EPCOS

PTC thermistors for overcurrent protection

Leaded disks, coated, 230 V

Series/Type:
B598**
Date: February 2012

© EPCOS AG 2012. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Overcurrent protection

Applications

- Overcurrent protection
- Short circuit protection

Features

- Lead-free terminals
- Marking: Type, manufacturer's logo, reference temperature in ${ }^{\circ} \mathrm{C}$ and date code YYWW (except B59880C0130* and B59890C*)
- Short response times
- UL approval for $\mathrm{T}_{\text {ref }}=130^{\circ} \mathrm{C}$ to UL 1434 with
$\mathrm{V}_{\text {max }}=220 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R}}=220 \mathrm{~V}$
(file number E69802)
- UL approval for $\mathrm{T}_{\text {ref }}=120^{\circ} \mathrm{C}$ to UL 1434 with
$\mathrm{V}_{\text {max }}=230 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R}}=220 \mathrm{~V}$
(file number E69802)
- UL approval for $\mathrm{T}_{\text {ref }}=80^{\circ} \mathrm{C}$ to UL 1434 with
$\mathrm{V}_{\text {max }}=165 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R}}=145 \mathrm{~V}$
(file number E69802)
- VDE approval for selected types
(license number 104843 E)
RoHS-compatible

Options

- Leadless disks and leaded disks without coating available on request
- Thermistors with diameter $\mathrm{w} \leq 11.0 \mathrm{~mm}$ are also available on tape (to IEC 60286-2)

Delivery mode

- Cardboard strips (standard)
- Cardboard tape reeled or in Ammo pack on request

Dimensional drawing

TPT0648-4
Dimensions (mm)

Type	$\mathrm{T}_{\text {ref }}$ ${ }^{\circ} \mathrm{C}$	$\mathrm{w}_{\max }$	$\mathrm{h}_{\max }$	$\varnothing \mathrm{d}$
C810	130	22.0	25.5	0.8
C830	80	22.0	25.5	0.6
C830	120	22.0	25.5	0.6
C830	130	17.5	21.0	0.8
C840	80	17.5	21.0	0.6
C840	120	17.5	21.0	0.6
C840	130	13.5	17.0	0.6
C850	80	13.5	17.0	0.6
C850	120	13.5	17.0	0.6
C850	130	11.0	14.5	0.6
C860	80	11.0	14.5	0.6
C860	120	11.0	14.5	0.6
C860	130	9.0	12.5	0.6
C870	80	9.0	12.5	0.6
C870	120	9.0	12.5	0.6
C870	130	6.5	10.0	0.6
C872	120	9.0	12.5	0.6
C873	120	9.0	12.5	0.6
C874	120	9.0	12.5	0.6
C875	120	9.0	12.5	0.6
C880	80	6.5	10.0	0.6
C880	120	6.5	10.0	0.6
C880	130	4.0	7.5	0.6
C883	120	6.5	10.0	0.6
C890	80	4.0	7.5	0.5
C890	120	4.0	7.5	0.5

Overcurrent protection

General technical data

Max. operating voltage	$\left(\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\max }$	265	V DC or V AC
Rated voltage		V_{R}	230	V DC or V AC
Switching cycles	$\left(\mathrm{T}_{\text {ref }}=80^{\circ} \mathrm{C}\right.$ or $\left.120^{\circ} \mathrm{C}\right)$	N	100	
Tolerance of R_{R}	$\Delta \mathrm{R}_{\mathrm{R}}$	± 25	$\%$	
Tolerance of R_{R}	$\left(\mathrm{T}_{\text {ref }}=130^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{R}_{\mathrm{R}}$	± 20	$\%$
Operating temperature range	$(\mathrm{V}=0)$	$\mathrm{T}_{\text {op }}$	$-40 /+125$	${ }^{\circ} \mathrm{C}$
Operating temperature range	$\left(\mathrm{V}=\mathrm{V}_{\text {max }}\right)$	$\mathrm{T}_{\text {op }}$	$0 /+60$	${ }^{\circ} \mathrm{C}$

Electrical specifications and ordering codes

Type	IR mA	IS mA	$I_{\text {Smax }}$ $\left(\mathrm{V}=\mathrm{V}_{\max }\right)$ A	I_{r} (typ.) $\left(\mathrm{V}=\mathrm{V}_{\max }\right)$ mA	$\begin{aligned} & \hline \mathrm{T}_{\text {ref }} \\ & \text { (typ.) } \\ & { }^{\circ} \mathrm{C} \end{aligned}$		$\mathrm{R}_{\text {min }}$ Ω	Appro 7		Ordering code
C810	650	980	7.0	20	130	3.5	2.3	X	-	B59810C0130A070
C830	460	920	7.0	20	120	3.7	2.4	X	-	B59830C0120A070
C830	450	680	4.1	15	130	5	3.3	X	-	B59830C0130A070
C840	330	660	4.1	15	120	6	3.8	X	-	B59840C0120A070
C840	330	500	2.2	13	130	9	5.9	X	-	B59840C0130A070
C830	250	510	7.0	15	80	3.7	2.2	X	-	B59830C0080A070
C850	200	400	2.2	13	120	10	6.4	X	-	B59850C0120A070
C850	200	320	1.5	10	130	13	8.6	X	-	B59850C0130A070
C840	170	350	4.1	10	80	6	3.6	X	X	B59840C0080A070
C860	140	280	1.5	10	120	15	9	X	-	B59860C0120A070
C860	140	230	1.0	9	130	25	16.5	X	-	B59860C0130A070
C850	110	230	2.2	8	80	10	6	X	X	B59850C0080A070
C870	100	200	1.0	9	120	25	15	X	-	B59870C0120A070
C870	100	150	0.4	6	130	50	33	X	X	B59870C0130A070
C860	90	180	1.5	6	80	15	7.8	X	X	B59860C0080A070
C872	80	160	1.0	9	120	35	21	X	-	B59872C0120A070
C873	70	140	1.0	9	120	45	27	X	-	B59873C0120A070
C870	60	130	1.0	5	80	25	13	X	X	B59870C0080A070
C874	60	125	1.0	9	120	55	31	X	-	B59874C0120A070
C875	55	110	1.0	9	120	65	36	X	-	B59875C0120A070
C880	55	110	0.4	6	120	70	39	X	X	B59880C0120A070
C880	55	90	0.2	5	130	160	106	X	X	B59880C0130A070
C883	35	70	0.4	5	120	120	67	X	X	B59883C0120A070
C880	30	70	0.4	4	80	70	36.7	X	X	B59880C0080A070
C890	30	60	0.2	5	120	150	84	X	X	B59890C0120A070
C890	15	40	0.2	3	80	150	78.7	X	X	B59890C0080A070

Overcurrent protection

Reliability data

Test	Standard	Test conditions	$\left\|\Delta \mathrm{R}_{25} / \mathrm{R}_{25}\right\|$
Electrical endurance, cycling	IEC 60738-1	Room temperature, $\mathrm{I}_{\text {Smax }} ; \mathrm{V}_{\text {max }}$ Number of cycles: 100	< 25\%
Electrical endurance, constant	IEC 60738-1	Storage at $\mathrm{V}_{\text {max }} / \mathrm{T}_{\text {op, max }}\left(\mathrm{V}_{\text {max }}\right)$ Test duration: 1000 h	< 25\%
Damp heat	IEC 60738-1	Temperature of air: $40^{\circ} \mathrm{C}$ Relative humidity of air: 93% Duration: 56 days Test according to IEC 60068-2-78	< 10\%
Rapid change of temperature	IEC 60738-1	$\begin{aligned} & \hline \mathrm{T}_{1}=\mathrm{T}_{\text {op, min }}(0 \mathrm{~V}), \mathrm{T}_{2}=\mathrm{T}_{\text {op, max }}(0 \mathrm{~V}) \\ & \text { Number of cycles: } 5 \\ & \text { Test duration: } 30 \text { min } \\ & \text { Test according to IEC 60068-2-14, test } \mathrm{Na} \\ & \hline \end{aligned}$	< 10\%
Vibration	IEC 60738-1	Frequency range: 10 to 55 Hz Displacement amplitude: 0.75 mm Test duration: $3 \times 2 \mathrm{~h}$ Test according to IEC 60068-2-6, test Fc	< 5%
Shock	IEC 60738-1	Acceleration: $390 \mathrm{~m} / \mathrm{s}^{2}$ Pulse duration: $6 \mathrm{~ms} ; 6 \times 4000$ pulses	< 5\%
Climatic sequence	IEC 60738-1	Dry heat: $\mathrm{T}=\mathrm{T}_{\text {op,max }}(0 \mathrm{~V})$ Test duration: 16 h Damp heat first cycle Cold: $\mathrm{T}=\mathrm{T}_{\text {op, min }}(0 \mathrm{~V})$ Test duration: 2 h Damp heat 5 cycles Tests performed according to IEC 60068-2-30	< 10\%

Overcurrent protection

Characteristics (typical) for $\mathrm{T}_{\text {ref }}=80^{\circ} \mathrm{C}$
PTC resistance $\mathrm{R}_{\text {PTC }}$ versus PTC temperature $\mathrm{T}_{\text {PTC }}$ (measured at low signal voltage)

Switching time t_{s} versus switching current I_{s} (measured at $25^{\circ} \mathrm{C}$ in still air)

PTC current $l_{\text {PTC }}$ versus PTC voltage $V_{\text {PTC }}$ (measured at $25^{\circ} \mathrm{C}$ in still air)

Rated current I_{R} versus ambient temperature T_{A} (measured in still air)

Overcurrent protection

Leaded disks, coated, 230 V
C810 ... C890

Characteristics (typical) for $\mathrm{T}_{\text {ref }}=80^{\circ} \mathrm{C}$
PTC resistance $\mathrm{R}_{\text {PTC }}$ versus PTC temperature $\mathrm{T}_{\text {PTC }}$ (measured at low signal voltage)

Switching time t_{s} versus switching current I_{s} (measured at $25^{\circ} \mathrm{C}$ in still air)

PTC current $I_{\text {PTC }}$ versus PTC voltage $\mathrm{V}_{\text {PTC }}$ (measured at $25^{\circ} \mathrm{C}$ in still air)

Rated current I_{R} versus ambient temperature T_{A} (measured in still air)

Overcurrent protection

Characteristics (typical) for $\mathrm{T}_{\text {ref }}=120^{\circ} \mathrm{C}$
PTC resistance $\mathrm{R}_{\text {PTC }}$ versus PTC temperature $\mathrm{T}_{\text {PTC }}$ (measured at low signal voltage)

Switching time t_{s} versus switching current I_{s} (measured at $25{ }^{\circ} \mathrm{C}$ in still air)

PTC current $I_{\text {PTC }}$ versus PTC voltage $\mathrm{V}_{\text {PTC }}$ (measured at $25^{\circ} \mathrm{C}$ in still air)

Rated current I_{R} versus ambient temperature T_{A} (measured in still air)

Overcurrent protection

Characteristics (typical) for $\mathrm{T}_{\text {ref }}=120^{\circ} \mathrm{C}$
PTC resistance $\mathrm{R}_{\text {PTC }}$ versus PTC temperature $\mathrm{T}_{\text {PTC }}$ (measured at low signal voltage)

Switching time t_{s} versus switching current I_{s} (measured at $25{ }^{\circ} \mathrm{C}$ in still air)

PTC current $I_{\text {PTC }}$ versus PTC voltage $\mathrm{V}_{\text {PTC }}$ (measured at $25^{\circ} \mathrm{C}$ in still air)

Rated current I_{R} versus ambient temperature T_{A} (measured in still air)

Overcurrent protection

Characteristics (typical) for $\mathrm{T}_{\text {ref }}=120^{\circ} \mathrm{C}$
PTC resistance $\mathrm{R}_{\text {PTC }}$ versus PTC temperature $\mathrm{T}_{\text {PTC }}$ (measured at low signal voltage)

Switching time t_{s} versus switching current I_{s} (measured at $25{ }^{\circ} \mathrm{C}$ in still air)

PTC current $I_{\text {PTC }}$ versus PTC voltage $\mathrm{V}_{\text {PTC }}$ (measured at $25^{\circ} \mathrm{C}$ in still air)

Rated current I_{R} versus ambient temperature T_{A} (measured in still air)

Overcurrent protection

Characteristics (typical) for $\mathrm{T}_{\text {ref }}=130^{\circ} \mathrm{C}$
PTC resistance $\mathrm{R}_{\text {PTC }}$ versus
PTC temperature $\mathrm{T}_{\text {PTC }}$
(measured at low signal voltage)

Switching time t_{s} versus switching current I_{s} (measured at $25^{\circ} \mathrm{C}$ in still air)

PTC current $\mathrm{I}_{\text {PTC }}$ versus PTC voltage $\mathrm{V}_{\text {PTC }}$ (measured at $25^{\circ} \mathrm{C}$ in still air)

Rated current I_{R} versus ambient temperature T_{A} (measured in still air)

Overcurrent protection

Characteristics (typical) for $\mathrm{T}_{\text {ref }}=130^{\circ} \mathrm{C}$
PTC resistance $\mathrm{R}_{\text {PTC }}$ versus
PTC temperature $\mathrm{T}_{\text {PTC }}$
(measured at low signal voltage)

Switching time t_{s} versus switching current I_{s} (measured at $25^{\circ} \mathrm{C}$ in still air)

PTC current $\mathrm{I}_{\text {PTC }}$ versus PTC voltage $\mathrm{V}_{\text {PTC }}$ (measured at $25^{\circ} \mathrm{C}$ in still air)

Rated current I_{R} versus ambient temperature T_{A} (measured in still air)

Overcurrent protection

Cautions and warnings

General

- EPCOS thermistors are designed for specific applications and should not be used for purposes not identified in our specifications, application notes and data books unless otherwise agreed with EPCOS during the design-in-phase.
- Ensure suitability of thermistor through reliability testing during the design-in phase. The thermistors should be evaluated taking into consideration worst-case conditions.

Storage

Store thermistors only in original packaging. Do not open the package before storage.

- Storage conditions in original packaging: storage temperature $-25^{\circ} \mathrm{C} . .+45^{\circ} \mathrm{C}$, relative humidity $\leq 75 \%$ annual mean, maximum 95%, dew precipitation is inadmissible.
\square Avoid contamination of thermistors surface during storage, handling and processing.
- Avoid storage of thermistor in harmful environment with effect on function on long-term operation (examples given under operation precautions).
- Use thermistor within the following period after delivery:
- Through-hole devices (housed and leaded PTCs): 24 months
- Motor protection sensors, glass-encapsulated sensors and probe assemblies: 24 months
- Telecom pair and quattro protectors (TPP, TQP): 24 months
- Leadless PTC thermistors for pressure contacting: 12 months
- Leadless PTC thermistors for soldering: 6 months
- SMDs in EIA sizes 3225 and 4032, and for PTCs with metal tags: 24 months
- SMDs in EIA sizes 0402, 0603, 0805 and 1210: 12 months

Handling

- PTCs must not be dropped. Chip-offs must not be caused during handling of PTCs.
- Components must not be touched with bare hands. Gloves are recommended.
- Avoid contamination of thermistor surface during handling.

Soldering (where applicable)

- Use rosin-type flux or non-activated flux.
- Insufficient preheating may cause ceramic cracks.
- Rapid cooling by dipping in solvent is not recommended.
- Complete removal of flux is recommended.
- Standard PTC heaters are not suitable for soldering.

Overcurrent protection

Mounting

- Electrode must not be scratched before/during/after the mounting process.
- Contacts and housing used for assembly with thermistor have to be clean before mounting. Especially grease or oil must be removed.
- When PTC thermistors are encapsulated with sealing material, the precautions given in chapter "Mounting instructions", "Sealing and potting" must be observed.
- When the thermistor is mounted, there must not be any foreign body between the electrode of the thermistor and the clamping contact.
- The minimum force of the clamping contacts pressing against the PTC must be 10 N .
- During operation, the thermistor's surface temperature can be very high. Ensure that adjacent components are placed at a sufficient distance from the thermistor to allow for proper cooling at the thermistors.
- Ensure that adjacent materials are designed for operation at temperatures comparable to the surface temperature of thermistor. Be sure that surrounding parts and materials can withstand this temperature.
- Avoid contamination of thermistor surface during processing.

Operation

- Use thermistors only within the specified temperature operating range.
- Use thermistors only within the specified voltage and current ranges.
- Environmental conditions must not harm the thermistors. Use thermistors only in normal atmospheric conditions. Avoid use in deoxidizing gases (chlorine gas, hydrogen sulfide gas, ammonia gas, sulfuric acid gas etc), corrosive agents, humid or salty conditions. Contact with any liquids and solvents should be prevented.
- Be sure to provide an appropriate fail-safe function to prevent secondary product damage caused by abnormal function (e.g. use VDR for limitation of overvoltage condition).

Overcurrent protection

Symbols and terms

A	Area
C	Capacitance
$\mathrm{C}_{\text {th }}$	Heat capacity
f	Frequency
1	Current
$I_{\text {max }}$	Maximum current
$\mathrm{I}_{\text {R }}$	Rated current
$\mathrm{I}_{\text {res }}$	Residual current
$\mathrm{I}_{\text {PTC }}$	PTC current
I_{r}	Residual currrent
$\mathrm{I}_{\text {r,oil }}$	Residual currrent in oil (for level sensors)
$I_{\text {rair }}$	Residual currrent in air (for level sensors)
$\mathrm{I}_{\text {RMS }}$	Root-mean-square value of current
I_{s}	Switching current
$\mathrm{I}_{\text {Smax }}$	Maximum switching current
LCT	Lower category temperature
N	Number (integer)
N_{c}	Operating cycles at $\mathrm{V}_{\text {max }}$, charging of capacitor
N_{f}	Switching cycles at $\mathrm{V}_{\text {max }}$, failure mode
P	Power
P_{25}	Maximum power at $25^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {el }}$	Electrical power
$\mathrm{P}_{\text {diss }}$	Dissipation power
R_{G}	Generator internal resistance
$\mathrm{R}_{\text {min }}$	Minimum resistance
$\mathrm{R}_{\text {R }}$	Rated resistance
$\Delta \mathrm{R}_{\mathrm{R}}$	Tolerance of R_{R}
R_{P}	Parallel resistance
$\mathrm{R}_{\text {PTC }}$	PTC resistance
$\mathrm{R}_{\text {ref }}$	Reference resistance
$\mathrm{R}_{\text {S }}$	Series resistance
R_{25}	Resistance at $25^{\circ} \mathrm{C}$
$\mathrm{R}_{25 \text {,match }}$	Resistance matching per reel/ packing unit at $25^{\circ} \mathrm{C}$
$\Delta \mathrm{R}_{25}$	Tolerance of R_{25}
T	Temperature
t	Time
$\mathrm{T}_{\text {A }}$	Ambient temperature
t_{a}	Thermal threshold time

Overcurrent protection

T_{C}	Ferroelectric Curie temperature
t_{E}	Settling time (for level sensors)
T_{R}	Rated temperature
$\mathrm{T}_{\text {sense }}$	Sensing temperature
$\mathrm{T}_{\text {op }}$	Operating temperature
$\mathrm{T}_{\text {PTC }}$	PTC temperature
t_{R}	Response time
$\mathrm{T}_{\text {ref }}$	Reference temperature
$\mathrm{T}_{\text {Rmin }}$	Temperature at minimum resistance
$\mathrm{t}_{\text {s }}$	Switching time
$\mathrm{T}_{\text {surf }}$	Surface temperature
UCT	Upper category temperature
V or $\mathrm{V}_{\text {el }}$	Voltage (with subscript only for distinction from volume)
$\mathrm{V}_{\mathrm{c}(\text { max })}$	Maximum DC charge voltage of the surge generator
$V_{\text {F,max }}$	Maximum voltage applied at fault conditions in protection mode
$V_{\text {RMS }}$	Root-mean-square value of voltage
$V_{B D}$	Breakdown voltage
$V_{\text {ins }}$	Insulation test voltage
$\mathrm{V}_{\text {link, max }}$	Maximum link voltage
$\mathrm{V}_{\text {max }}$	Maximum operating voltage
$\mathrm{V}_{\text {max,dy }}$	Maximum dynamic (short-time) operating voltage
$\mathrm{V}_{\text {meas }}$	Measuring voltage
$\mathrm{V}_{\text {meas,max }}$	Maximum measuring voltage
$V_{\text {R }}$	Rated voltage
$V_{\text {PTC }}$	Voltage drop across a PTC thermistor
α	Temperature coefficient
Δ	Tolerance, change
$\delta_{\text {th }}$	Dissipation factor
$\tau_{\text {th }}$	Thermal cooling time constant
λ	Failure rate
e	Lead spacing (in mm)

Abbreviations / Notes

SMD Surface-mount devices

* To be replaced by a number in ordering codes, type designations etc.
+ To be replaced by a letter
All dimensions are given in mm .
The commas used in numerical values denote decimal points.

Important notes

The following applies to all products named in this publication:

1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
3. The warnings, cautions and product-specific notes must be observed.
4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for NTC Thermistors category:
Click to view products by EPCOS manufacturer:
Other Similar products are found below :
GA10K4D25 GAG22K7MCD419 118-253FAJ-P01 121-202EAC-P01 123-802EAJ-P01 128-105NDP-Q02 129-202VME-S01 135-103LZFJ02 135-503LAD-J01 B57620C472K962 B57620C5103K062 B59970C0080A070 199-303KAF-A02 GA100K6MBD1 B57423V2473H062 B57471V2474H062 B57620C5102J062 B57620C5223J062 111-802EAJ-901 112-103FAG-H02 111-182CAG-H01 112-103FAF-H01 112-202EAJ-B02 118-202CAJ-P01 NTC0805J100K B57442V5103J62 B59100M1140A070 B57401V2103H62 NTC0805J3K3 PTCTL8NR100HBE 194303KEVA01 NTCACAPE3C90193 GAG10K3976B1 B57250V2104F360 GAG10K3976A1 NXRT15WB473FA1B040 50070974-003-01 B57250V2473F560 189-602LDR-A01 B57621C5472K062 135-105QAF-J02 NTCASCWE3222J B57421V2153J062 B57230V2103H260 B57471V2684H062 B57471V2333H062 126-153YJC-B01 NTCS0603E3333FHT GA10K4D67 118-802EAJ-P01

