEADED FILTERS FEED-THRU CAPACITORS SUBMINIATURE DF220, DF221(H), DF430, TF240(H) & DF331(H) Series

FEATURES

- The use of barrier layer capacitors has resulted in smaller size and larger capacity than possible with conventional capacitors.
- The nickel alloy electrode is resistant to soldering heat and is free from migration in high humidity environments.

DIMENSIONS: mm

Since the input and output terminals of these feed-thru capacitors are isolated and the inductance on the grounded side is very small, they can be used effectively to very high frequencies.

These devices are suitable for suppression of radiation from TV tuners, car radios, car stereos and transmission devices and provide enhanced protection from external noise sources.

These subminiature feed-thrus, which may be incorporated in 2.54mm pitch connectors, are ideal for miniature electronic equipment.

- Compact electronic devices can be achieved by incorporating this capacitor with a 2.54mm pitch packaging density – such as installation in connectors.
- Simple construction allows mass production assembly techniques.

EMI LEADED FILTERS FEED-THRU CAPACITORS SUBMINIATURE

DF220, DF221(H), DF430, TF240(H) & DF331(H) Series

SPECIFICATIONS

Part Number*	Can Value Can To	Con Tol	WVDC	Insertion Loss at 25°C (Typ.)		
Part Number	Cap. value	Cap. 101.	WVDC	10MHz	100MHz	1GHz
DF220	•	1	-	-		
*DF220-00SL020U50	2pF	+0, –100%	50V	_	_	_
*DF220-00SL150M50	15pF	±20%	50V	_	_	6
*DF220-00SL220M50	22pF	±20%	50V	_	_	7
*DF220-00YN430M50	43pF	±20%	50V	_	1	15
*DF220-00B121M50	120pF	±20%	50V	_	3	20
*DF220-00B221M50	220pF	±20%	50V	_	7	25
*DF220-00B471M50	470pF	±20%	50V	_	12	30
*DF220-00E102Z50	1000pF	+80, -20%	50V	3	18	35
*DF220-00SS152GMV50	1500pF	+200, -0%	50V	5	20	40
DF221(H)						
DF221-□□SL020U50	2pF	+0, -100%	50V	_	_	_
DF221-00SL150M50	15pF	±20%	50V	_	_	6
DF221-00SL220M50	22pF	±20%	50V	_	_	7
DF221-□□□YN430M50	43pF	±20%	50V	_	1	15
DF221-□□B121M50	120pF	±20%	50V	_	3	20
DF221B221M50	220pF	±20%	50V	_	7	25
DF221-□□B471M50	470pF	±20%	50V	_	12	30
DF221(H)-□□E(F)102Z50	1000pF	+80, -20%	50V	3	18	35
DF221-00SS152GMV50	1500pF	+200, -0%	50V	5	20	40
DF430						
*DF430-0SS332GMV50	3300pF	+200, -0%	50V	10	25	45
TF240(H)						
TF240-00SL020D50	2pF	±0.5pF	50V	—	—	—
TF240-□□SL220M50	22pF	±20%	50V	_	—	7
TF240-00B331M50	330pF	±20%	50V	—	10	27
TF240(H)-□□E(F)102GMV50	1000pF	+200, -0%	50V	3	18	35
TF240-□□SS332Z50	3300pF	+80, -20%	50V	10	25	45
DF331(H)						
DF331-□□SL010P50	1pF	+100, –0%	50V	—	—	—
DF331-□□□SL100G50	10pF	±2pF	50V	_	_	—
DF331-	22pF	±20%	50V	_	_	7
DF331-	33pF	±20%	50V		_	12
DF331-□□□YN470M50	47pF	±20%	50V			15
DF331-	100pF	±20%	50V		2	19
DF331(H)-□□E(F)102GMV50	1000pF	+200, -0%	50V	3	18	35
DF331-00SS332GMV50	3300pF	+200, -0%	50V	10	25	45

• Operating Temp. Range: Std. = -25°C to +85°C, H = -55°C to +125°C • Insulation Resistance: 1000M Ohms min. *

For other capacitance values, consult your local Murata Electronics Sales Office.

*Available as standard through authorized Murata Electronics Distributors.

miRata

Innovator in Electronics

EMI LEADED FILTERS FEED-THRU CAPACITORS

DIMENSIONS: mm

These feed-thru capacitors are designed for high frequency requirements, by-pass applications in VHF and UHF communications equipment and noise filters for car radios, car stereos and two-way radios.

These devices feature simple construction, small size and nickel plated electrodes.

They are migration free and have high thermal strength, mechanical strength and resistance to soldering heat. Ease of mounting makes them ideal for new and conventional feed-thru applications.

TE318(H)0				
5.0 + 0.5 Mounting H	le Type	Lead Dia.	L ₁	L ₂
	TF318(H)-850		25.0 ± 2.0	30.0 ± 2.0
3.0 ± 0.2 D.	TF318(H)-853	0.8	14.0 ± 1.0	15.0 ± 1.0
TF318(H)	TF318(H)-855		9.5 ± 0.5	11.0 ± 0.5
5.0 ^{+0.5} 4.5 ± 0.3 D. 5.1 ^{-1.0}	TF318(H)-053	10	11.0 ± 1.0	16.5 ± 1.0
	TF318(H)-055	1.0	7.0 ± 0.7	6.2 ± 0.7
3.0 ± 0.2 D.	TF318(H)-450	14	$4.5^{+1.0}_{-0.5}$	7.5 ± 1.0
TF418-	TF318(H)-452		7.0 ± 1.0	9.0 ± 1.0
5.0 + 0.5 Mounting H	ole			[]
$5.4 \pm 0.2 \text{ D.}$ $4.2 \pm 0.2 \text{ J.}$ $4.2 \pm 0.2 \pm 0.$	Туре	Lead Dia.	L ₁	L ₂
	TF418-452	1.4	7.2 ± 1.0	8.8 ± 1.0
$ + L_1 \rightarrow - L_2 \rightarrow 1 $	TF418-454	1.4	10.2 ± 1.0	13.8 ± 1.0

SPECIFICATIONS

Part Number	Cap.	Cap. Tol.	Temp. Char.	Rated Voltage
TF318-□SL100G50	10pF	±20%	SL	50VDC
TF318-□SL220M50	22pF	±20%	SL	50VDC
TF318-□SL330M50	33pF	±20%	SL	50VDC
TF318-□SL470M50	47pF	±20%	SL	50VDC
TF318-□YN101M50	100pF	±20%	YN	50VDC
TF318-□B271M50	270pF	±20%	В	50VDC
TF318(H)-□B(F)471M50	470pF	±20%	В	50VDC
TF318-□E102GMV50	1000pF	⁺²⁰⁰ / ₋₀ %	E	50VDC
TF318-□E152P50	1500pF	+100 %	E	50VDC

Part Number	Cap.	Cap. Tol.	Temp. Char.	Rated Voltage
TF418-□E102GMV300	1000pF	⁺²⁰⁰ %	E	300VDC
TF418-□E152P300	1500pF	⁺¹⁰⁰ / ₀ %	E	300VDC

□ Denotes configurations shown above.

Examples:

TF318-450B271M50 TF418-452E102GMV300 Operating temperature: Std: –25°C to +85°C H Series: –55°C to +125°C

PART NUMBERING SYSTEM

Innorator in Electronics EA10/EA20 Series

The EA10/EA20 series is an EMC absorber suitable for filtering from 100MHz to 20GHz.

FEATURES

- Excellent elasticity and durability with silicon rubber
- Suitable for prevention of abnormal oscillation in high frequency module, suppression of spurious spectra and interference between circuits

PART NUMBERING SYSTEM

SPECIFICATIONS

Part Number	Applicable Frequency (GHz)	Thickness (mm)
EA1026A100	20.0	1.0
EA1026A160	11.5	1.6
EA1026A180	10.0	1.8
EA1046A180	5.8	1.8
EA1075A270	2.5	2.7
EA2070A020		0.2
EA2070A050	0.1 ~ 3.0	0.5
EA2070A100		1.0

EA10 SERIES

EA20 SERIES

EMI LEADED FILTERS FERRITE PRODUCTS

The unique FSOC ferrite cores provide high frequency EMI noise suppression for split and flat cables and find wide application in computers and peripherals to several hundreds of MHz. They are exceptionally easy to install and extremely effective.

FEATURES

- Extremely effective EMI noise prevention
 Wide application in data processing equipment
- Simple installation
- No soldered connections

PART NUMBERING SYSTEM

SPECIFICATIONS

DIMENSIONS: mm

FLAT CABLE CORES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for EMI Filter Circuits category:

Click to view products by Murata manufacturer:

Other Similar products are found below :

EMI2180MTTBG EMI8041BMUTAG CM1442-08CP CSPEMI204FCTAG SBSPP1000152MXT SBSGC5000473MXT SBSMC0500474MXT EMI8043MUTAG 1-6609037-5 BNX022-01L BNX024H01L NZF220DFT1G MEM2012SC151T001 MEA2010PE150T001 MEA1608PE220TA0G MEA1608LC150T001 742730023 MEM2012F101R NFA21SL287V1A45L MEM1608P101RT001 SBSMP1000224MXT SBSMC5000683MXT SBSMC0500474MXB SBSGP1000104MXB SBSGP1000104MXT SBSGC5000102MXB MEM2012V301R MEM1608P75R0T001 NFA18SD187X1A45L VEMI355A-HAF-G-08 4420P-601-250/181 EMI220T-RC EMI221T-RC EMI271T-RC EMI470T-RC EMI101T-RC EMI222T-RC SBSMP0500474MXB SBSMP2000104MXT SBSGC0500224MXT BNP002-02 BNP002-03 BNX002-11 BNX003-11 BNX005-11 BNX012-01 NFA18SL407V1A45L NFA21SL317V1A45L NFW31SP206X1E4L NFW31SP506X1E4L