5,7" LCD CONTROL PANEL WITH TOUCH PANEL

TECHNICAL DATA

* 5.7"LCDGRAPHICSDISPLAYWITHDIVERSEGRAPHICSFUNCTIONSANDFONTS
* 320x240PIXELSWITHCFLILLUMINATION,BLUENEGATIVE (RECOMMENDED)
* 320x240PIXELSWITHLED ILLUMINATION,WHITE, BLACKCHAR.FSTN
* FONTZOOM FROMapprox. 2 mm TO approx. 80 mm ,ROTATABLEin 90° STEPS
* SUPPLY $+5 \mathrm{~V} \pm 2 \% @ 500 \mathrm{~mA}(\mathrm{CFL}) / 400 \mathrm{~mA}($ LED $)$ OROPTIONALLY $+9 . .35 \mathrm{~V}$
* RS-232 OROPTIONALLY RS-422WITHBAUD RATES OF 2,400TO 115,200
* POSITIONINGACCURATETOTHEPIXELWITHALLFUNCTIONS
* STRAIGHTLINE,POINT,AREA,AND/OR/EXOR,BARGRAPH...
* CLIPBOARDFUNCTIONS, PULL-DOWNMENUS
* UPTO256IMAGESSTORABLEINTERNALLY
* UPTO 1024MACROSPROGRAMMABLE (FLASHWITH480KB)
* ILLUMINATIONSWITCHABLEBYMEANSOFSOFTWARE
* COMBINATIONS OFTEXTAND GRAPHICS, FLASHING ATTRIBUTES, INVERTED
* ANALOGTOUCHPANEL:VARIABLEGRIDWITH10x8FIELDS,FOREXAMPLE
* FREELYDEFINABLEKEYSANDSWITCHES
* MENUSANDBARGRAPHCANBESETBYTOUCH
* DOT-MATRIXDISPLAYCANBECONNECTEDDIRECTLYASSECONDARY DISPLAY ORDERDESIGNATION

320x240DOTS 5.7"WITHCFLILLUMINATION, BLUENEGATIVE AS ABOVE,BUTWITHOUTTOUCHPANEL
320x240DOTS,WHITE LED ILLUMINATION, POSITIVEMODE,FSTN
ASABOVEFSTN,BUTWITHOUTTOUCHPANEL

OPTIONS/ACCESSORIES

SUPPLY +9..35V=INSTEAD OF +5V=
RS-422 INTERFACE INSTEADOFRS-232
OPTOCOUPLERONBOARDFOR8INPUTSANDOUTPUTS
ALUMINUMMOUNTINGBEZEL,ANODIZEDMATTBLACK
ALUMINUMMOUNTINGBEZEL,ANODIZEDBLUE
CABLE (1.5m) FORCONNECTING TO 9-PINSUB-D (RS-232 FEMALE)
FLOPPY DISKFORMACROPROGRAMMING (PCWIN95/98/2K)

EA KIT320-8CTP EA KIT320-8C EA KIT320-8LWTP EA KIT320-8LW

ELECTRONIC ASSEMBLY

GENERAL

The EA KIT320 is a fully assembled control and operating unit with a variety of integrated functions. The display has very compact dimensions and offers excellent super-twist contrast, which means the unit can be put into operation immediately. It is controlled via the standard RS-232 or RS-422 interface. In addition to complete graphics routines for display output, the operating unit also contains a wide variety of fonts.
Graphics commands similar to high-level language are used for programming. There is no longer any need for the time-consuming programming of character sets and graphics routines. The ease of use offered by macros and input via touch panel make it a real power display.

HARDWARE

The operating unit is designed to work with an operating voltage of +5 V . A supply voltage of $9 . .35 \mathrm{~V}$ is also possible. Serial asynchronous data transfer is carried out in RS-232 or RS-422 format. The transmission format is set permanently to 8 data bits, 1 stop bit, and no parity. Rates between 2,400 baud and 115,200 baud can be selected by means of DIP switches. RTS and CTS handshake lines are available.

Data format: \quad startbit $/ \mathrm{D} 0 \times \mathrm{D} 1 \times \mathrm{D} 2 \times \mathrm{D} 3 \times \mathrm{D} 4 \times \mathrm{D} 5 \times \mathrm{D} 6 \times \mathrm{D} 7 /$ Stopbit

TOUCH PANEL

The EA KIT320-8CTP and -8LWTP versions are equipped with an integrated touch panel. You can make entries and menu or bar graph settings by touching the display. The labeling of the "keys" is flexible and can also be changed during runtime (different languages, icons). The drawing of the individual „keys" and the labeling is handled by the integrated software.

SOFTWARE

The operating unit is programmed by means of commands, such as Draw a rectangle from $(0,0)$ to $(64,15)$. No additional software or drivers are required. Strings can be placed with pixel accuracy. Flashing attributes can be assigned as often as you like - for graphics as well. Text and graphics can be combined at any time. Up to 16 different character sets can be used. Each one can be zoomed from 2 to 8 times. With the largest character set, the words and numbers displayed will fill the screen.

ACCESSORIES

Floppy disk for macro creation
A floppy disk (EA DISK320) is required for macro programming*). This converts the commands entered in a text file into a code that can be read by the operating unit, and programs them into the FLASH PROM.
Cable for PC
To enable simple connection to PCs (specifically for macro programming), we provide an optional 1.5 m cable and a 9 -pin SUB-D female connector (EA KV24-9B). Simply insert it into COM 1 or COM 2 and get started. Note: The cable is not suitable for the RS-422 version EA OPT-RS4224.

ELECTBONC ASSEMBLY

SUPPLY VOLTAGE

In the standard model, the supply voltage of +5 V is fed in via the screw-type terminal J1. In the case of the version for 9 V to 35 V (EA OPT-9/35V), the power is supplied via J2.
Important: It is imperative that the polarity is correct. Even very brief polarity reversal can damage the entire operating unit immediately and irreparably.

View from rear side

BAUD RATES

The baud rate can be set by means of the three DIP switches on the left. When the equipment is delivered, the setting is 9,600 baud (DIP 3 ON). Please note that the internal data buffer is only 128 bytes. The RTS handshake line must therefore be queried (+10V level: data can be accepted; -10 V level: display is busy). The data format is set permanently to 8 data bits, 1 stop bit, no parity.

RS-232 Connector J3			
Pin	Symbo	In/Out	Function
1	VDD	-	+ 5V Supply
2	DCD	-	Connected to DTR
3	DSR	-	Connected to DTR
4	TxD	Out	Transmit Data
5	CTS	In	Clear To Send
6	RxD	In	Receive Data
7	RTS	Out	Request To Send
8	DTR	-	see Pin 2, Pin 3
9	-	-	NC
10	GND	-	OV Ground

RS-232/RS-422

The operating unit is shipped with an RS232 interface as standard. The pin assignment of connector J 3 is then as shown in the table on the left. J3 has a grid of 2.54 mm . If the operating unit is ordered together with the EA OPT-RS4224 option, special RS-422 drivers are fitted. The pin assignment in the table on the right then applies.

Incidentally, the same serial data with 5 V levels and TTL logic is available at the J5 eyelet strip. These levels are suitable for direct connection to a $\mu \mathrm{C}$. If these signals are used, 4 solder straps LB1, LB2, LB 5 und LB 6 has to be opened!

RS-422 Connector J3

SS-422 Connector J3		
Pin	Symbol	Function
1	VDD	+ 5V Supply
2	Data In-	Receive Data
3	Data In+	Receive Data
4	Data Out-	Transmit Data
5	Data Out+	Transmit Data
6	HS In-	Handshake
7	HS In+	Handshake
8	HS Out-	Handshake
9	HS Out+	Handshake
10	GND	OV Ground

Extension J5			
Pin	Symbol	In/Out	Function
1	VU	-	$9 . .35 V$ Supply
2	VDD	-	+5 S Supply
3	GND	-	OV, Ground
4	TxD5	Out	Transmit Data
5	RxD5	In	Receive Data
6	RTS5	Out	Request To Send
7	CTS5	In	Clear To Send
8	RESET	In	L: Reset
9	SCL	Out	L2C Bus, Clock
10	SDA	In/Out	IC Bus, Data

EA KIT320-8

ELECTRONIC ASSEMBLY

INPUTS AND OUTPUTS

All EA KIT320 operating units are supplied with 8 digital inputs and 8 outputs (5V CMOS level, non-isolated). 8 outputs
Each line can be controlled by means of the „ESC Y W" command. The maximum current per line is 6 mA . It is therefore possible to connect an LED (low current) directly to an output. Higher currents can be amplified by means of external transistors.
8 inputs
The inputs can be queried and evaluated („ESC Y R") directly via the serial interface. It is also possible to call a bit/port macro automatically in the event of changes at the inputs. Automatic port querying can be

In- and Output J120					
Pin	Symbol	Function	Pin	Symbol	Function
1	VDD	+5V Supply	2	GND	0V, Ground
3	OUT1 / MO8	Port Output 1 Matrix Output 8	4	IN1 / M18	Port Input 1 Matrix Input 8
5	OUT2 / MO7	Port Output 2 Matrix Output 7	6	IN2 / M17	Port Input 2 Matrix Input 7
7	OUT3 / MO6	Port Output 3 Matrix Output 6	8	IN3 / MI6	Port Input 3 Matrix Input 6
9	OUT4 / MO5	Port Output 4 Matrix Output 5	10	IN4 / M15	Port Input 4 Matrix Input 5
11	OUT5 / MO4	Port Output 5 Matrix Output 4	12	IN5 / M14	Port Input 5 Matrix Input 4
13	OUT6 / MO3	Port Output 6 Matrix Output 3	14	IN6 / MI3	Port Input 6 Matrix Input 3
15	OUT7 / MO2	Port Output 7 Matrix Output 2	16	IN7 / M12	Port Input 7 Matrix Input 2
17	OUT8 / MO1	Port Output 8 Matrix Output 1	18	IN8 / M11	Port Input 8 Matrix Input 1
19	GND	0V, Ground	20	VDD	+5V Supply

Port macros: Up to 256 port macros can be addressed by means of the binary combination of 8 inputs.
Bit macros each only affect one input. Bit macro $1 . .8$ is called at one of inputs
$1 . . .8$ in the event of a change to HIGH level. Bit macros $9 . .16$ are called in the event of a change to LOW level.
At each change of the input port, the bit macros are executed first, followed by the port macro. If there is no macro defined, the new port status is sent via RS232/RS422. Each of the macros can change the contents of the screen or switch outputs. This allows a wide range of control tasks to be carried out. To create the macros, you need a PC and the floppy disk EA DISK320.
Note: The logic circuitry is designed for slow operations; in other words, more than 3 changes per second cannot be easily executed. If an input is open, this is evaluated as high (internal 100 kOhm pullup).

INPUTS AND OUTPUTS VIA OPTOCOUPLERS (EA OPT-OPTO16)

The inputs and outputs can be equipped optionally with optocouplers (EA OPT-OPTO16). The inputs and outputs are then isolated from the rest of the electronic components as well as each other. The connection is made via 16 different screw-type terminals.
Voltages of $5 . .35 \mathrm{~V}$ can be applied directly at all 8 inputs. Voltages of over 4 V are identified as high (H) level; voltages of under 2V are identified as low (L) level. Voltages between 2 and 4 V are undefined. The collector and emitter of a transistor are each implemented as outputs on the screw-on terminals. Each output can switch a maximum of 10 mA .
Note: The negative pole of each screw-on terminal can be interconnected by closing solder straps LBI1..8 or LBO1..8. In addition, these solder straps can be connected to system GND (solder 0Ω bridge RGND).
Note: The optocouplers invert the input logic (all inputs open: port macro $n^{\circ} 255$). It is advisable here (in the power-on macro, for example) to use the „ESC Y I 1" command to evaluate the inputs inversely (i.e. all inputs open: port macro $\mathrm{n}^{\circ} 0$).

EA KIT320-8

ELECTBONC ASSEMBLY

EXTERNAL MATRIX KEYBOARD

A matrix keyboard (anything from individual keys to an 8×8 matrix keyboard) can be connected at the plug-in connection J120. The number of inputs and outputs of the ports ($\mathrm{n} 1, \mathrm{n} 2=1 . .8$) used is defined and the key debouncing is specified (n3=0..7 in 50ms increments) by means of the 'ESC Y M n1 n2 n3' command. Please note when an external keyboard is connected that the digital inputs are reduced by the number n1 and the outputs are reduced by the number n2.
Each key is generally switched between an output and an input. Each input has a $100 \mathrm{k} \Omega$ (approx.) pullup. In order to identify double keystrokes, the outputs must be decoupled from each other. This is best done with Schottky diodes (e.g. BAT 43).

Transmitting the keystrokes

At each keystroke (key number 1..64), the associated matrix macro is executed or, if no macro is defined, the key number is transmitted with code letters. The release of the key is not transmitted. If the release of the key is to be transmitted as well, this can be done by defining matrix macro no. 0 .

Note If the CTS handshake line does not permit transmission, up to 8 keystrokes are stored in the key buffer. When the buffer is full, older keystrokes may be lost.

Determining the key number:
Key no. = (output no. - 1) * no. of inputs + no. of outputs
(output $=$ MOx, input $=$ MIx).

Example: Connection of 4 keys in 3 variations

- Variant 1: The 4 keys are defined as a 2×2 matrix by means of the 'ESC Y M 22 ..' command. The keys are connected to 2 inputs (MI1, MI2) and 2 outputs (MO1, MO2). The outputs are decoupled from each other by means of diodes so that double keystrokes can be identified. There are 6 inputs and 6 outputs available as port connections.
- Variant 2: The 4 keys are defined as a 1×4 matrix by means of the 'ESC Y M 14 ..' command. The keys are connected to 4 outputs (MO1, MO2) and read in via input MI1. There are 7 inputs and 4 outputs available as port connections.
- Variant 3: If only one output is used (4×1 matrix), the keys can also be connected to ground and read in directly at the inputs (= 4×0 matrix). The 4 keys are defined at the 4 inputs (MI1..MI4) by means of the 'ESC Y M 40 ..' command. There are 4 inputs and 8 outputs available as port connections.

Type 1: 2x2 Matrix

Type 2: 1x4 Matrix

Type 3: 4x0 Matrix

EA KIT320-8

CONNECTION FOR DOT-MATRIX DISPLAY

You can connect a single external dot-matrix module (with HD44780 or compatible) with 1×8 up to 4×20 or 2×40 characters at eyelets J6 and J7. This dot-matrix display can be addressed very conveniently by means of 'ESC T xx' terminal commands. Alternatively, 'ESC L xx' commands are available for controlling the HD44780 directly. A potentiometer for contrast adjustment is already fitted. A suitable series resistor $\mathrm{R}_{\text {LED }}$ can be fitted for LED backlighting.

MACRO PROGRAMMING

Single or multiple command sequences can be grouped together in macros and stored in the data flash. You can then start them by using the Run macro commands. There are different types of macro:

Dotmatrix Connector J6 + J7			
Pin	Symbol	Pegel	Description
1	VSS	L	0V, Ground
2	VDD	H	+5V Supply
3	VEE	-	Display voltage 0V-5V
4	RS	H/L	Register Select
5	R/W	H/L	H: Read / L: Write
6	E	H	Enable
7	D0	H/L	Data 0 (LSB)
8	D1	H/L	Data 1
9	D2	H/L	Data 2
10	D3	H/L	Data 3
11	D4	H/L	Data 4
12	D5	H/L	Data 5
13	D6	H/L	Data 6
14	D7	H/L	Data 7 (MSB)
15	A	-	Anode (RLED)
16	K	L	Kathode (=VSS)

Normal macros (0..255)
These are started by means of an 'ESC MN xx' command via the serial interface or from another macro. A series of macros occurring one after the other can be called cyclically (movie, hourglass, multi-page help text). These automatic macros continue to be processed until a command is received via RS-232 or another macro is activated (e.g. touch, port or matrix macro).
Touch macro (1..255)
Started when you touch/release a touch field (only in versions with a touch panel - TP) or issue an 'ESC MT xx' command.
Menu macro (1..255)
Started when you choose a menu item or issue an 'ESC MM xx' command.
Bit macro (1..8) or (9..16)
Started when a voltage is applied/changed at individual inputs IN $1 . .8$ (bitwise) or by means of an 'ESC MB xx' command. Bit macros $1 . .8$ respond to a rising edge, whereas bit macros $9 . .16$ respond to a falling edge of inputs 1..8.
Port macro (0..255)
Started when a voltage is applied/changed at the 8 inputs IN $1 . .8$ (binary combined) or by means of an 'ESC MP xx' command.
Matrix macro (0..64)
Matrix macro 1..64: Started when you press a key or issue an 'ESC MX xx' command. Matrix macro 0 : Started on release when a key is no longer depressed or by means of a command. The matrix keyboard is connected at the inputs and outputs; a single 8×8 matrix keyboard can be connected at most.
Power-on macro
Started after power-on. You can switch off the cursor and define an opening screen, for example. Reset macro
Started after an external reset or after a voltage drop under 4.7V (VDD-VSS).
Watchdog macro
Started after a fault/error (e.g. failure).
Important: If a continuous loop is programmed in the power-on, reset or watchdog macro, the display can no longer be addressed. In this case, the only thing you can do is: DIP switch 5 to ON, power-off, power-on and then DIP 5 to OFF. The macros then have to be read in again.

ELECTBONC ASSEMBLY

256 IMAGES STORED INTHE INTERNAL DATA FLASH

To reduce the transmission times of the serial interface or to save storage space in the processor system, up to 256 images can be stored in the internal data flash. They can be called using the „ESC U I" command or from within a macro. All images in the Windows BMP format (monochrome images only) can be used. They can be created and edited using widely available software such as Windows Paint or Photoshop (only black and white $=1$ bit).

CREATING INDIVIDUAL MACROS

To create your own macros, you need the following:

- The EA DISK320*) floppy disk, which contains a compiler, examples and fonts
- A PC with a COM1 or COM2 serial interface and approximately 500KB of hard disk space
- A text editor such as WordPad or Textpad

To define a sequence of commands as a macro, all the commands are written to a file on the PC (e.g. DEMO.KMC). You specify which character sets are to be integrated and which command sequences are to be in which macros.
Once the macros are defined, you start the program C:>KITCOMP DEMO.KMC. This creates a data flash file called DEMO.DF, which is then automatically stored in the data flash with the baud rate entered. This only takes a few seconds, and you can then use your user-defined macros immediately. You will find a detailed description of how to program macros, together with examples, in the files DOKU.DOC (for WORD) and DOKU.TXT (DOS) on the EA DISK320*) floppy disk.

WRITEPROTECTIONFORMACROPROGRAMMING

PCB Rev.C and newer: by setting DIP switch 6 (write enable) to OFF, you can prevent the programmed macros, images and fonts from being overwritten inadvertently. After successful programming, this DIP switch 6 should be set to OFF.
(Caution: On older PCB boards Rev.A and Rev.B (before 2002) DIP switch 6 had reverse meaning: ON=write protect; OFF=programming possible)

ELECTRONIC ASSEMBLY

internal Font 1： 4×6 monospaced

$\mathrm{Upper}_{+ \text {Lower }}$	$\begin{aligned} & \$ 0 \\ & \hline(0) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \$ 1 \\ \text { (1) } \end{array}$	$\begin{array}{\|l\|} \$ 2 \\ (2) \\ \hline \end{array}$	$\begin{array}{\|c} \hline \$ 3 \\ (3) \\ (3) \end{array}$	$\begin{aligned} & \$ 4 \\ & (4) \end{aligned}$		$\begin{aligned} & \$ 8 \\ & \hline 85 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \$ 6 \\ (6) \end{array}$	$\begin{array}{\|l\|} \hline \$ 7 \\ (7) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \$ 8 \\ (8) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \$ 9 \\ (9) \\ \hline \end{array}$	$\begin{aligned} & \$ A \\ & (10) \end{aligned}$	$\begin{aligned} & \$ 8 \\ & (11) \end{aligned}$	$\begin{aligned} & \text { Be } \\ & \text { 13) } \\ & (12) \\ & \hline \end{aligned}$	\$D	（1）	，	\＄F
\＄20（dez：32）		！	＂	＊	5		：	＊	＇	\therefore	；	＊	＋		－			＇
\＄30（dez：48）	\square	1	z	ョ	4		5	5	7	日	9	：	；	＜	＝	＞		？
\＄40（dez：64）		н	E	c	－		E	F	［	H	I	\cdots	к	L	H	n	\square	0
550 （dez：80）	F	\square	к	s	T		u	＂	н	＂	Y	z	［		1			－
\＄60（dez：96）	\cdots	－	b	＝	d		＊	ғ	9	h	i	；	k	1	н			－
\＄70（dez：112）	－	\square	r	s	t		－	$*$	－	＊	y	x	\checkmark		\％			＊
\＄80（dez：128）		シ			ä												й	
\＄90（dez：144）					̈̈						$*$	i					\％	

internal Font 3：6x8 monospaced

Upper Lower	$\begin{aligned} & \$ 0 \\ & (0) \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 1 \\ & (1) \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \$ 2 \\ & (2) \end{aligned}\right.$	$\begin{aligned} & \begin{array}{l} \$ 3 \\ (3) \\ (3) \end{array} \\ & \hline \end{aligned}$		$\begin{aligned} & \$ 4 \\ & \hline 44 \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 5 \\ & (5) \\ & \hline \end{aligned}$	(6)	$\begin{aligned} & 36 \\ & 68 \end{aligned}$	$\begin{aligned} & \$ 7 \\ & (7) \end{aligned}$	$\begin{aligned} & \$ 8 \\ & (8) \\ & \hline 8 \end{aligned}$	$\begin{array}{\|l} \hline \$ 9 \\ (9) \\ \hline \end{array}$)(11	$\begin{array}{\|c\|} \hline \$ \mathrm{~B} \\ (11) \end{array}$	$\begin{aligned} & \$ \mathrm{C} \\ & (12) \end{aligned}$	$\begin{aligned} & \$ \mathrm{D} \\ & (13) \end{aligned}$	$\frac{\$(14)}{\$ E}$	${ }_{\text {d }}^{\text {（15 }}$
\＄20（dez：32）		！	＂	\＃		F	\％	\％	\＆	，	－	）		＊	＋	，	－	．	\％
\＄30（dez：48）	\square	1	2	3	4	4	5	6	6	7	8	9		：	；	＜	$=$	$>$	$?$
\＄40（dez：64）		A	E	C	D	\square	E	F	F	5	H	I		J	K	L	M	H	0
\＄50（dez：80）	F	Q	R	S		T	U	v	－	W	χ	Y		z	［		］	\cdots	－
\＄60（dez：96）	＂	\cdots	b	0		d	e	f	＋	9	h	i		．	k	1	m	n	\square
\＄70（dez：112）	P	9	r	三		t	－	v		w	\times	：		工	＜		）		－
\＄80（dez：128）	9	is	E	$\overline{3}$		B	a	a	\％	c	E	E		E	ï	1	i	A	\dot{H}
\＄90（dez：144）	E	\pm	f	S		－	－	i		二	ij	－		i	中	\pm	¥	B	f
\＄A0（dez：160）	a	i	－	－		п	N	$\underline{1}$		9	e	「		\checkmark	4	4_{4}	i	＊	＊
\＄B0（dez：176）	官	\％	\％	1		－	；	－		π	7	引		11	ง	」	ע	\pm	7
\＄C0（dez：192）	L	\pm	T	F		－	＋	F		If	L	ז		\＃	т	1 f	$=$	\＃	\pm
\＄D0（dez：208）	\Perp	〒	π	u		E	F			H	キ	」		r	\square	－	I	I	－
\＄EO（dez：224）	α	®	Γ	π		Σ	\square	μ		T	호	－		A	s	©	W	E	Π
\＄FO（dez：240）	三	\pm	2	\leq			」				\bigcirc				，	\square	z	－	

internal Font 5：7x12 monospaced

 $\$ 20$（dez：32）

$\$ 40$（dez：64）		H	B	C	D	E	F	G	H	I	J	K	L														
H	H	O													$\mathbf{\$ 5 0}$（dez： 80 ）	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{U}	\mathbf{H}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	$\mathbf{[}$
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---															
	$\mathbf{1}$	＾	-											$\$ 60$（dez：96）	＇	a	\mathbf{b}	C	d	e	f	\mathbf{g}	\mathbf{h}	\mathbf{i}	\mathbf{j}	\mathbf{k}	\mathbf{I}
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---														
mil	n	\mathbf{o}													$\$ 70$（dez：112）	\mathbf{P}	\mathbf{q}	\mathbf{r}	\mathbf{s}	\mathbf{t}	\mathbf{u}	\mathbf{U}	\mathbf{H}	\mathbf{x}	\mathbf{y}	\mathbf{Z}	\mathbf{f}
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---															
	\mathbf{y}		0																								

internal Font 2：5x6 monospaced

Upper Lower	$\begin{array}{\|l\|} \hline \$ 0 \\ (0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \$ 1 \\ (1) \end{array}$	$\begin{aligned} & \$ 2 \\ & (2) \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 3 \\ & (3) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \$ 4 \\ (4) \\ \hline \end{array}$			$\begin{aligned} & 56 \\ & \hline 66 \end{aligned}$	$\begin{aligned} & \$ 7 \\ & (7) \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 88 \\ & (8) \end{aligned}$	$\begin{array}{l\|l\|l\|} \hline 8 \\ 3 & & \$ 9 \\ \text { (9) } \end{array}$		$\begin{aligned} & \${ }^{\$ 1} \\ & \text { (10) } \\ & \hline \end{aligned}$	$\left(\begin{array}{l} \$ 8 \\ (11) \end{array}\right.$	$\left(\begin{array}{l} \$ \mathrm{C} \\ (12) \end{array}\right.$	$\left(\begin{array}{l} \$ D \\ (13) \end{array}\right.$	(14)	
\＄20（dez：32）		！	＂	＊	\＃	x		a	＊	：	1		＊	＋	，	－		\checkmark
\＄30（dez：48）	0	1	z	3	4	5		E	7	\％	9		：	；	＜	$=$	＞	？
\＄40（dez：64）		¢	E	c	－	E		F	¢	H	I		－	K	L	H	H	0
\＄50（dez：80）	F	0	F：	s	T	U		U	H	\％	4		I	ᄃ		J	＊	－
\＄60（dez：96）	－	＝	－	c	d	－		ғ	9	${ }^{\text {b }}$	i		，	k	1	$\stackrel{1}{4}$	n	0
\＄70（dez：112）	F	\square	r	：	t	U		＊	\pm	x	\because		I	t		\％		a
\＄80（dez：128）	5	i	\because	$\stackrel{1}{4}$	צ	\cdots		\pm	$=$	＊	－		－	ï	$\stackrel{\text { i }}{ }$	i	н̈	\％
\＄90（dez：144）	E	＝	¢	s	－			－	－	\because			ij	＊	f	7	F	

internal Font 4：8x8 monospaced

Upper	$\begin{aligned} & \$ 0 \\ & \hline(0) \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 1 \\ & \text { (1) } \\ & \hline \end{aligned}$	$\begin{aligned} & \$ 2 \\ & (2) \\ & \hline \end{aligned}$	(3)	$\begin{array}{ll} 53 \\ 3) \\ 3) \\ \hline \end{array}$	$\begin{aligned} & \$ 4 \\ & (4) \end{aligned}$	$\begin{aligned} & \$ 5 \\ & \hline 85 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \$ 6 \\ (6) \\ \hline \end{array}$		$\begin{aligned} & \$ 7 \\ & (7) \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{c} \$ 8 \\ (8) \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \$ 9 \\ & (9) \\ & \hline \end{aligned}$			11) (12	$\underset{\substack{\$ 2}}{\substack{2}}$	$\begin{aligned} & \$ \mathrm{D} \\ & \hline 13) \\ & \hline \end{aligned}$	$\frac{\$ E}{(14)}$	（\＄F
\＄20（dez：32）		！	＇	\＃	＋ 5	5	$\%$	边		＇	c	）	\％	＋	＋	，	－	．	7
\＄30（dez：48）	1	1	2	3	34	4	5	6		7	8	9	：	；	；	＜	$=$	\rangle	？
\＄40（dez：64）		A	B	C	D	D	E	F		G	H	I	J	K	K	L	M	H	0
\＄50（dez： 80 ）	P	a	R	5	5 T	T	U	U		ผ	X	Y	z		［		］	＾	－
\＄60（dez：96）	－	a	b	c	d	d	e	f		9	h	i	j	k	c	1	m	n	0
\＄70（dez：112）	P	\square	Γ	5	5	t	u	U		w	\times	y	z		c		3		4
\＄80（dez：128）	c	i	E		今	a	亏	$\dot{3}$		c	E	－	¿	i	i	I	I	ä	$\dot{\boldsymbol{A}}$
\＄90（dez：144）	E	¥	fe	万	5	a	－	－		ù	i	\％	is	¢	\pm	\pm	¥	日	f
\＄A0（dez：160）	5	i	¢	ú	ú	n	－	ㄹ		－	i	r	7	$1 / 2$	4	$1 / 4$	i	\＆	\＄
\＄B0（dez：176）	：	\because	梁	I	17	1	7	11		\＃	7	4	II	フ	1	\pm	\pm	\pm	7
\＄CO（dez：192）	L	\pm	T		－		＋	F		IF	4	「	H	T	T	H	$=$	\＃	－
\＄D0（dez：208）	\Perp	F	π		4	E	F	π		\＃	キ	」	r	－	－	－	－	－	\square
\＄EO（dez：224）	a	－	Γ	IT	π	Σ	0	$\boldsymbol{\mu}$		T	\％	－	n	6	5	g	中	E	n
\＄FO（dez：240）	三	\pm	2		$\underline{4}$	［	J	\div		z	－	＊			r	n	2	3	

internal Font 6：8x16 monospaced

\＄20（dez：32）		！	II	\＃		5	7	2	1	（	）		H	＋	，	－	－	7
\＄30（dez：48）	0	1	2	5	3	4	5	6	7	8	9	I	，	，	＜	$=$	\bigcirc	7
\＄40（dez：64）		A	B	［		D	E	F	［	H	I	I	J	K	L	H	H	0
\＄50（dez：80）	P	0	R	5		T	U	V	W	Y	H	2	Z	［		］	A	
\＄60（dez：96）	，	a	b	［		d	E	f	9	h	I		j	k	1	䛔	Π	0
\＄70（dezz 112）	p	4	Γ	5		t	U	Y	以	X	ப	2	7	\｛		\}		A
\＄80（dezz 128）	C	U	é	a		a	à	a	¢	E	Ė	E	E	i＇	1	1	Ä	号
\＄90（dez：144）	E	7	F	0		Oi	0	（t	Ù	İ	0		U	¢	f	Y	θ	f
\＄A0（dez：160）	á	1	Ó	Í		ก̃	N	a	$\underline{0}$	4	r		7	$1 / 2$	4	I	＊	\％
\＄B0（dez： 176 ）						\dagger	1	－1	11	7	赴			1	」	II	\pm	1
\＄CO（dez：192）	L	1	T			－	十	F	I		－		$\underline{1}$	7	$\underline{1}$	＝	\＃	1
\＄D0（dez：208）	I	T	II	I		E	F	II	\＃	中	」		Γ		\square			\square
\＄E0（dez：224）	0	θ	Γ	π		Σ	0	川	T	頁	E	9	Ω	¢	¢	中	E	\square
FFO（dez：240）	E	\pm	\geq					\div	F	－	－			W	${ }^{\circ}$	2	3	

EA KIT320－8

ELECTRONIC ASSEMBLY

INTEGRATED AND EXTERNAL FONTS

There are 6 monospaced character sets integrated as standard that can be used in terminal and graphics mode．Each character set can be increased in height from 1 to 8 times in graphics output． Independently of this，the width can also be increased two to eight times．
Each character can be positioned with pixel accuracy．Text and graphics can be combined as required．Several different font sizes can also be displayed together．
Each text can be output left justified，right justified or centered．Rotation in 90° steps is also possible （for vertical installation of the display，for example）．
Macro programming permits a further 10 fonts to be integrated．Proportional character sets are also possible（in graphics mode only）；these look better and take up less space on the screen．All conceivable fonts up to 255×240 pixels in size can be created using a text editor and programmed in using the kit compiler．
e．g．external Font 10：GENEVA15．FXT proportional
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \text {＋Lower } & \$ 0 & \$ 1 & \$ 2 & \$ 3 & \$ 4 & \$ 5 & \$ 6 & \$ 7 & \$ 8 & \$ 9 & \$ A & \$ B & \$ C & \$ \mathrm{D} & \$ \mathrm{E} & \$ \mathrm{~F} \\ \text { Upper } & (0)\end{array}\right)$
e．g．external Font 7：CHICAGO．FXT proportional

$\underset{\text { Upper }}{+}$									（6）${ }^{6}$（87）										
S20（dez 32）		！			\＃	\＄	\％	8	8		1	J							7
S30（dez 48）	0	1		2	34	4	5	56	7	78	8	9	．	，		＜	＝	$>$	？
540 （dez		H		－	D	D	E	E F	G	G	H	1	J	J K	－	L M	1	N	0
\＄50（dez 80）	P	U		R	\＄ T	T	U	1 l	－Ш	Ш H	H	Y	2	Z［	－		1		
S60（dez 96）		a		b	d	d	e	1	f 9	9 h	h	i	J	j k		n	m	n	0
\＄70 cde	p	प		r	s t	t	U	\pm		w	H	y	z	z					Δ
S800（dez	Ç	ü		é	－	a	a	a	ç	Ç	e	ë	è	è ï		ì i	i 1	A	H
S90（dez		ヵ		佰	ó	0	0	0	0 ù	Ù	$\underline{9}$	$\ddot{0}$	ij	i ${ }^{\text {c }}$	£	f	屰 1	1 B	
SAOO dee	a	i		0	U	ก	N	－	$\underline{0}$	$\underline{0}$	¿	r	\neg	$\checkmark 1 / 2$	$1 / 4$	$1 / 4$	i		
SB0（dezz： 17	a	5		8	${ }_{81}$	巴	IE	－${ }^{\text {H }}$	A	ค̆	0					पा（6）	6	（1）	
${ }^{\text {SOO（dez }}$		！		N	17	π	7	1	11	1 T	T	\square		1		J ל	7	0	］
SDO（dezz 208）	0	1		9	\pm	1		14	U 1	ת	1	1	10	－7		1	§		
${ }^{\text {SEOO（dez 224）}}$		B		1	$\pi \Sigma$		O	σ	μ	\boldsymbol{T}	\＄	－	\bigcirc	Ω		g	¢		Π
\＄FO（dez：240）		\pm		\geq	$\underline{1}$				－	＊				＋					

TIP：FONT EFFECTS

With large fonts，you can use the command＇ESC ZM＇mode （link，pattern）to produce interesting effects through overlaying（writing and offsetting a word several times）．

Original font $8 x 16$ with ZOOM 3 at position 0,0 without pattern

Overlaying（EXOR）of the ＂outline font＂at pos．2，2．results in an＂outline font with fill＂

＂Outline font＂produced by overlaying（EXOR）at pos．1，1

Overlaying（OR）with 50% gray pattern of the＂outline font＂at pos． 0，0．results in a＂font with pattern fill＂

FONT EXAMPLES

This hardcopy shows 6 internal and 8 external fonts．

ALL FUNCTIONS AT A GLANCE

ELECTRONIC ASSEMBLY

DEFAULT SETTINGS

After power on or a reset, some functions are set to a particular value (see last column entitled 'After reset' in the table). Please note that all the settings can be overwritten by creating a power-on macro.

*) Only for Version 1.1 and higher

*) Only for Version 1.1 and higher

TOUCH PANEL ADJUSTMENT

The EA KIT320-8xxTP has an analog, resistive touch panel. This touch panel is perfectly adjusted and immediately ready for operation on delivery. As a result of aging and wear, it may become necessary to readjust the touch panel.
Adjustment procedure:

1. Touch the touch panel at power-on and keep it depressed. After the message,„touch adjustment?" appears, release the touch panel. Alternative to that issue the 'ESC @' command.
2. Touch the touch panel (again) within a second for at least one second.
3. Follow the instructions for adjustment (press 2 the points upper left and lower right).

BLECTRONIC ASSEMBLY

EA KIT320: Command table for terminal mode								After reset
Command	Codes						Remarks	
Commands for terminal mode								
FF: Form feed (dec:12)	$\stackrel{ }{\text { r }}$						The contents of the terminal area are deleted and the cursor is placed at pos. (1,1	
CR: carriage return (d:13)	M						Cursor to the beginning of the line on the extreme left	
LF: line feed (dec:10)	N						Cursor is set to the next line	
Position cursor	ESC	T	P n 1	n2			n1=column; n2=line; origin upper-left corner (1,1)	1,1
Cursor on/off			C n 1				$\mathrm{n} 1=0$: Cursor is invisible; $\mathrm{n} 1=1$: Cursor flashes;	1
Terminal mode			M n 1				$\mathrm{n} 1=0$: Clear mode; $\mathrm{n} 1=1$: Overwrite mode; $\mathrm{n} 1=2$: Scroll mode	2
Autom. line feed			Z n 1				The automatic line feed is switched on ($\mathrm{n} 1=1$) or off ($\mathrm{n} 1=0$)	1
Terminal invisible Terminal visible			$\begin{aligned} & \mathrm{A} \\ & \mathrm{E} \end{aligned}$				Terminal display not visible; outputs continue to be executed Terminal display is visible again;	On
Redirect terminal outputs								
Suppress terminal	ESC	T	N				ASCII characters,FF,CR,LF are suppressed. Commands (ESC T) are executed	
Terminal output internal			1				All terminal outputs/commands affect the internal terminal of the EA KIT320	Intern
Terminal output external			X				All terminal outputs/commands affect the external dot-matrix module	
Settings for the internal terminal								
Set font	ESC	T	F n 1				Set font no. n1 (1..16) for terminal mode (monospaced fonts only)	5
Add. line spacing			Y n1				n 1 pixels are defined additionally for the current font as the line spacing	
Define window			W $\mathrm{xx1}$	yy1	xx2 yy2	w	The terminal output is executed only within the window from xx1,yy1 (=upper-left corner) to $\mathrm{xx2} 2 \mathrm{yy} 2$ (=lower-right corner); $\mathrm{xx}=0 . .319 ; \mathrm{yy}=0 . .239$; $\mathrm{w}=$ angle ($0=0^{\circ} ; 1=9$ $2=180^{\circ} ; 3=270^{\circ}$) of the terminal display	$\begin{aligned} & 0 . .319 \\ & 0 . .239 \end{aligned}$
Settings for the external dot-matrix module (optionally to J6 or J7)								
Initialize dot-matrix module	ESC	T	D n 1	n2			Initialize an external dot-matrix display (HD44780 compatible) - $\mathrm{n} 1=$ number of characters; n2 = number of lines	

Responses of the EA KIT320 via the serial interface						
		num	data			Remarks
Automatic response from the KIT320						
ESC	A	1	code			Response from the analog touch panel when a key/switch is pressed. code = down or up code of the key/switch. Only transmitted if no touch macro is defined with the "down code"!
ESC	N	1	code			After a menu item is selected by touch, the selected menu item code is transmitted. Only transmitted if no touch macro is defined with the no. code!
ESC ESC	P M	1 1	value nr			After the input port is changed, the new 8 -bit value is transmitted. The automatic port scan must be activated. See the 'ESC Y A n1' command. It is only transmitted when there is no port macro defined with the no. value! When a keystroke of the external matrix keyboard is detected, the newly pressed key number nr is transmitted. Only transmitted if no touch macro is defined with the no. nr!
ESC	B	2	nr value			When a bar graph is set by touch, the current value of the bar is transmitted with nr. Transmission of the bar balue must be activated (see the 'ESC A Q r command).
ESC	H	5	Typ. xLO xHI	yLO	yHI	${ }^{*}$) The following is transmitted in the case of a free touch area event: type=0 release; type=1 is touch; type=2 is drag within the free touch area at the x, y coordinates (16-bit values)
Response only when requested by command						
ESC	N	1	nr			After the 'ESC N S' command, the currently selected menu item is transmitted $\mathrm{nr}=0$: no menu item is selected.
ESC	B	2	nr value			After the 'ESC B S n1' command, the current value of the bar is transmitted y nr.
ESC	X	2	code value			After the 'ESC A X' command, the current status of the touch switch is transmitted with code (the return code). value $=0$ or 1
ESC	Y	2	nr value			After the 'ESC Y R' command, the requested input port is transmitted. $\mathrm{nr}=0$: value is an 8 -bit binary value of all 8 inputs. $\mathrm{nr}=1 . .8$: value is 0 or 1 dependir on the status of the input nr
ESC	D	2	LO-byt HI-byt value value			After the 'ESC S D' command, the current analog value (max. 1/2 VDD) from the AIN input. (value $=0 . .1023$ corresponds approximately to $0 . .2 .5 \mathrm{~V}$)
ESC	E	num	data ...			After the 'ESC E R addr num' command, the requested bytes are transmitted from the user EEPROM.
ESC	1	num	data ...			After the 'ESC IR addr num' command, the requested bytes are transmitted from the 12C bus.
Response without ESC and length specification (num)						
B	M	+ 9660 bytes of image data				After the 'ESC H' command, 9662 bytes bytes are transmitted (=320x240 BM image). The first two bytes of the BMP image always begin with ' BM^{\prime}
E	A	String ..			NUL	After the 'ESC S V' command, the version of the KIT firmware is transmitted a a string (end code is the character NUL = \$00). The first two bytes of the stri always begin with 'EA'

TERMINAL MODE

When you switch the unit on, the cursor flashes in the first line, indicating that the display is ready for operation. All the incoming characters are displayed in ASCII format on the terminal (exception: CR,LF,FF,ESC,'\#'). Line breaks are automatic or can be executed by means of the 'LF' character. If the last line is full, the contents of the terminal scroll upward. The 'FF' character (page feed) deletes the contents of the terminal display and positions cursor in the upper-left corner.

The terminal has its own layer for display and is thus completely independent of the graphical output; moreover, the size of the terminal window can be freely defined. If the graphics screen is deleted with 'ESC DL', for example, that does not affect the contents of the terminal window (the terminal level is deleted with 'FF').

The character '\#' is used as an escape character (see below) and thus cannot be displayed directly on the terminal. If the character '\#' is to be output on the terminal, it must be transmitted twice: '\#\#'.

COMMAND TRANSFER/PARAMETERS

The operating unit unit can be programmed by means of various integrated commands. Each command begins with ESCAPE followed by one or two command letters and then parameters.
There are two ways to transmit commands:

1. ASCII mode

- The ESC character corresponds to the character ‘\#’ (hex: \$23, dec: 35).
- The command letters come directly after the '\#’ character.
- The parameters are transmitted as plain text (several ASCII characters) followed by a separating character (such as a comma ',').
- Strings (text) are written directly without quotation marks and concluded with CR (hex: \$0D) or LF (hex: \$0A).

2. Binary mode

- The escape character corresponds to the character ESC (hex: \$1B, dec: 27).
- The command letters are transmitted directly.
- The coordinates xx and yy are transmitted as 16-bit binary values (fiirst the LOW byte and then the HIGH byte).
- All the other parameters are transmitted as 8-bit binary values (1 byte).
- Strings (text) are concluded with CR (hex: \$0D) or LF (hex: \$0A) or NUL (hex: \$00).

No separating characters, such as spaces or commas, may be used in binary mode. The commands require no final byte, such as a carriage return (apart from the string \$00).

ELECTRONC ASSEMBLY

PROGRAMMING EXAMPLE

In the following example you can see how the string „Test" can be output left justified at the coordinates 117,32.

Example	Codes can be output in ASCII mode	
for terminal.exe	\#ZL117, 32,Test	<Return>
for Turbo-Pascal	write(auxx '\#ZL117, 32,Test', chr(13));	
for 'C'	fprintf(stdaux, "\#ZL\%d,\%t,\%ss1(0D", 117, 32, "Test");	
for Q-Basic	OPEN "COM1:9600,N,8,1,BIN" FOR RANDOM AS \#1	
PRINT \#1,"\#ZL117,32,Test"+CHR\$(13)		

Example	Codes can be output in binary mode											
in ASCII	EsC	Z	L	u	NUL	space	NUL	T	e	s	t	NUL
in Hex	\$1B	\$5A	\$4C	\$75	\$00	\$20	\$00	\$54	\$65	\$73	\$74	\$00
in Decimal	27	90	76	117	0	32	0	84	101	115	116	0
for Turbo-Pascal	write(aux, chr(27), 'Z', 'L', chrr(117), chr(0), chrr(32), chr(0), 'Test', chrr(0));											
for ' ${ }^{\text {C }}$	fprint((stdaux, "\|x1BZL\%c\%c\%\%\%c\%sl1x00", 117, 0, 32, 0, "Test");											
for Q-Basic	OPEN "COM1:9600,N,8,1,BIN" FOR RANDOM AS \#1 PRINT \#1,CHR\$(27)+"ZL"+CHR\$(117)+CHR\$(0)+CHR\$(32)+CHR\$(0)+"Test"+CHR\$(0)											

FRAMES AND KEY FORMS

A frame type can be set by using the Draw frame or Draw frame box command or by drawing touch keys. There are 16 internal frame types available; in addition, some frame types can be integrated by means of the kit compiler.

6

PATTERN

A pattern type can be set as a parameter with some commands. In this way, rectangular areas, bar graphs and even text can be filled with different patterns. There are 16 internal fill patterns available; in addition, some fill patterns can be integrated by means of the kit compiler.

EA KIT320-8

DIMENSIONS W/O TOUCH PANEL

DIMENSIONS WITH TOUCH PANEL

FRONTPANEL EA OFP320-8

all dimensions are in mm

all dimensions are in mm

PANEL CUT OUT

all dimensions are in mm

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Display Modules category:
Click to view products by ELECTRONIC ASSEMBLY manufacturer:

Other Similar products are found below :
LCD-WVGA-7IN-1 P6153-PR TDP0700T800480PCAP P6171DPR-DC-RS 99-47-02033A P6171DPR-DC-U 96LEDK-A215FH25NF5 IDK-1121WR-30FHA1E IDK-104R-32SVI1 WF70GTIAGDNT0\# G1619W02BBW01 MIKROMEDIA 4 FOR STM32F4 CAPACITIVE FPI MIKROMEDIA 3 FOR STM32F4 CAPACITIVE FPI PH320240T023-IHC09 11486931148689 PIM537 TN0216ANVNANN-GN00 TN0104ANVAANN-GN00 TN0181ANVNANN-GN00 12121000 MIKROMEDIA FOR DSPIC33 MIKROMEDIA FOR PIC24 MIKROMEDIA FOR PIC32 MIKROMEDIA FOR STELLARIS M3 MIKROMEDIA FOR XMEGA MIKROMEDIA HMI 3.5 RES MIKROMEDIA HMI 5 MIKROMEDIA PLUS FOR FT90X MIKROMEDIA PLUS FOR PIC32MX7 SHIELD MIKROMEDIA PROTO SHIELD MIKROMEDIA 5 FOR TIVA MIKROMEDIA 5 FOR TIVA SHIELD MIKROMEDIA 7 FOR STM32F4 MIKROMEDIA CONNECT SHIELD MIKROMEDIA FOR ARM MIKROMEDIA FOR DSPIC33EP MIKROMEDIA FOR PSOC5LP MIKROMEDIA GAMING SHIELD MIKROMEDIA HMI 4.3 UXB MIKROMEDIA HMI 5 RES MIKROMEDIA HMI 5 UXB MIKROMEDIA HMI 7 MIKROMEDIA HMI BREAKOUT BOARD MIKROMEDIA PLUS FOR PIC32MX7 MIKROMEDIA PLUS FOR STM32

RVT28AEFNWN00 RVT28UEFNWC01 RVT28UEFNWC03 RVT28UEFNWC05

