

#### Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <a href="http://www.nxp.com">http://www.nxp.com</a>, <a href="http://www.semiconductors.philips.com/">http://www.nxp.com</a>, <a href="http://www.nexperia.com">http://www.nexperia.com</a>, <a href="http://www.nexperia.com">http://www.nexperia.com</a>)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

## **INTEGRATED CIRCUITS**

# DATA SHEET

# **74F06**Inverter/buffer drivers

Product data Supersedes data of 1992 Jul 24

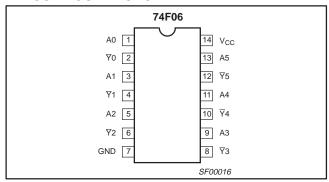




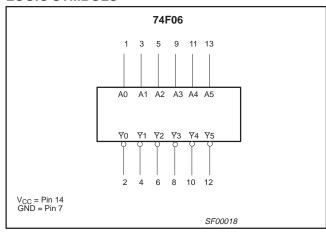
## Hex inverter/buffer drivers (open-collector)

74F06

#### **FEATURES**


- Open Collector output drive 64mA
- High speed
- 12V output termination voltage

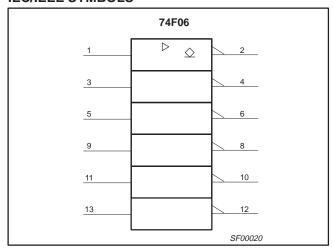
| TYPE  | TYPICAL<br>PROPAGATION<br>DELAY | TYPICAL SUPPLY<br>CURRENT<br>(TOTAL) |
|-------|---------------------------------|--------------------------------------|
| 74F06 | 3.5ns                           | 30mA                                 |


#### **ORDERING INFORMATION**

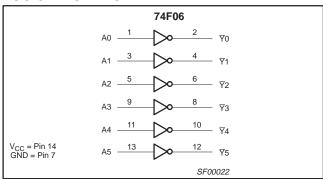
| DESCRIPTION                          | TYPE NUMBER | PKG DWG # |
|--------------------------------------|-------------|-----------|
| 14-pin plastic dual in-line package  | N74F06N     | SOT27-1   |
| 14-pin plastic small outline package | N74F06D     | SOT108-1  |

#### **PIN CONFIGURATIONS**




#### **LOGIC SYMBOLS**




## Hex inverter/buffer drivers (open-collector)

74F06

#### **IEC/IEEE SYMBOLS**



#### **LOGIC DIAGRAMS**



#### INPUT AND OUTPUT LOADING AND FAN OUT TABLE

| PINS | DESCRIPTION  | 74F (U.L.)<br>HIGH/LOW | LOAD VALUE<br>HIGH/LOW |
|------|--------------|------------------------|------------------------|
| An   | Data inputs  | 1.0/1.0                | 20μA/0.6mA             |
| ₹n   | Data outputs | OC/106.7               | OC/64mA                |

- One (1.0) FAST unit load is defined as: 20μA in the High state and 0.6mA in the Low state.
   OC = Open Collector

#### **FUNCTION TABLE**

| INPUTS | OUTPUTS |
|--------|---------|
| An     | Ϋ́n     |
| L      | Н       |
| Н      | L       |

#### NOTES:

- H = High voltage level
   L = Low voltage level

## Hex inverter/buffer drivers (open-collector)

74F06

#### **ABSOLUTE MAXIMUM RATINGS**

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free air temperature range.)

| SYMBOL           | PARAMETER                                      | RATING       | UNIT |
|------------------|------------------------------------------------|--------------|------|
| V <sub>CC</sub>  | Supply voltage                                 | -0.5 to +7.0 | V    |
| V <sub>IN</sub>  | Input voltage                                  | -0.5 to +7.0 | V    |
| I <sub>IN</sub>  | Input current                                  | −30 to +5    | mA   |
| V <sub>OUT</sub> | Voltage applied to output in High output state | -0.5 to 12   | V    |
| l <sub>OUT</sub> | Current applied to output in Low output state  | 128          | mA   |
| T <sub>amb</sub> | Operating free air temperature range           | 0 to +70     | °C   |
| T <sub>stg</sub> | Storage temperature range                      | -65 to +150  | °C   |

#### RECOMMENDED OPERATING CONDITIONS

| SYMBOL           | PARAMETER                            |     | UNIT |     |    |
|------------------|--------------------------------------|-----|------|-----|----|
|                  |                                      | MIN | NOM  | MAX | 1  |
| V <sub>CC</sub>  | Supply voltage                       | 4.5 | 5.0  | 5.5 | V  |
| $V_{IH}$         | High-level input voltage             | 2.0 |      |     | V  |
| $V_{IL}$         | Low-level input voltage              |     |      | 0.8 | V  |
| I <sub>lk</sub>  | Input clamp current                  |     |      | -18 | mA |
| V <sub>OH</sub>  | High-level output voltage            |     |      | 12  | V  |
| I <sub>OL</sub>  | Low-level output current             |     |      | 64  | mA |
| T <sub>amb</sub> | Operating free air temperature range | 0   |      | +70 | °C |

## Hex inverter/buffer drivers (open-collector)

74F06

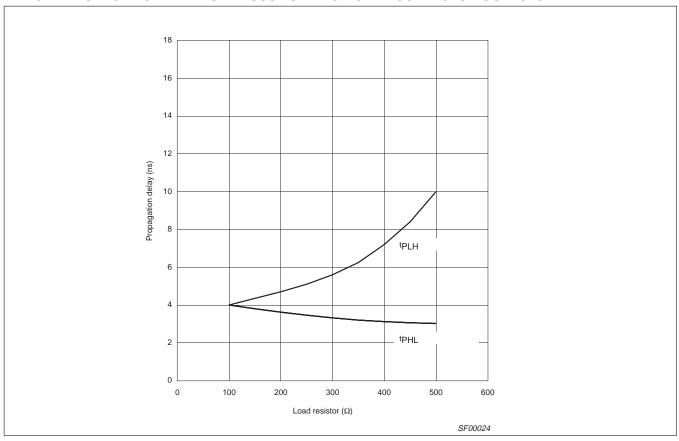
#### DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

| SYMBOL          | PARAMETER                          |                                               | TEST                                                          | TEST CONDITIONS <sup>1</sup>    |     |       | LIMITS |      | UNIT |
|-----------------|------------------------------------|-----------------------------------------------|---------------------------------------------------------------|---------------------------------|-----|-------|--------|------|------|
|                 |                                    |                                               | MIN                                                           | TYP <sup>2</sup>                | MAX |       |        |      |      |
| I <sub>OH</sub> | High-level output current          | $V_{CC} = MIN, V_{IL} = V_{OH} = MAX, V_{IH}$ | $V_{CC} = MIN, V_{IL} = MAX,$<br>$V_{OH} = MAX, V_{IH} = MIN$ |                                 |     |       | 250    | μА   |      |
| V <sub>OL</sub> | Low-level output voltage           | $V_{CC} = MIN,$<br>$V_{IL} = MAX,$            |                                                               |                                 |     | 0.30  | 0.50   | V    |      |
|                 |                                    |                                               | $V_{IH} = MIN$                                                | $V_{IH} = MIN$ $\pm 5\% V_{CC}$ |     |       | 0.30   | 0.50 | V    |
| V <sub>IK</sub> | Input clamp voltage                | $V_{CC} = MIN, I_I = I_I$                     | $V_{CC} = MIN, I_I = I_{IK}$                                  |                                 |     | -0.73 | -1.2   | V    |      |
| I <sub>I</sub>  | Input current at maximum i voltage | nput                                          | $V_{CC} = MAX, V_I =$                                         | 7.0V                            |     |       |        | 100  | μА   |
| lін             | High-level input current           |                                               | V <sub>CC</sub> = MAX, V <sub>I</sub> =                       | 2.7V                            |     |       |        | 20   | μΑ   |
| I <sub>IL</sub> | Low-level input current            |                                               | $V_{CC} = MAX, V_I = 0.5V$                                    |                                 |     |       |        | -0.6 | mA   |
| I <sub>CC</sub> | Supply current (total)             | I <sub>CCH</sub>                              | V <sub>CC</sub> = MAX                                         | $V_{CC} = MAX$                  |     |       | 5.0    | 8.0  | mA   |
|                 |                                    | I <sub>CCL</sub>                              | 1                                                             |                                 |     |       | 30     | 43   | mA   |

#### NOTES:

- For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
   All typical values are at V<sub>CC</sub> = 5V, T<sub>amb</sub> = 25°C.


#### **AC ELECTRICAL CHARACTERISTICS**

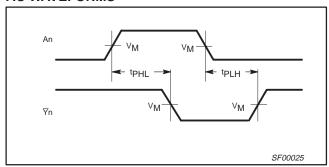
|                                      |                               |                | LIMITS     |                                                                            |            |                                                                           |            |      |
|--------------------------------------|-------------------------------|----------------|------------|----------------------------------------------------------------------------|------------|---------------------------------------------------------------------------|------------|------|
| SYMBOL                               | PARAMETER                     | TEST CONDITION | T,         | / <sub>CC</sub> = +5.0\<br><sub>amb</sub> = +25°<br>50pF, R <sub>L</sub> = | С          | V <sub>CC</sub> = +5.<br>T <sub>amb</sub> = 0°C<br>C <sub>L</sub> = 50pF, | c to +70°C | UNIT |
|                                      |                               |                | Min        | Тур                                                                        | Max        | Min                                                                       | Max        |      |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>An to Yn | Waveform 1     | 2.0<br>1.5 | 3.5<br>3.0                                                                 | 6.0<br>5.5 | 1.5<br>1.0                                                                | 6.5<br>6.0 | ns   |

## Hex inverter/buffer drivers (open-collector)

74F06

#### TYPICAL PROPAGATION DELAYS VERSUS LOAD FOR OPEN COLLECTOR OUTPUTS

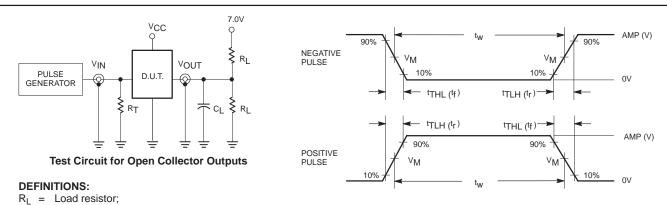



#### NOTE:

When using Open-Collector parts, the value of the pull-up resistor greatly affects the value of the  $t_{PLH}$ . For example, changing the specified pull-up resistor value from  $500\Omega$  to  $100\Omega$  will improve the  $t_{PLH}$  up to 50% with only a slight increase in the  $t_{PHL}$ . However, if the value of the pull-up resistor is changed, the user must make certain that the total  $t_{OL}$  current through the resistor and the total  $t_{IL}$ 's of the receivers does not exceed the  $t_{OL}$  maximum specification.

## Hex inverter/buffer drivers (open-collector)

74F06


#### **AC WAVEFORMS**



Waveform 1. Propagation delay for inverting outputs

For all waveforms,  $V_M = 1.5V$ .

#### **TEST CIRCUIT AND WAVEFORMS**



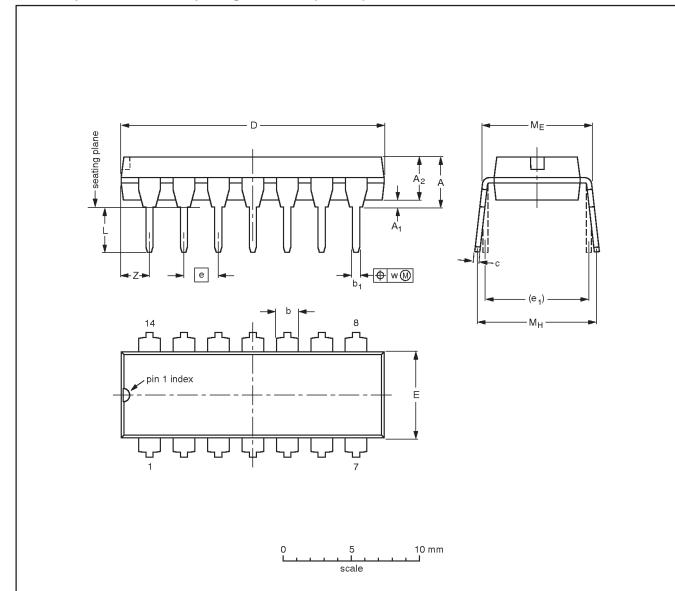
see AC electrical characteristics for value.

Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.

Termination resistance should be equal to  $Z_{\mbox{\scriptsize OUT}}$  of pulse generators.

| Input Pulse Definition |
|------------------------|
|------------------------|

| family | INP       | UT PU   | LSE REQU  | REMEN          | TS               |                  |
|--------|-----------|---------|-----------|----------------|------------------|------------------|
| family | amplitude | $V_{M}$ | rep. rate | t <sub>w</sub> | t <sub>TLH</sub> | t <sub>THL</sub> |
| 74F    | 3.0V      | 1.5V    | 1MHz      | 500ns          | 2.5ns            | 2.5ns            |


SF00027

## Hex inverter/buffer drivers (open-collector)

74F06

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

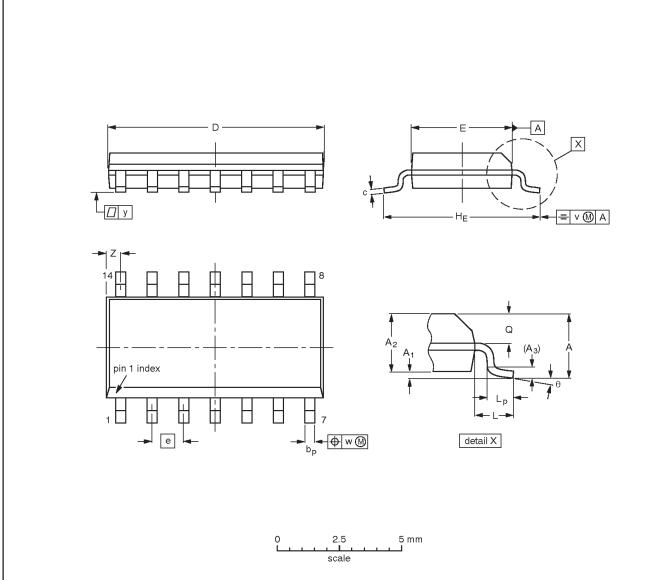


#### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A<br>max. | A <sub>1</sub><br>min. | A <sub>2</sub><br>max. | b              | b <sub>1</sub> | С              | D <sup>(1)</sup> | E (1)        | е    | e <sub>1</sub> | L            | ME           | Мн           | w     | Z <sup>(1)</sup><br>max. |
|--------|-----------|------------------------|------------------------|----------------|----------------|----------------|------------------|--------------|------|----------------|--------------|--------------|--------------|-------|--------------------------|
| mm     | 4.2       | 0.51                   | 3.2                    | 1.73<br>1.13   | 0.53<br>0.38   | 0.36<br>0.23   | 19.50<br>18.55   | 6.48<br>6.20 | 2.54 | 7.62           | 3.60<br>3.05 | 8.25<br>7.80 | 10.0<br>8.3  | 0.254 | 2.2                      |
| inches | 0.17      | 0.02                   | 0.13                   | 0.068<br>0.044 | 0.021<br>0.015 | 0.014<br>0.009 | 0.77<br>0.73     | 0.26<br>0.24 | 0.1  | 0.3            | 0.14<br>0.12 | 0.32<br>0.31 | 0.39<br>0.33 | 0.01  | 0.087                    |

#### Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.


| OUTLINE |        | REFEF  | EUROPEAN  | ISSUE DATE |                                 |
|---------|--------|--------|-----------|------------|---------------------------------|
| VERSION | IEC    | JEDEC  | JEITA     | PROJECTION | ISSUE DATE                      |
| SOT27-1 | 050G04 | MO-001 | SC-501-14 |            | <del>99-12-27</del><br>03-02-13 |

## Hex inverter/buffer drivers (open-collector)

74F06

### SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1



#### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp           | С                | D <sup>(1)</sup> | E <sup>(1)</sup> | е    | HE             | L     | Lp             | Q              | v    | w    | у     | Z <sup>(1)</sup> | θ  |
|--------|-----------|----------------|----------------|----------------|--------------|------------------|------------------|------------------|------|----------------|-------|----------------|----------------|------|------|-------|------------------|----|
| mm     | 1.75      | 0.25<br>0.10   | 1.45<br>1.25   | 0.25           | 0.49<br>0.36 | 0.25<br>0.19     | 8.75<br>8.55     | 4.0<br>3.8       | 1.27 | 6.2<br>5.8     | 1.05  | 1.0<br>0.4     | 0.7<br>0.6     | 0.25 | 0.25 | 0.1   | 0.7<br>0.3       | 8° |
| inches | 0.069     | 0.010<br>0.004 | 0.057<br>0.049 | 0.01           |              | 0.0100<br>0.0075 | 0.35<br>0.34     | 0.16<br>0.15     | 0.05 | 0.244<br>0.228 | 0.041 | 0.039<br>0.016 | 0.028<br>0.024 | 0.01 | 0.01 | 0.004 | 0.028<br>0.012   | 0° |

#### Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

| OUTLINE  |        | REFER  | EUROPEAN | ICCUE DATE |            |                                 |  |
|----------|--------|--------|----------|------------|------------|---------------------------------|--|
| VERSION  | IEC    | JEDEC  | JEITA    |            | PROJECTION | ISSUE DATE                      |  |
| SOT108-1 | 076E06 | MS-012 |          |            |            | <del>99-12-27</del><br>03-02-19 |  |

## Hex inverter/buffer drivers (open-collector)

74F06

### **REVISION HISTORY**

| Rev | Date     | Description                                                                                                                                                                             |
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _3  | 20040312 | Product data (9397 750 13034); supersedes data sheet 74F06_A_7_A_2 of 1992 Jul 24 (9397 750 05054).  Modifications:  Delete all references to 74F06A and 74F07A (product discontinued). |
|     |          | Separate 74F06 and 74F07 into standalone data sheets.                                                                                                                                   |
| _2  | 19920724 | Product data (9397 750 05054); supersedes previous version.                                                                                                                             |

## Hex inverter/buffer drivers (open-collector)

74F06

#### Data sheet status

| Level | Data sheet status [1] | Product<br>status <sup>[2] [3]</sup> | Definitions                                                                                                                                                                                                                                                                                    |
|-------|-----------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I     | Objective data        | Development                          | This data sheet contains data from the objective specification for product development.  Philips Semiconductors reserves the right to change the specification in any manner without notice.                                                                                                   |
| II    | Preliminary data      | Qualification                        | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.             |
| III   | Product data          | Production                           | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). |

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

#### **Definitions**

**Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

#### **Contact information**

For additional information please visit http://www.semiconductors.philips.com.

Fax: +31 40 27 24825

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004 All rights reserved. Printed in U.S.A.

Date of release: 03-04

Document order number: 9397 750 13034

Let's make things better.







## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by NXP manufacturer:

Other Similar products are found below:

5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG
NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC
028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G
NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G
MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G
NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1
74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7