AT93C86A

Atmel

3-wire Serial EEPROM 16K (2,048 x 8 or 1,024 x 16)

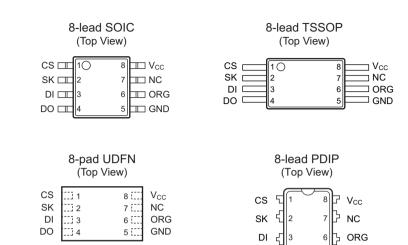
DATASHEET

Features

- Low-voltage Operation
 - V_{CC} = 1.8V to 5.5V
 - V_{CC} = 2.7V to 5.5V
- User-selectable Internal Organization
 - 16K: 2,048 x 8 or 1,024 x 16
- 3-wire Serial Interface
- Sequential Read Operation
- Schmitt Trigger, Filtered Inputs for Noise Suppression
- 2MHz Clock Rate (5V)
- Self-timed Write Cycle (10ms Max)
- High Reliability
 - Endurance: 1,000,000 Write Cycles
 - Data Retention: 100 Years
- 8-lead JEDEC SOIC, 8-lead TSSOP, 8-pad UDFN, and 8-lead PDIP Packages
- Die Sales: Wafer Form, Waffle Pack, and Bumped Wafers

Description

The Atmel[®] AT93C86A provides 16,384 bits of Serial Electrically Erasable Programmable Read-Only Memory (EEPROM) organized as 1,024 words of 16 bits each (when the ORG pin is connected to V_{CC}) and 2,048 words of 8 bits each (when the ORG pin is tied to ground). The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operations are essential. The AT93C86A is available in space-saving 8-lead JEDEC SOIC, 8-lead TSSOP, 8-pad UDFN, and 8-lead PDIP packages.


The AT93C86A is enabled through the Chip Select pin (CS) and accessed via a 3-wire serial interface consisting of Data Input (DI), Data Output (DO), and Shift Clock (SK). Upon receiving a Read instruction at DI, the address is decoded, and the data is clocked out serially on the DO pin. The write cycle is completely self-timed, and no separate erase cycle is required before Write. The write cycle is only enabled when the part is in the Erase/Write Enable state. When CS is brought high following the initiation of a write cycle, the DO pin outputs the Ready/Busy status of the part.

The AT93C86A operates from 1.8V to 5.5V or from 2.7V to 5.5V.

1. Pin Configurations and Pinouts

Table 1-1. Pin Configurations

Pin Name	Function
CS	Chip Select
SK	Serial Data Clock
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
V _{CC}	Power Supply
ORG	Internal Organization
NC	No Connect

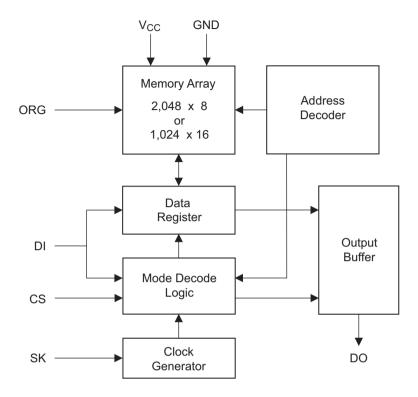
Note: Drawings are not to scale.

2. Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature
Voltage on any pin with respect to ground1.00V to +7.00V
Maximum Operating Voltage 6.25V
DC Output Current

*Notice: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DO


GND

5||凸

3. Block Diagram

Figure 3-1. Block Diagram

Note: When the ORG pin is connected to V_{CC} , the x16 organization is selected. When it is connected to ground, the x8 organization is selected. If the ORG pin is left unconnected, and the application does not load the input beyond the capability of the internal $1M\Omega$ pull-up resistor, then the x16 organization is selected.

4. Memory Organization

4.1 Pin Capacitance

Table 4-1.Pin Capacitance⁽¹⁾

Applicable over recommended operating range from $T_A = 25^{\circ}C$, f = 1.0MHz, $V_{CC} = 5.0V$ (unless otherwise noted).

Symbol	Test Conditions	Мах	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	V _{OUT} = 0V
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	V _{IN} = 0V

Note: 1. This parameter is characterized, and is not 100% tested.

4.2 DC Characteristics

Table 4-2. DC Characteristics

Applicable over recommended operating range from $T_{AI} = -40^{\circ}$ C to $+85^{\circ}$ C, $V_{CC} = 1.8$ V to 5.5V (unless otherwise noted).

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC1}	Supply Voltage			1.8		5.5	V
V _{CC2}	Supply Voltage			2.7		5.5	V
V _{CC3}	Supply Voltage					5.5	V
1	Supply Current	V _{CC} = 5.0V	Read at 1.0MHz		0.5	2.0	mA
I _{CC}	Supply Current	V _{CC} – 5.0V	Write at 1.0MHz		0.5	2.0	mA
I _{SB1}	Standby Current	V _{CC} = 1.8V	CS = 0V		0.4	1.0	μA
I _{SB2}	Standby Current	V _{CC} = 2.7V	CS = 0V		6.0	10.0	μA
I _{SB3}	Standby Current	V _{CC} = 5.0V	CS = 0V		10.0	15.0	μA
I _{IL}	Input Leakage	V_{IN} = 0V to V_{CC}	'		0.1	3.0	μA
I _{OL}	Output Leakage	V_{IN} = 0V to V_{CC}			0.1	3.0	μA
V _{IL1} ⁽¹⁾	Input Low Voltage	$2.7V \leq V_{CC} \leq 5.5V$		-0.6		0.8	V
V _{IH1} ⁽¹⁾	Input High Voltage	$2.7V \leq V_{CC} \leq 5.5V$		2.0		V _{CC} + 1	V
V _{IL2} ⁽¹⁾	Input Low Voltage	$1.8V \leq V_{CC} \leq 2.7V$		-0.6		V _{CC} x 0.3	V
V _{IH2} ⁽¹⁾	Input High Voltage	$1.8V \leq V_{CC} \leq 2.7V$		V _{CC} x 0.7		V _{CC} + 1	V
V _{OL1}	Output Low Voltage	$2.7V \leq V_{CC} \leq 5.5V$	I _{OL} = 2.1mA			0.4	V
V _{OH1}	Output High Voltage	$2.7V \leq V_{CC} \leq 5.5V$	I _{OH} = -0.4mA	2.4			V
V _{OL2}	Output Low Voltage	$1.8V \leq V_{CC} \leq 2.5V$	I _{OL} = 0.15mA			0.2	V
V _{OH2}	Output High Voltage	$1.8V \leq V_{CC} \leq 2.7V$	Ι _{ΟΗ} = –100μΑ	$V_{CC} - 0.2$			V

Note: 1. V_{IL} min and V_{IH} max are reference only, and are not tested.

4.3 AC Characteristics

Table 4-3. AC Characteristics

Applicable over recommended operating range from $T_{AI} = -40^{\circ}C$ to + 85°C, CL = 1 TTL gate and 100pF (unless otherwise noted).

Symbol	Parameter	Test Condition	I	Min	Тур	Max	Units
		$4.5V \le V_{CC} \le 5.$	5V	0		2	MHz
f _{SK}	SK Clock Frequency	$2.7V \le V_{CC} \le 5.$	$2.7V \leq V_{CC} \ \leq 5.5V$			1	MHz
		$1.8V \le V_{CC} \le 5.$	$1.8V \leq V_{CC} \leq 5.5V$			250	kHz
		$2.7V \le V_{CC} \le 5.1$	5V	250			ns
t _{sкн}	SK High Time	$1.8V \le V_{CC} \le 5.$	5V	1000			ns
4	SK Low Time	$2.7V \le V_{CC} \le 5.1$	5V	250			ns
t _{SKL}	SK LOW TIME	$1.8V \le V_{CC} \le 5.$	5V	1000			ns
		$2.7V \le V_{CC} \le 5.1$	5V	250			ns
t _{cs}	Minimum CS Low Time	$1.8V \le V_{CC} \le 5.$	5V	1000			ns
1		Deletive to CK	$2.7V \leq V_{CC} \ \leq 5.5V$	50			ns
t _{css}	CS Setup Time	Relative to SK	$1.8V \le V_{CC} \ \le 5.5V$	200			ns
4	DI Sotup Timo	Relative to SK	$2.7V \leq V_{CC} \ \leq 5.5V$	100			ns
t _{DIS}	DI Setup Time	Relative to SK	$1.8V \leq V_{CC} \ \leq 5.5V$	400			ns
t _{CSH}	CS Hold Time	Relative to SK		0			ns
+	DI Hold Time	Relative to SK	$2.7V \leq V_{CC} \ \leq 5.5V$	100			ns
t _{DIH}		Relative to SR	$1.8V \le V_{CC} \ \le 5.5V$	400			ns
÷	Output Delay to 1	AC Test	$2.7V \leq V_{CC} \ \leq 5.5V$			250	ns
t _{PD1}		AC TESI	$1.8V \le V_{CC} \ \le 5.5V$			1000	ns
+	Output Delay to 0	AC Test	$2.7V \leq V_{CC} \ \leq 5.5V$			250	ns
t _{PD0}	Output Delay to 0	AC TESI	$1.8V \leq V_{CC} \ \leq 5.5V$			1000	ns
+	CS to Status Valid	AC Test	$2.7V \leq V_{CC} \ \leq 5.5V$			250	ns
t _{sv}		AC TESI	$1.8V \leq V_{CC} \ \leq 5.5V$			1000	ns
t	CS to DO in	AC Test	$2.7V \leq V_{CC} \ \leq 5.5V$			150	ns
t _{DF}	High-impedance	CS = V _{IL}	$1.8V \leq V_{CC} \ \leq 5.5V$			400	ns
t _{WP}	Write Cycle Time		$1.8V \le V_{CC} \ \le 5.5V$	0.1	3	10	ms
Endurance ⁽¹⁾	5.0V, 25°C				1,000,000)	Write Cycles

Note: 1. This parameter is characterized, and is not 100% tested.

A	tm	el

5. Functional Description

The AT93C86A is accessed via a simple and versatile 3-wire serial communication interface. Device operation is controlled by seven instructions issued by the Host processor. A valid instruction starts with a rising edge of CS and consists of a Start bit (Logic 1), followed by the appropriate opcode, and the desired memory address location.

			Addr	ess	Da	ata	
Instruction	SB	Opcode	x8 ⁽¹⁾	x16 ⁽¹⁾	x 8	x16	Comments
READ	1	10	A ₁₀ - A ₀	$A_{9} - A_{0}$			Reads data stored in memory at specified address.
EWEN	1	00	11XXXXXXX	11XXXXXX			Write Enable must precede all programming modes.
ERASE	1	11	A ₁₀ – A ₀	$A_{9} - A_{0}$			Erases memory location $A_N - A_0$.
WRITE	1	01	A ₁₀ - A ₀	$A_{9} - A_{0}$	$D_7 - D_0$	D ₁₅ – D ₀	Writes memory location $A_N - A_0$.
ERAL	1	00	10XXXXXXX	10XXXXXX			Erases all memory locations. Valid only at V_{CC} = 4.5V to 5.5V.
WRAL	1	00	01XXXXXXX	01XXXXXX	$D_7 - D_0$	D ₁₅ – D ₀	Writes all memory locations. Valid only at V_{CC} = 4.5V to 5.5V and Disable Register cleared.
EWDS	1	00	00XXXXXXX	00XXXXXX			Disables all programming instructions.

Table 5-1.	AT93C86A Instruction	Set

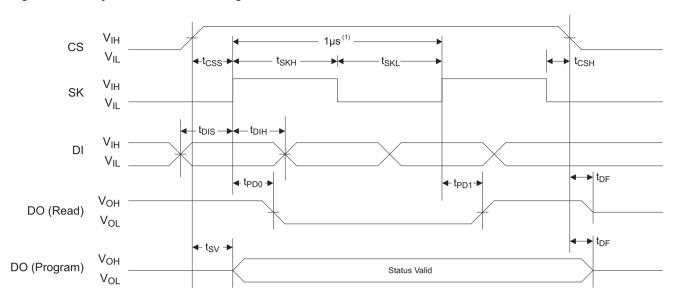
Note: 1. The 'X' in the address field represent don't care values, and must be clocked.

READ: The READ instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the Serial Output pin, DO. Output data changes are synchronized with the rising edges of the Serial Clock pin, SK. It should be noted that a dummy bit (Logic 0) precedes the 8-bit or 16-bit data output string. The AT93C86A supports sequential Read operations. The device will automatically increment the internal address pointer and clock out the next memory location as long as Chip Select (CS) is held high. In this case, the dummy bit (Logic 0) will not be clocked out between memory locations, thus allowing for a continuous stream of data to be read.

Erase/Write Enable (EWEN): To ensure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An Erase/Write Enable (EWEN) instruction must be executed first before any programming instructions can be carried out.

Note: Once in the EWEN state, programming remains enabled until an EWDS instruction is executed, or V_{CC} power is removed from the part.

ERASE: The ERASE instruction programs all bits in the specified memory location to the Logic 1 state. The self-timed erase cycle starts once the ERASE instruction and address are decoded. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of t_{CS} . A Logic 1 at the DO pin indicates that the selected memory location has been erased, and the part is ready for another instruction.


WRITE: The WRITE instruction contains the 8-bits or 16-bits of data to be written into the specified memory location. The self-timed programming cycle, t_{WP} , starts after the last bit of data is received at Serial Data Input pin DI. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of t_{CS} . A Logic 0 at DO indicates that programming is still in progress. A Logic 1 indicates that the memory location at the specified address has been written with the data pattern contained in the instruction, and the part is ready for further instructions. A Ready/Busy status cannot be obtained if CS is brought high after the end of the self-timed programming cycle, t_{WP} .

Erase All (ERAL): The Erase All (ERAL) instruction programs every bit in the Memory Array to the Logic 1 state and is primarily used for testing purposes. The DO pin outputs the ready/busy status of the part if CS is brought high after being kept low for a minimum of t_{CS} . The ERAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.

Write All (WRAL): The Write All (WRAL) instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of t_{CS} . The WRAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.

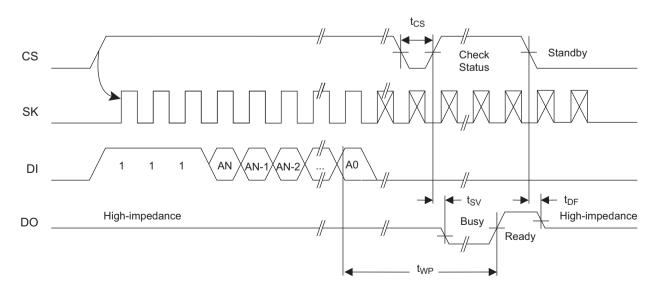
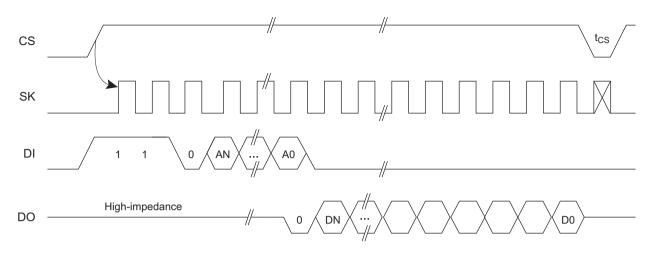
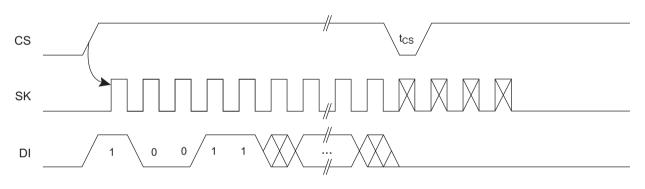
Erase/Write Disable (EWDS): To protect against accidental data disturbance, the Erase/Write Disable (EWDS) instruction disables all programming modes and should be executed after all programming operations. The operation of the Read instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.

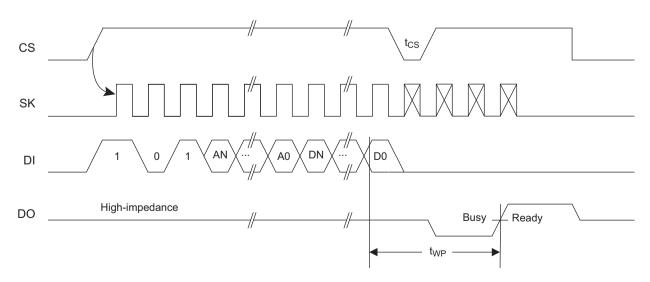
6. Timing Diagrams

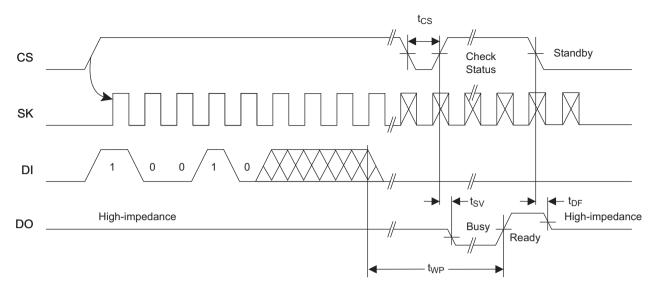
Note: 1. This is the minimum SK period.

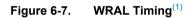
Table 6-1. Organization Key for Timing Diagrams

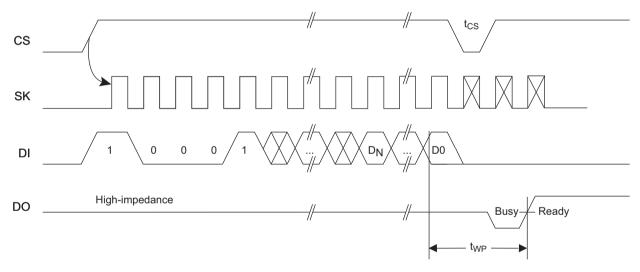
	AT93C8	6A (16K)
I/O	x8	x16
A _N	A ₁₀	A ₉
D _N	D ₇	D ₁₅

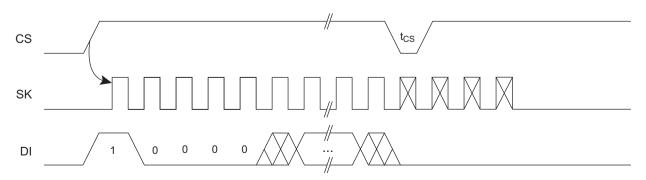




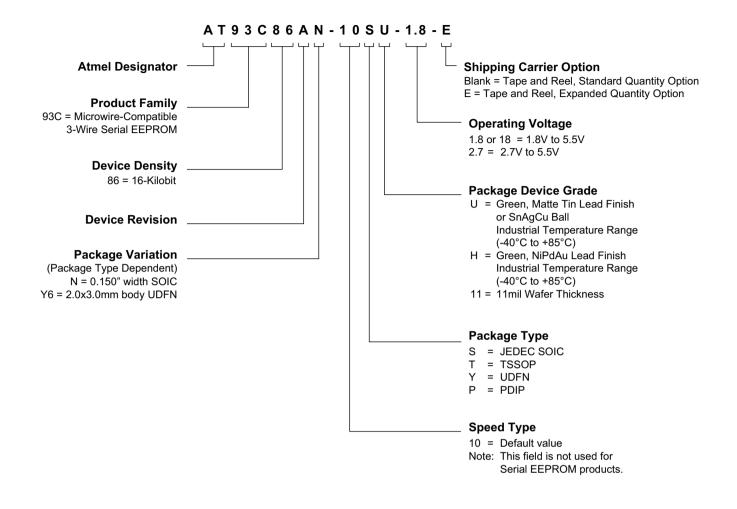

Figure 6-3. READ Timing








Note: 1. $V_{CC} = 4.5V$ to 5.5V.


Note: 1. Valid only at V_{CC} = 4.5V to 5.5V.

Atmel

7. Ordering Code Detail

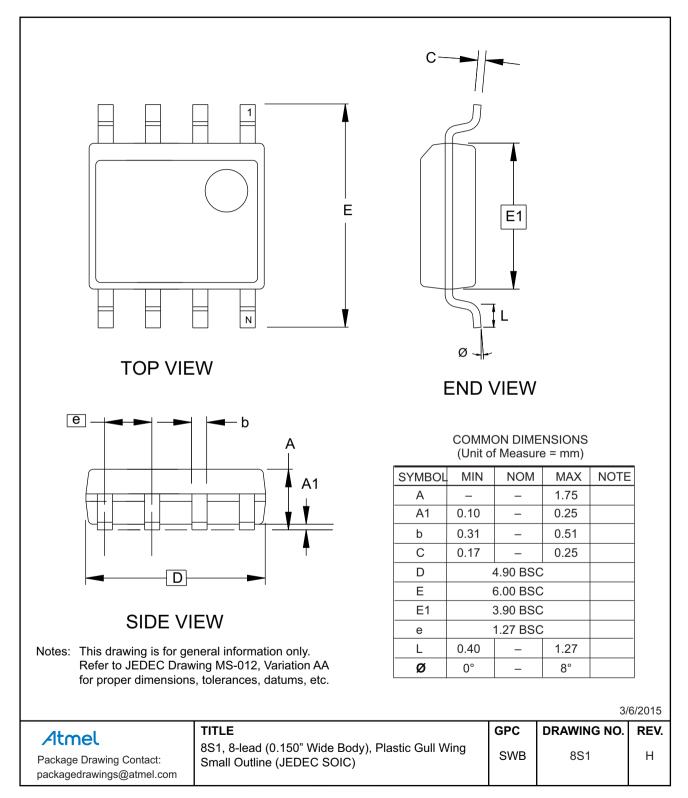
8. Part Markings

	8-lead SOI	С	8-lead TSSOP			
	Note: Lot Numbe	IELYWW 86A 86A r and location of assembly m side of the package.	U% AT # # # Note: Lot Number, location of assemt YWW date code on the bottom the package.	I A A A A A A A A A A A A A A A A A A A		
	8-pad UDF		8-lead PDIP			
	E F	dy # # # 18 CXX	ATMLUYWW 93C86A PU%% C C C C C C	iembly		
	Note 1: • designates p Note 2: Package drawin		on the bottom side of the packa			
Catalog Number Trunca AT93C86A Date Codes	Note 2: Package drawin	gs are not to scale	on the bottom side of the pace		s	
	Note 2: Package drawin	gs are not to scale Truncatior		Voltage		m Voltage
AT93C86A Date Codes	Note 2: Package drawin	gs are not to scale Truncatior	n Code ###: 86A ork Week of Assembly 2 4	Voltage: % = 3 or 27:		
AT93C86A Date Codes Y = Year 4: 2014 8: 2018 5: 2015 9: 2019 6: 2016 0: 2020	M = Month A: January B: February L: December	Truncatior WW = Wo 02: Week 04: Week 	n Code ###: 86A ork Week of Assembly 2 4	Voltage: % = 3 or 27: 1 or 18:	= Minimur 2.7V mi 1.8V mi	in
AT93C86A Date Codes Y = Year 4: 2014 8: 2018 5: 2015 9: 2019 6: 2016 0: 2020 7: 2017 1: 2021	M = Month A: January B: February L: December Lot	Truncation Truncation WW = Wc 02: Week 04: Week 52: Week t Number	n Code ###: 86A ork Week of Assembly 2 4	Voltage: % = 3 or 27: 1 or 18: Grade/L H:	= Minimur 2.7V mi 1.8V mi .ead Fini s	in in
AT93C86A Date Codes Y = Year 4: 2014 8: 2018 5: 2015 9: 2019 6: 2016 0: 2020 7: 2017 1: 2021 Country of Assembly	M = Month A: January B: February L: December Lot	Truncation Truncation WW = Wc 02: Week 04: Week 52: Week t Number	n Code ###: 86A ork Week of Assembly 2 4 52	Voltage: % = 3 or 27: 1 or 18: Grade/L H: U:	= Minimur 2.7V mi 1.8V mi .ead Fini s	in is h Material al/NiPdAu al/Matte Tin/Sn <i>i</i>
AT93C86A Date Codes Y = Year 4: 2014 8: 2018 5: 2015 9: 2019 6: 2016 0: 2020 7: 2017 1: 2021 Country of Assembly @ = Country of Assembly	M = Month A: January B: February L: December Lot Numbers Corres	Truncation Truncation WW = Wc 02: Week 04: Week 52: Week t Number AA = Atmel Wa	n Code ###: 86A ork Week of Assembly 2 4 52	Voltages % = 3 or 27: 1 or 18: Grade/L H: U: Atmel T AT:	Minimur 2.7V mi 1.8V mi .ead Finis Industria Industria runcation Atmel Atmel	in is h Material al/NiPdAu al/Matte Tin/Sn <i>i</i>
AT93C86A Date Codes Y = Year 4: 2014 8: 2018 5: 2015 9: 2019 6: 2016 0: 2020 7: 2017 1: 2021 Country of Assembly @ = Country of Assembly @ = Country of Assembly Trace Code XX = Trace Code (Atmel XX = Trace Code	M = Month A: January B: February L: December Lot Numbers Corres	Truncation Truncation WW = Wc 02: Week 04: Week 52: Week t Number AA = Atmel Wa	n Code ###: 86A ork Week of Assembly 2 4 52	Voltage: % = 3 or 27: 1 or 18: Grade/L H: U: Atmel T ATM:	Minimur 2.7V mi 1.8V mi 1.8V mi ead Finis Industria Industria fruncatio Atmel Atmel Atmel	in is h Material al/NiPdAu al/Matte Tin/Sn <i>i</i>

Atmel

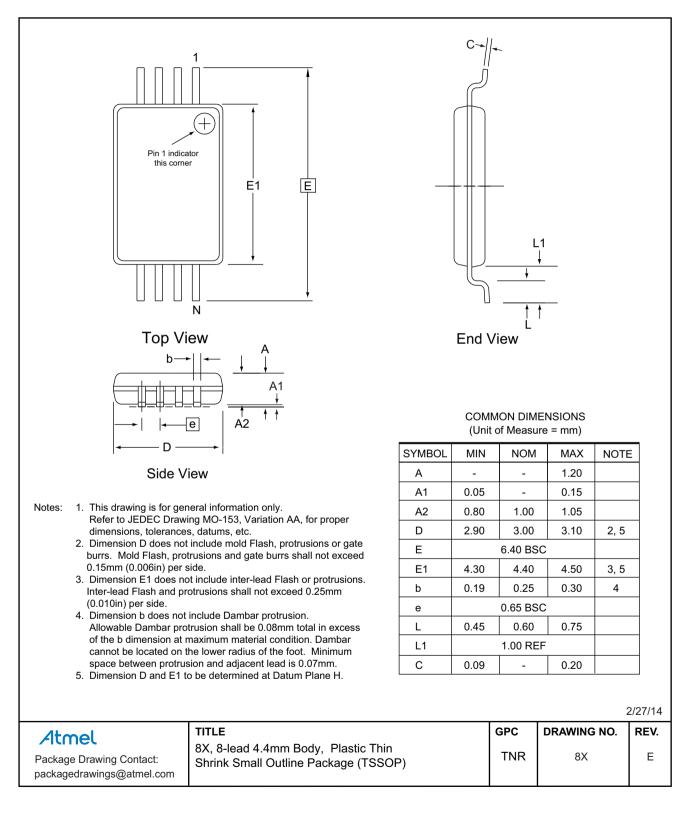
9. Ordering Information

	Lead			Delivery I	nformation	Operation
Atmel Ordering Code ⁽¹⁾	Finish	Package	Voltage	Form	Quantity	Range
AT93C86A-10SU-1.8		NiPdAu Lead-free Halogen-free 8X	1.8V to 5.5V	Tape and Reel	4,000 per Reel	
AT93C86A-10SU-2.7	Lead-free		2.7V to 5.5V ⁽¹⁾	Tape and Reel	4,000 per Reel	
AT93C86A-10TU-1.8			1.8V to 5.5V	Tape and Reel	5,000 per Reel	
AT93C86A-10TU-2.7	-		2.7V to 5.5V ⁽¹⁾	Tape and Reel	5,000 per Reel	
AT93C86A-10PU-1.8	Matte Tin	8P3	1.8V to 5.5V	Tape and Reel	4,000 per Reel	Industrial Temperature (-40°C to 85°C)
AT93C86A-10PU-2.7	Lead-free Halogen-free	053	2.7V to 5.5V ⁽¹⁾	Tape and Reel	4,000 per Reel	
AT93C86AY6-10YH-1.8	NiPdAu	8MA2	(1,0)/(10,E,E)/(10,0)	Tape and Reel	5,000 per Reel	
AT93C86AY6-10YH-18-E	Lead-free Halogen-free	OIVIAZ	1.8V to 5.5V	Tape and Reel	15,000 per Reel	
AT93C86A-W1.8-11 ⁽²⁾	N/A	Wafer Sale	1.8V to 5.5V	Nc	ote 2	

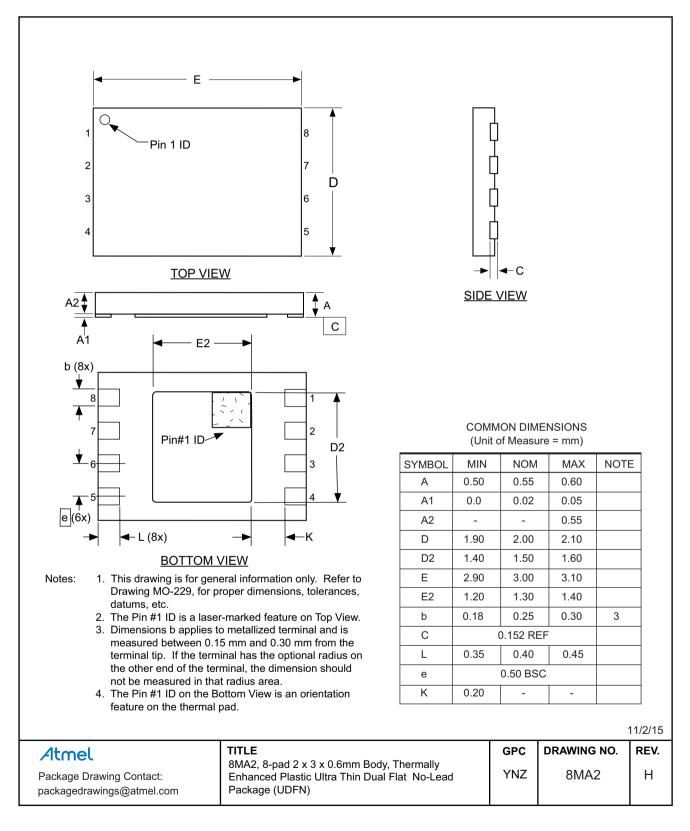

Notes: 1. For 2.7V devices used in a 4.5V to 5.5V range, please refer to performance values in Section 4.2, "DC Characteristics" and 4.3, "AC Characteristics" on page 5.

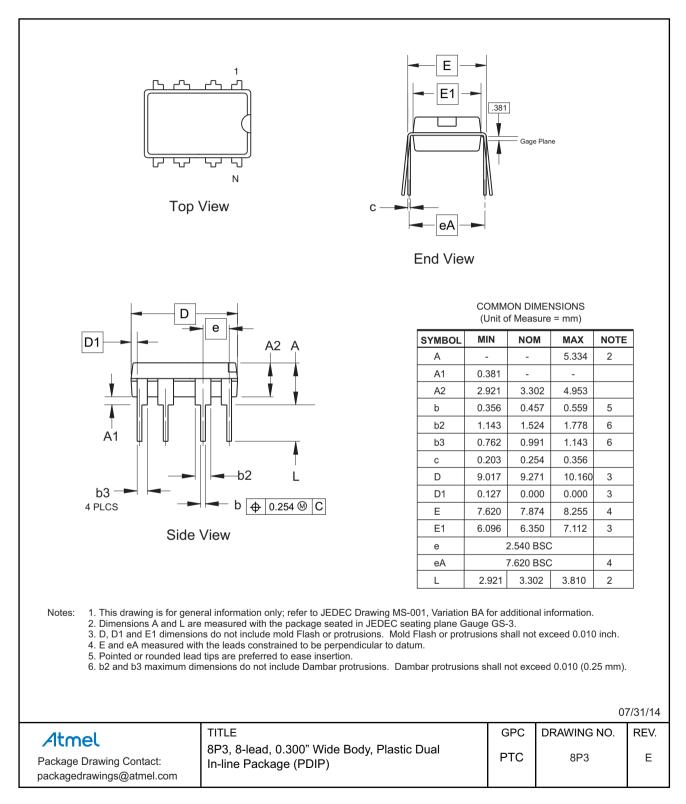
2. For Waffle pack and Wafer form; order as SL788 for inkless Wafer form. Bumped die available upon request. Please contact Atmel sales.

	Package Type
8S1	8-lead, 0.150" wide, Plastic Gull Wing, Small Outline (JEDEC SOIC)
8X	8-lead, 0.170" wide, Thin Shrink Small Outline (TSSOP)
8P3	8-lead, 0.300" wide body, Plastic Dual In-line Package (PDIP)
8MA2	8-pad, 2.00mm x 3.00mm body, 0.50mm pitch, Ultra Thin Dual No Lead (UDFN)


10. Packaging Information

10.1 8S1 — 8-lead JEDEC SOIC




10.2 8X — 8-lead TSSOP

Atmel

11. Revision History

Revision No.	Date	Comments
3408K	12/2015	Correct Ordering Code Detail and update the 8S1 and 8MA2 package drawings.
3408J	01/2015	Add the UDFN extended quantity option and update the ordering information section. Update the 8MA2 and 8P3 package drawings.
34081	08/2014	Update pinouts, 8MA2 package drawing, grammatical changes, document template, logos, and disclaimer page. No changes to functional specification.
3408H	01/2007	Add "Bottom View" to page 1 Ultra Thin MiniMap package drawing page 4 revise Note 1 added "ensured by characterization".
3408G	07/2006	Revision history implemented. Delete 'Preliminary' status from datasheet; Add 'Ultra Thin' description to MLP 2x3 package; Delete '1.8V not available' on Figure 1 Note; Add 1.8V range on Table 4 under Write Cycle Time.

Atmel Enabling Unlimited Possibilities®

T

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(40

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-3408K-SEEPROM-AT93C86A-Datasheet_122015.

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for EEPROM category:

Click to view products by Microchip manufacturer:

Other Similar products are found below :

M29F040-70K6 718278CB 718620G AT28C256-15PU-ND 444358RB 444362FB BR93C46-WMN7TP 442652G 701986CB TC58NVG0S3HBAI4 5962-8751413XA TC58BVG0S3HBAI4 TH58NYG3S0HBAI6 CAT25320YIGT-KK CAT25320DWF LE24C162-R-E 5962-8751417YA 5962-8751409YA CAT25M01LI-G DS28E11P+ BR9016AF-WE2 LE2464DXATBG CAS93C66VP2I-GT3 DS28E25+T DS28EL15Q+T M95320-DFDW6TP DS28E05GB+T AT25320B-SSPDGV-T HE24C64WLCSPD BL24SA128B-CSRC 24FC16T-I/OT 24FC08T-I/OT M24128-BFMN6TP S-24CS04AFM-TFH-U M24C04-FMC5TG M24C16-DRMN3TPK M24C64-DFMN6TP 34AA02-EMS M95080-RMC6TG M95128-DFCS6TP/K M95128-DFDW6TP M95256-DFMN6TP M95320-RDW6TP M95640-RDW6TP AT17LV010-10CU AT24C01C-SSHM-B AT24C01D-MAHM-T AT24C04D-MAHM-T AT24C04D-SSHM-T AT24C08C-SSHM-B