

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER :

(客戶):

DATE: (日期):

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: KM SERIES 105℃
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPLIER		C	USTOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
郭梦玉	王国华		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

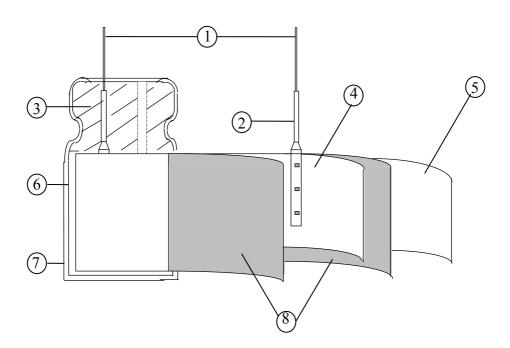
SPECIFICATION KM SERIES				ALTERN. R	ATION HIST ECORDS	FORY	
Rev.	Date	Mark	Page	Contents	Purpose Drafter Apr		
			0				11

Issued-date: 2015-12-31	Name	Specification Sheet – KM				
Version	01		Page	2		
STANDARD MANUAL						

		Sheet
1.	Application	4
2.	Part Number System	4
3.	Construction	5
4.	Characteristics	6~13
4.1	Rated voltage & Surge voltage	0 10
4.2	Capacitance (Tolerance)	
4.3	Leakage current	
4.4	tan δ	
4.5	Terminal strength	
4.6	Temperature characteristics	
4.7	Load life test	
4.8	Shelf life test	
4.9	Surge test	
4.1	0 Vibration	
4.1	1 Solderability test	
4.1	2 Resistance to solder heat	
	3 Change of temperature	
4.1	4 Damp heat test	
4.1	5 Vent test	
4.10	6 Maximum permissible (ripple current)	
5.	Product Dimensions & Maximum Permissible Ripple Current	14~18
6.	Forming Dimension	19
7.	Taping Dimension	20~23
8.	List of "Environment-related Substances to be Controlled ('Controlled Substances')"	24
	Attachment: Application Guidelines	25~30

Issued-date: 2015-12-31	Name	Specification Sheet – KM					
Version	01		Page	3			
	STANDARD MANUAL						

1. Application This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384. 2. Part Number System E KM 106 Μ 2W Ι 15 CB E KM 106 Μ 2W I 15 CB Р - Sleeve Material (2.7) -Type(2.3)- Case Length (2.6) - Diameter (2.5) -Voltage (2.2) - Tolerance (2.4) Capacitance (2.1) -Series -E-CAP 2.1 Capacitance code Code 474 475 476 477 478 Capacitance (μF) 0.47 4.7 47 470 4700 2.2 Rated voltage code 0J 1A **1**C 1V 1J Code 1E **1H** 2A Rate Voltage (V.DC) 6.3 10 16 25 35 50 63 100 **2M** Code **2**C 2D 2N **2**E 2V**2G 2W** 400 Rate Voltage (V.DC) 160 200 220 250 350 420 450 2.3 Type TV TC TE TO CB CY KD Code RR TU FD Reference Bulk Taping Spec. Forming Spec. 2.4 Capacitance tolerance "M" stands for $-20\% \sim +20\%$ 2.5 Size Code D Е F G J K L I Diameter 5 6.3 8 10 12.5 13 16 18 2.6 Length "11"= 11mm "12"= 12mm "1B"= 12.5mm "15= 15m "16 = 16mm "20" = 20mm "25"= 25mm "30" = 30mm 2.7 Sleeve material Р Blank Code PET PVC Sleeve material **Remark:** The " \Box " in fifteenth and sixteenth digits is used for the product lines, and the " \Box " in the seventeenth digit is used to indicate that the sleeve is the PVC material.


Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	4
	ST	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	PVC/PET
8	Separator	Electrolyte paper

Issued-date: 2015-12-31	Name	Specification Sheet – KM				
Version	01		Page	5		
STANDARD MANUAL						

SAMXON

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions: Ambient temperature $: 20^{\circ}C \pm 2^{\circ}C$

Relative humidity	: 60% to 70%		
Air Pressure	: 86kPa to 106kPa		

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -40°C to 105°C(6.3~100WV), -25°C to 105°C(160~450WV).

As to the detailed information, please refer to table 1

Issued-date: 2015-12-31	Name	Specification Sheet – KM				
Version	01		Page	6		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

	ITEM				PEI	RFOR	MANC	E			
	Rated voltage	WV (V.DC)	6.3	10	1	6	25	35	50	63	100
	(WV)	SV (V.DC)	8	13	2	20	32	44	63	79	125
4.1	Surge voltage	WV (V.DC)	160	200	220	250	350	400	420	450	
	(SV)	SV (V.DC)	200	250	270	300			470	500	
4.2	Nominal capacitance (Tolerance)	Measuring F Measuring V Measuring T <criteria></criteria> Shall be with	<condition>Measuring Frequency: 120Hz\pm12HzMeasuring Voltage: Not more than 0.5VrmsMeasuring Temperature: $20\pm 2^{\circ}C$<criteria>Shall be within the specified capacitance tolerance.</criteria></condition>								
4.3	Leakage current	<condition> Connecting the capacitor with a protective resistor $(1k \Omega \pm 10 \Omega)$ in series for 2 minutes, and then, measure Leakage Current.<criteria> $(6.3\sim100WV): I (\mu A) \leq 0.01 \text{ CV or } 3 (\mu A)$whichever is greater. $(160\sim450WV): I (\mu A) \leq 0.03\text{ CV}+40 (\mu A)$I: Leakage current($\mu A$) C: Capacitance ($\mu$ F) V: Rated DC Working Voltage (V)</criteria></condition>									
4.4	tan δ	V: Rated DC Working Voltage (V) <condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature.<criteria>Working voltage (v)$6.3$101625355063$\tan \delta$ (max.)0.260.220.180.160.140.120.10Working voltage (v)100160~250350~450$\tan \delta$ (max.)0.080.200.24For capacitance value >1000 µ F, add 0.02 per another 1000 µ F.</criteria></condition>								63	

Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	7
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		seconds. Bending Strength of Fixed the capacitor, a	applied force to the Terminals. applied force to ben	it the termi	in lead out direction for $10\pm$ nal (1~4 mm from the rubber ' to its original position within		
4.5 Terminal		Diameter of lead	wire Tensile (kg		Bending force N (kgf)		
	strength	0.5mm and le	ss 5 (0	0.51)	2.5 (0.25)		
		Over 0.5mm to 0	.8mm 10 (1.0)	5 (0.51)		
		<condition> STEP Testin</condition>	g Temperature(°C)		Time		
		1	20 ± 2		Time to reach thermal equilibrium		
		2	$40(-25) \pm 3$	Time to	reach thermal equilibrium		
		3	20 ± 2	Time to	reach thermal equilibrium		
		4	105 ± 2		reach thermal equilibrium		
		5	20 ± 2	Time to	reach thermal equilibrium		
4.6	Temperature characteristics	The leakage curr value. b. In step 5, tan δ si	ue at +20°C. thin the limit of Iten rent measured shall	n 4.4 not more mit of Item	than 8 times of its specified		

Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	8
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

		Working Voltage (V)	6.3	10	16	25	35	50	63
		Z-25°C/Z+20°C	5	4	3	2	2	2	2
		Z-40°C/Z+20°C	10	8	6	4	3	3	3
4.6		Working Voltage (V)	100	160~22	0 250	~350	400~420	450	
		Z-25°C/Z+20°C	2	3		4	6	15	
		Z-40°C/Z+20°C	3		-				
		For capacitance value >		Add 1.0) per anot	her 10	00 µ F for Z		
		Capacitance, tan $\boldsymbol{\delta}$, and	impedan	ce shall be	e measur	ed at 12	20Hz.		
4.7	Load life test	<condition> According to IEC60384 at a temperature of 105 2000 +48/0 hours. (The working voltage) Then atmospheric conditions <criteria> The characteristic sha Leakage current Capacitance Change tan δ Appearance</criteria></condition>	$C \pm 2 w$ e sum of the prod . The result Il meet the Val Witton Not	with DC to DC and r uct should alt should the following ue in 4.3 st hin $\pm 20\%$ more tha	bias volta ipple pea d be teste meet the ng requir shall be s % of init n 200% of	ge plus k volta d after follow ements atisfiec ial valu	s the rated of ge shall not 16 hours ra- ring table:	exceed ecoverin	the rated
4.8	Shelf life test	<condition>The capacitors are then s1000+48/0 hours.Following this period the allowed to stabilized at rNext they shall be connected to stabilized at rNext they connected to stabilized at rNext they connected to stabilized at rCapacitanceCapacitanceThe characteristicAppearanceRemark: If the capacitor Please apply vol</condition>	ne capaci oom tem ected to a in. After	tors shall perature f a series li which th following e in 4.3 sh in $\pm 20\%$ nore than e shall be red more t	be remo for 4~8 he miting re- le capaci requirem nall be sa of initia 200%of no leaka han 1 yea	ved fro ours. sistor(1 tors sha tents. <u>l value</u> the spe ge of el r, the le	the test $1k \pm 100 \Omega$ all be disch <u>cified value</u> ectrolyte. eakage curr	chambe) with D harged, <i>a</i>	r and be .C. ratec ind then

Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	9
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

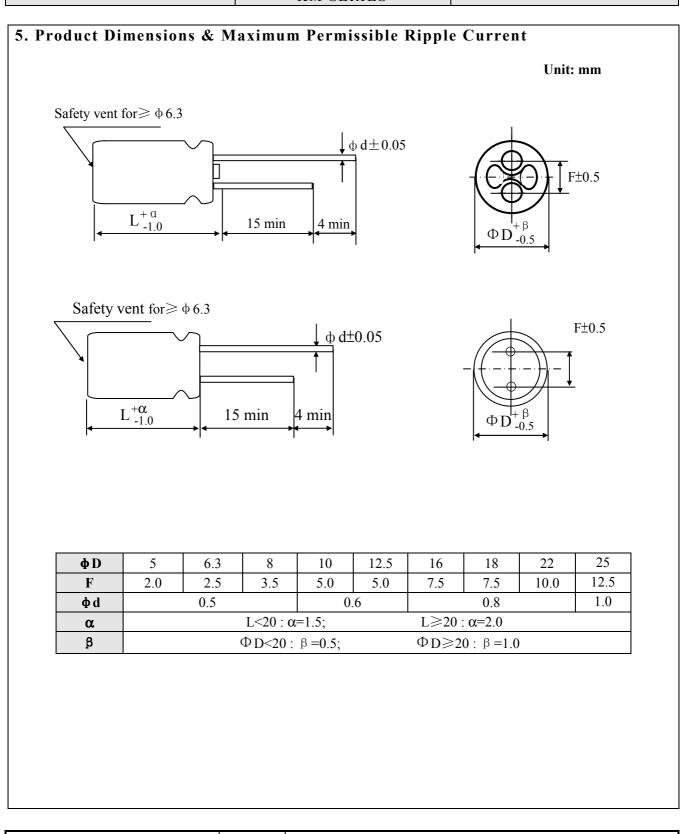
4.9	Surge test	$\label{eq:condition} \begin{split} & \text{Applied a surge voltage to the capacitor connected with a (100 \pm 50)/C_R (k\Omega) resistor.} \\ & \text{The capacitor shall be submitted to 1000 cycles, each consisting of charge of 30 $\pm 5 $\s,$ followed discharge of 5 min 30 $\s.$ \\ & \text{The test temperature shall be 15~35°C.} \\ & \text{C}_{\text{R}} : \text{Nominal Capacitance (} \mu \text{ F}) \end{split} \\ & \begin{array}{r} & \text{Criterias} \\ \hline & & \text{Leakage current} & \text{Not more than the specified value.} \\ \hline & & \text{Capacitance Change} & \text{Within } \pm 15\% \text{ of initial value.} \\ \hline & & \text{tan } \delta & \text{Not more than the specified value.} \\ \hline & & \text{Appearance} & \text{There shall be no leakage of electrolyte.} \\ \end{array} \end{split}$
		This test simulates over voltage at abnormal situation only. It is not applicable to such over voltage as often applied. <condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions.Vibration frequency range: 10Hz ~ 55Hz Peak to peak amplitudeSweep rate: 10Hz ~ 55Hz ~ 10Hz in about 1 minuteMounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket.</br></condition>
4.10	Vibration test	4mm or less United Within 30° To be soldered

Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	10
	STA	ANDARD MANUAL		

		<criteria></criteria>	
		After the test, the follow	ing items shall be tested.
		Inner construction	No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.
		Appearance	No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.
4.11	Solderability test	Soldering temperature Dipping depth Dipping speed Dipping time <criteria></criteria> Coating quality	ed under the following conditions: : 245±3°C : 2mm : 25±2.5mm/s : 3±0.5s A minimum of 95% of the surface being immersed
4.12	Resistance to solder heat test	260 ± 5 °C for 10 ± 1 secont the body of capacitor .	r shall be immersed into solder bath at ds or $400 \pm 10^{\circ}$ C for3 ⁺¹ ₋₀ seconds to 1.5~2.0mm from be left under the normal temperature and normal efore measurement. Not more than the specified value. Within $\pm 10\%$ of initial value. Not more than the specified value. There shall be no leakage of electrolyte.

Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	11
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES


		oven, the condition acc			-
			mperature		Time
		(1)+20°C		≤3	Minutes
		(2)Rated low temperat		30 ± 2	Minutes
		(3)Rated high tempera	()	30 ± 2	Minutes
		(1) to (3)=1 cycle, tota	al 5 cycle		
4.13	Change of temperature test	Criteria> The characteristic shall i			
	test	Leakage current	Not more than the sp		
		$\tan \delta$	Not more than the sp		
		Appearance	There shall be no lea	kage of	electrolyte.
		Condition> Humidity Test: According to IEC60384- be exposed for 500 ± 8 h 40 ± 2 °C the characteris	ours in an atmosphere o	f 90~95	%R H .at
		Humidity Test: According to IEC60384- be exposed for 500 ± 8 h 40 ± 2 °C, the characteris	ours in an atmosphere o	f 90~95	%R H .at
		Humidity Test: According to IEC60384- be exposed for 500 ± 8 h 40 ± 2 °C, the characteris	ours in an atmosphere o tic change shall meet the	f 90~95 e follow	%R H .at ing requirement.
4 14	Damp	Humidity Test: According to IEC60384- be exposed for 500 ± 8 h 40 ± 2 °C, the characteris <criteria></criteria> Leakage current	ours in an atmosphere o tic change shall meet the Not more than the speci	f 90~95 e follow	%R H .at ing requirement.
4.14	Damp heat	Humidity Test: According to IEC60384- be exposed for 500 ± 8 h 40 ± 2 °C, the characteris <criteria></criteria> Leakage current Capacitance Change	hours in an atmosphere of tic change shall meet the Not more than the speci Within $\pm 20\%$ of initia	f 90~95 e follow ified val l value.	%R H .at ing requirement. ue.
4.14	1	Humidity Test: According to IEC60384- be exposed for 500 ± 8 h 40 ± 2 °C, the characteris <criteria></criteria> Leakage current Capacitance Change tan δ	hours in an atmosphere of tic change shall meet the Not more than the species Within $\pm 20\%$ of initia Not more than 120% of	f 90~95 e follow ified val l value. The spec	%R H .at ing requirement. ue. cified value.
4.14	heat	Humidity Test: According to IEC60384- be exposed for 500 ± 8 h 40 ± 2 °C, the characteris <criteria></criteria> Leakage current Capacitance Change	hours in an atmosphere of tic change shall meet the Not more than the speci Within $\pm 20\%$ of initia	f 90~95 e follow ified val l value. The spec	%R H .at ing requirement. ue. cified value.
4.14	heat	Humidity Test: According to IEC60384- be exposed for 500 ± 8 h 40 ± 2 °C, the characteris <criteria></criteria> Leakage current Capacitance Change tan δ	hours in an atmosphere of tic change shall meet the Not more than the species Within $\pm 20\%$ of initia Not more than 120% of	f 90~95 e follow ified val l value. The spec	%R H .at ing requirement. ue. cified value.
4.14	heat	Humidity Test: According to IEC60384- be exposed for 500 ± 8 h 40 ± 2 °C, the characteris <criteria></criteria> Leakage current Capacitance Change tan δ	hours in an atmosphere of tic change shall meet the Not more than the species Within $\pm 20\%$ of initia Not more than 120% of	f 90~95 e follow ified val l value. The spec	%R H .at ing requirement. ue. cified value.
4.14	heat	Humidity Test: According to IEC60384- be exposed for 500 ± 8 h 40 ± 2 °C, the characteris <criteria></criteria> Leakage current Capacitance Change tan δ	hours in an atmosphere of tic change shall meet the Not more than the species Within $\pm 20\%$ of initia Not more than 120% of	f 90~95 e follow ified val l value. The spec	%R H .at ing requirement. ue. cified value.

Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	12
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

4.15	Vent test	a current selected <table 2=""> Diameter (mm 22.4 or less Over 22.4 <criteria> The vent shall op</criteria></table>	connected with its d from Table 2 is	polarity re applied.	eversed	to a DC	power s	source. Then
	Maximum	at 120Hz and car Table-3 The combined va the rated voltage Frequency Mul Rated Voltage	oefficient Fr	aximum op ge and the p erse voltag	erating peak A	tempera	ature	
4.16	permissible ripple current	6.3~100 160~450	$ \begin{array}{r} \sim 47 \\ \hline 68 \sim 470 \\ \hline \geqslant 560 \\ \hline 0.47 \sim 220 \\ \hline \geqslant 270 \\ \end{array} $	0.75 0.80 0.85 0.80 0.90	1.00 1.00 1.00 1.00 1.00	1.35 1.23 1.10 1.25 1.10	1.57 1.34 1.13 1.40 1.13	2.00 1.50 1.15 1.60 1.15
		Temperature Temperature Factor	Coefficient:	95 1.41	105 1.00			

Issued-date: 2015-12-31	Name	Specification Sheet – KM							
Version	01		Page	13					
	STANDARD MANUAL								

Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	14
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

Voltage (0	Code)	6.3	V (0J)	10V	(1A)	16V	(1C)	25V	(1E)	35V ((1 V)
Cap (µF)	Code	Case Size	Ripple Current	Case Size	Ripple Current	Case Size	Ripple Current	Case Size	Ripple Current	Case Size	Ripple Current
4.7	475							5x11	26	5x11	28
10	106					5x11	35	5x11	38	5x11	41
22	226			5x11	49	5x11	54	5x11	57	5x11	67
33	336	5x11	54	5x11	60	5x11	64	5x11	75	5x11	80
47	476	5x11	65	5x11	70	5x11	80	5x11	84	5x11	101
68	86	5x11	70	5x11	75	5x11	90	5x11	92		
100	107	5 11	05	5 11	105	5 11	125	5X11	140		
100	107	5x11	95	5x11	105	5x11	125	6.3x11	159	6.3x11	168
220	227	5 11	152	5 11	170	(2.11	012	6.3X11	239	0.12	20.4
220	227	5x11	153	5x11	170	6.3x11	213	8x12	285	8x12	294
330	337	6.3x11	216	6.3x11	239	8x12	315	8x12	340	10x12.5	419
470	477	6.3x11	258	6.3x11	285	8x12	366	10x12.5	471	10x16	547
680	687	8x12	365	8x12	408	10x12.5	480	10x16	620	10x20	682
1000	108	8x12	443	10-12.5	571	10x16	680	10X16	744	12.5x20	1023
1000	108	0X12	445	10x12.5	3/1	10x10	080	10x20	821	12.3X20	1025
1500	158	10x16	697								
2200	228	10x16	740	10x20	886	10x20	977	12.5x20	1176	16x25	1497
2200	228	10/10	/40	10X20	880	12.5x20	1108	12.3x20	1170	10X23	1497
3300	338	10x20	1032	10x25 12.5x20	1175 1205	12.5x25	1389	16x25	1646	16x30	1808
4700	478	12.5x20	1280	12.5x25	1492	16x25	1740	16x30	2012	18x35	2335
6800	688	12.5x25	1554	16x25	1824	16x30	2081	16x35	2308	18x40	2400
10000	109	16x25	1897	16x30	1980	16x35	2379	18x35	2500		
15000	159	16x30	2188	16x40	2180	18x35	2600				
22000	229	18x35	2400	18x40	2407						
33000	339	18x40	2555								
Maximun	n Allow	able Ripp	le Curren	t (m A rms	s) at 105℃	C,120Hz			Cas	se Size ϕ D	x L (mi

 Issued-date: 2015-12-31
 Name
 Specification Sheet – KM

 Version
 01
 Page
 15

 STANDARD MANUAL

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

Voltage	(Code)	50V	(1H)	63V (1J)		
Cap(µF)	Code	Case Size	Ripple Current	Case Size	Ripple Current	
1	105	5x11	13			
2.2	225	5x11	20			
3.3	335	5x11	30			
4.7	475	5x11	37	5x11	40	
10	106	5x11	54	5x11	59	
22	226	5x11	79	5x11	79	
33	336	5x11	101	6.3x11	122	
47	476	6.3x11	133	6.3x11	146	
68	686	6.3X11	160	8x12	155	
100	107	8x12	229	10x12.5	251	
180	187					
220	227	10X12.5 10x16	458 509	10x20	504	
330	337	10x16	589	12.5x20	688	
470	477	10x20	707	12.5x20	810	
680	687	12.5x20	923	12.5x25	1160	
1000	108	12.5x25	1287	16x25	1448	
2200	228	16X30	1759	18x35	1781	
2200	228	16x35	1884	18x33	1/81	
3300	338	18x35	2167			

Maximum Allowable Ripple Current (m A rms) at 105° C,120Hz Case Size ϕ D x L (mm)

Issued-date: 2015-12-31	Name	Specification Sheet – KM						
Version	01		Page	16				
STANDARD MANUAL								

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

Voltage ((Code)	100V	(2A)	160V	' (2C)	200	0V (2D)
Cap(µF)	Code	Case Size	Ripple Current	Case Size	Ripple Current	Case Size	Ripple Current
1	105	5x11	16				
2.2	225	5x11	23				
3.3	335	5x11	34			6.3x11	30
4.7	475	5x11	40	6.3x11	41	6.3x11	40
10	106	6.3x11	61	8x12	60	10x12.5	72
22	226	6.3x11	92	10x16	110	10x16	113
33	336	8x12	144	10x20	156	10x20	165
47	476	10x12.5	199	10x20	195	10x20	194
68	686	10x16	240	12.5x20	250	12.5x25	250
82	826			12.5x25	310	10x30	320
100	107	10x16 10x20	316 349	12.5x25	360	16x25	386
150	157			12.5x30	380	16x25	525
180	187			12.5x35	420	12.5x35	560
220	227	12.5x25	662	16x30	680	16x30	643
270	277			16x30	728	18x30	740
330	337	12.5x25	800	18x35	830	18x30	808
390	397			18x35	850	18x35	904
470	477	16x25	990	18x40	880	18X35	957
		10725	770	10740	000	18x40	1016
560	567			18x45	925	18x45	1112
680	687	16x30	1289				
1000	108	18x40	2020				

Maximum Allowable Ripple Current (m A rms) at 105 °C,120Hz

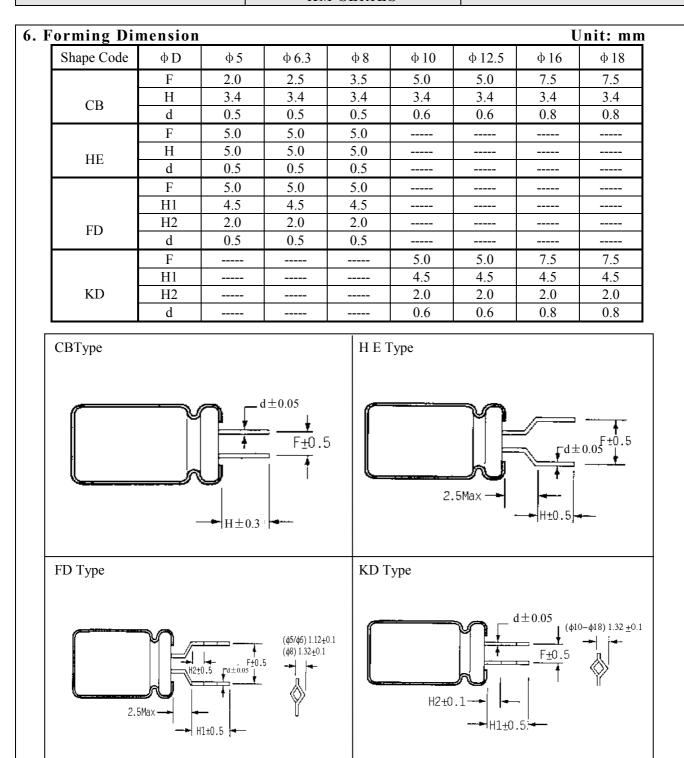
Case Size $\phi D x L (mm)$

Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	17
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

SAMXON

Voltage	(Code)	220 (2	2N)	250 (2E)	350 (2V)	400 (2G)	420	(2M)	450	(2W)			
Cap(µF)	Code	Case Size	Rippl e Curren t	Case Size	Ripple Current	Case Size	Ripple Current	Case Size	Ripple Current	Case Size	Ripple Current	Case Size	Ripple Current			
0.47	474			6.3x11	8	6.3x11	8									
1	105			6.3x11	17	6.3x11	18	6.3x11	19	6.3x11	15	6.3x11	16			
2.2	225			6.3x11	27	6.3x11	25	8x12	30	8x12	29	8x12	24			
3.3	335	6.3x11	30	6.3x11	35	8x12	40	8x12	35	8x12	35	8x12	29			
4.7	475	8x12	40	8x12	45	8x12	43	8x12	40	10x16	52	10x16	42			
10	100	10-12.5	70	10-12.5	75	10-16	72	10X13.5	72	10, 20	10.20	10.20	10.00	95	12.5-20	0.4
10	106	10x12.5	70	10x12.5	75	10x16	73	10x16	78	10x20 85		12.5x20	84			
18	186					12.5x20	100	12.5x20	105	12.5x25	124	10x30	108			
22	226	10x20	125	10x20	130	12.5x20	150	12.5x20	148	12.5x25	140	12.5X20	118			
22	220	10x20	123	10x20	150	12.3X20	150	12.3x20	140	12.3823	140	12.5x25	131			
27	276					12.5x25	177	10x30	192	12.5x25	170	12.5x30	164			
33	336	12.5x20	165	12.5x20	184	16x25	200	12.5x25	193	16x25	200	16x25	237			
39	396					16x25	258	16x25	251	12.5x30	248	12.5x35	256			
				12.5X20	215											
47	476	12.5x20	220	12.5x25	238	16x25	265	12.5x30	266	12.5x35	288	16x30	305			
56	566					16x30	280	12.5x35	336	12.5x40	344	16x30	352			
68	686	12.5x25	245	16x20	246	16x30	288	16x30	396	16x30	408	18x30	366			
82	828	12.5x30	280	16x25	351	18x30	372	18x30	443	16x35	456	18x30	440			
100	107	16x25	335	16x25	390	18x35	460	18x30	489	18x35	488	18x35	490			
120	127							18x35	570	18x40	528	18x40	592			
150	157	16x30	365	18x30	440			18x40	616	18x45	568	18x45	640			
180	187	16x35	500	18x35	469			18x50	704							

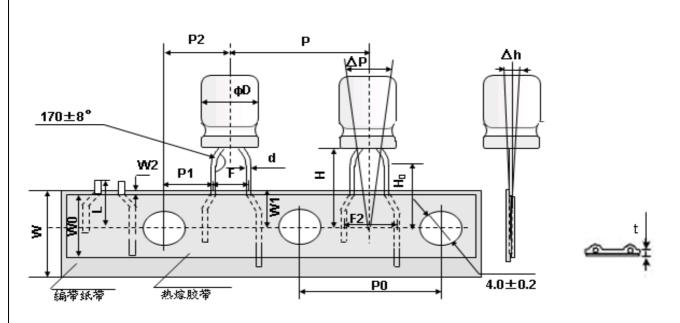

Maximum Allowable Ripple Current (m A rms) at 105°C,120Hz

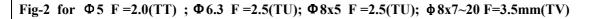
Case Size ϕ D x L (mm)

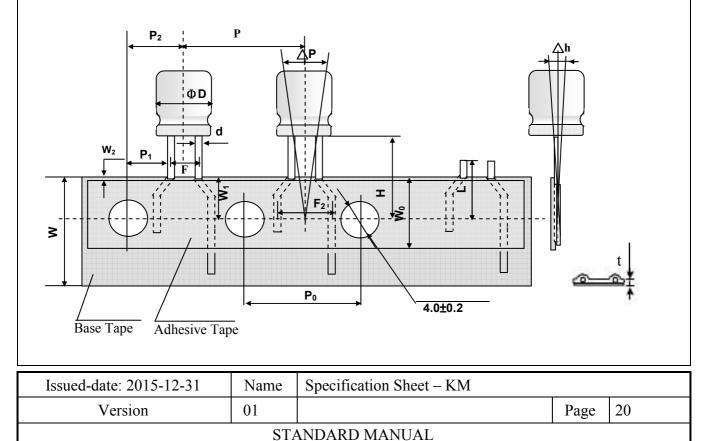
Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	18
	STA	ANDARD MANUAL		

MAN YUE ELECTRONICS
COMPANY LIMITED

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES




Issued-date: 2015-12-31	Name	Specification Sheet – KM						
Version	01		Page	19				
STANDARD MANUAL								

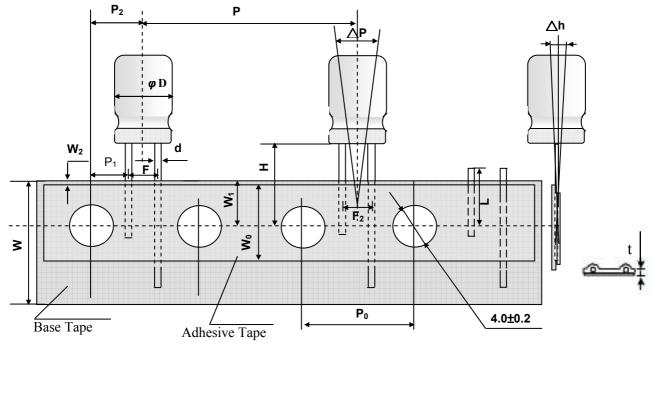

SAMXON

7. Taping Specification

Fig-1 φ 5 F=2.5mm(TU) ;



ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES



Issued-date: 2015-12-31	Name	Specification Sheet – KM					
Version	01		Page	21			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR **SPECIFICATION** KM SERIES

SAMXON

Fig-5 for $\Phi 16 \sim 18$ F =7.5(TQ) ;

Issued-date: 2015-12-31	Name	Specification Sheet – KM					
Version	01		Page	22			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION KM SERIES

Remark: Maximum Tapii	ng Dimer Code									Unit: 1	
item		ТТ	Т	'U	TV		TC	2		ТЕ	TQ
Diameter	D	5	5	6.3	8	5 / 6.3	8	10	12.5	8	16/18
Height	А	5~15	9~15	9~15	10~20	9~15	10~20	9~30	15~35	10~20	15~40
Lead Diameter	d±0.05	0.45/0.5	0.5	0.5	0.5	0.5	0.5/0.6	0.6	0.6	0.5/0.6	0.8
Component Spacing	P±1.0	12.7	12.7	12.7	12.7	12.7	12.7	12.7	15	12.7	30
Pitch of sprocket holes	P ₀ ±0.2	12.7	12.7	12.7	12.7	12.7	12.7	12.7	15	12.7	15
Distance between centers of terminal	P ₁ ±0.5	5.1	5.1	5.1	4.6	3.85	3.85	3.85	5.0	3.85	3.75
Feed hole center to component center	P ₂ ±1.0				6.35				7.5	6.35	7.5
Distance between centers of component leads	$F_{-0.5}^{+0.8}$	2.0	2.5	2.5	3.5	5.0	5.0	5.0	5.0	5.0	7.5
Distance between centers of component leads Adhesive Tape cover	$F_{2 \ -0.5}^{+0.8}$	3.5	2.5	3.5	5.0	5.0	5.0	5.0	5.0	5.0	7.5
Carrier tape width	$W_{-0.5}^{+1}$	18	18	18	18	18	18	18	18	18	18
Hold down tape width	W_0				7min				12min	7min	12min
Distance between the center of upper edge of carrier tape and sprocket hole	W1±0.5		9								
Distance between the upper edges of the carrier tape and the hold down tape	W ₂					3n	nax		_	_	-
Distance between the abscissa and the bottom of the components body	+0.75 H _0.5	18.5	18.5	18.5	18.5	18.5	20.0	18.5	18.5	18.5	18.5
Distance between the abscissa and the reference plane of the components with crimped leads	H ₀ ±0.5					16	16			16	
Cut off position of defectives	L					11	max				
Max. lateral deviation of the component body vertical to the tape plane	∆h		2 max								
Max. deviation of the component body in the tape plane	△P		1.3 max								

Issued-date: 2015-12-31	Name	Specification Sheet – KM					
Version	01		Page	23			
STANDARD MANUAL							

SAMXON

8. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances				
	Cadmium and cadmium compounds				
Heavy metals	Lead and lead compounds				
	Mercury and mercury compounds				
	Hexavalent chromium compounds				
	Polychlorinated biphenyls (PCB)				
Chloinated	Polychlorinated naphthalenes (PCN)				
organic	Polychlorinated terphenyls (PCT)				
compounds	Short-chain chlorinated paraffins(SCCP)				
	Other chlorinated organic compounds				
	Polybrominated biphenyls (PBB)				
Brominated organic	Polybrominated diphenylethers(PBDE) (including				
	decabromodiphenyl ether[DecaBDE])				
compounds	Other brominated organic compounds				
Tributyltin comp	oounds(TBT)				
Triphenyltin con	npounds(TPT)				
Asbestos					
Specific azo con	npounds				
Formaldehyde					
Beryllium oxide					
Beryllium copp	er				
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)				
Perfluorooctane	sulfonates (PFOS)				
Specific Benzotr	iazole				

Issued-date: 2015-12-31	Name	Specification Sheet – KM					
Version	01		Page	24			
STANDARD MANUAL							

SAMXON

Attachment: Application Guidelines

1.Circuit Design

1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20° C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tan δ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

Issued-date: 2015-12-31	Name	Specification Sheet – KM					
Version	01		Page	25			
STANDARD MANUAL							

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

- (2) Capacitors Connected in Series Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.
- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board. When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

Issued-date: 2015-12-31	Name	Specification Sheet – KM					
Version	01		Page	26			
STANDARD MANUAL							

 (4) Clearance for Case Mounted Pressure Relief vents Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows. Φ 6.3~ Φ 16mm:2mm minimum, Φ 18~ Φ 35mm:3mm minimum, Φ 40mm or greater:5mm minimum.
(5) Clearance for Seal Mounted Pressure Relief VentsA hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.
(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.
 (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
 (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
 1.7 The Product endurance should take the sample as the standard. 1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling. 1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

Issued-date: 2015-12-31	Name	Specification Sheet – KM					
Version	01		Page	27			
STANDARD MANUAL							

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k \Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k \Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
- 2.2 Capacitor Insertion
- * (1) Verify the correct capacitance and rated voltage of the capacitor.
- * (2) Verify the correct polarity of the capacitor before inserting.
- * (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
 (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 $^\circ$ C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve.

For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Issued-date: 2015-12-31	Name	Specification Sheet – KM					
Version	01		Page	28			
STANDARD MANUAL							

SAMXON

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

- * (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried.
- The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- * (2) Avoid using the following solvent groups unless specifically allowed for in the specification;
- Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.
- Alkali solvents : could attack and dissolve the aluminum case.
- . Petroleum based solvents: deterioration of the rubber seal could result.
- . Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- * (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- * (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor.

Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers.

After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- * (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- * (2) Direct contact with water, salt water, or oil.
- * (3) High humidity conditions where water could condense on the capacitor.

Issued-date: 2015-12-31	Name	Specification Sheet – KM					
Version	01		Page	29			
STANDARD MANUAL							

SAMXON

- * (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- * (5) Exposure to ozone, radiation, or ultraviolet rays.
- * (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures.
 If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 If electrolyte or gas is ingested by month, gargle with water.
 If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail.

After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes .

If the expired date of products date code is over eighteen months, the products should be return to confirmation. 5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

* Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

* Dispose of as solid waste. NOTE: Local laws may have specific disposal requirements, which must be followed.

Issued-date: 2015-12-31	Name	Specification Sheet – KM		
Version	01		Page	30
STANDARD MANUAL				

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by Samxon manufacturer:

Other Similar products are found below :

NRELS102M35V16X16C.140LLF ESRG160ETC100MD07D 227RZS050M 335CKR250M 476CKH100MSA 477CKR100M 107CKR010M 107CKH063MSA RJH-25V222MI9# RJH-35V221MG5# B43827A1106M8 RJH-50V221MH6# EKYA500ELL470MF11D B41022A5686M6 ESRG250ELL101MH09D EKMA160EC3101MF07D RJB-10V471MG3# ESMG160ETD221MF11D EKZH160ETD152MJ20S RJH-35V122MJ6# EGXF630ELL621ML20S RBD-25V100KE3#N EKMA350ELL100ME07D ESMG160ETD101ME11D ELXY100ETD102MJ20S EGXF500ELL561ML15S EKMG350ETD471MJ16S 35YXA330MEFC10X12.5 RXW471M1ESA-0815 ELXZ630ELL221MJ25S ERR1HM1R0D110T LPE681M30060FVA LPL471M22030FVA HFE221M25030FVA LKMD1401H221MF B41888G6108M000 EKMA160ETD470MF07D UHW1J102MHD6 EKMG500ETD221MJC5S LKMK2502W101MF LKMD1401H181MF LKMI2502G820MF LKMJ2001J122MF LKML2501C472MF LKMJ4002C681MF 450MXH330MEFCSN25X45 450MXK330MA2RFC22X50 63ZLH560MEFCG412.5X30 ELH2DM331025KT ELH2DM471P30KT