N-channel TrenchMOS logic level FET

Rev. 04 — 7 April 2010

Product data sheet

1. Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in automotive critical applications.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Q101 compliant

1.3 Applications

- 12 V and 24 V loads
- Advanced braking systems (ABS)
- Automotive systems

1.4 Quick reference data

Table 1.Quick reference data

Suitable for logic level gate drive
sources

- Suitable for thermally demanding environments due to 175 °C rating
- General purpose power switching
- Motors, lamps and solenoids

Table 1.	QUICK reference	data				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	55	V
I _D	drain current	V _{GS} = 5 V; T _{mb} = 25 °C; see <u>Figure 1</u> ; see <u>Figure 4</u>	-	-	61.8	A
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	106	W
Static cha	aracteristics					
R _{DSon}	drain-source on-state	V _{GS} = 10 V; I _D = 20 A; T _j = 25 °C	-	8.1	11	mΩ
	resistance	$V_{GS} = 5 \text{ V}; I_D = 20 \text{ A};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 12}{\text{Figure } 13};$ see Figure 13	-	9.1	12	mΩ

BUK9Y12-55B

N-channel TrenchMOS logic level FET

Table 1.	Quick reference da	tacontinued				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Avalanch	e ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\begin{split} I_D &= 61.8 \text{ A}; \ V_{sup} \leq 55 \text{ V}; \\ R_{GS} &= 50 \ \Omega; \ V_{GS} = 5 \text{ V}; \\ T_{j(init)} &= 25 \ ^\circ\text{C}; \ unclamped \end{split}$	-	-	129	mJ
Dynamic	characteristics					
Q_{GD}	gate-drain charge	V _{GS} = 5 V; I _D = 20 A; V _{DS} = 44 V; T _j = 25 °C; see <u>Figure 14</u>	-	13	-	nC

2. Pinning information

Table 2.	Pinning	j information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source		_
2	S	source	mb	
3	S	source		
4	G	gate		
mb	D	mounting base; connected to drain	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mbb076 S
			SOT669 (LFPAK)	

3. Ordering information

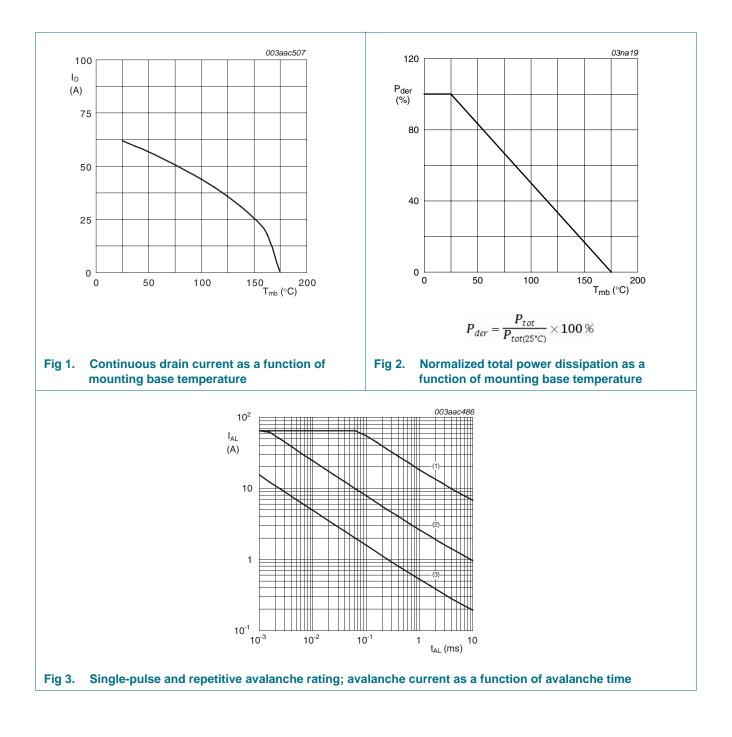
Table 3.	Ordering in	formation		
Type num	ber	Package		
		Name	Description	Version
BUK9Y12-	55B	LFPAK	plastic single-ended surface-mounted package (LFPAK); 4 leads	SOT669

N-channel TrenchMOS logic level FET

4. Limiting values

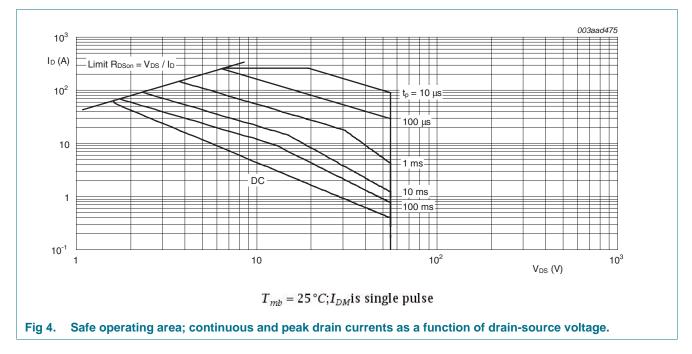
Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


		37 (7					
Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	55	V
V _{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$		-	-	55	V
V _{GS}	gate-source voltage			-15	-	15	V
I _D	drain current	$T_{mb} = 25 \text{ °C}; V_{GS} = 5 \text{ V}; \text{ see } Figure 1;$ see Figure 4		-	-	61.8	A
		T_{mb} = 100 °C; V_{GS} = 5 V; see <u>Figure 1</u>		-	-	43.8	А
I _{DM}	peak drain current	T _{mb} = 25 °C; t _p ≤ 10 μs; pulsed; see <u>Figure 4</u>		-	-	247	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	106	W
T _{stg}	storage temperature			-55	-	175	°C
T _j	junction temperature			-55	-	175	°C
Source-drai	n diode						
I _S	source current	T _{mb} = 25 °C		-	-	61.8	А
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	-	247	А
Avalanche r	uggedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\label{eq:ld} \begin{array}{l} I_D = 61.8 \text{ A}; \ V_{sup} \leq 55 \text{ V}; \ R_{GS} = 50 \ \Omega; \\ V_{GS} = 5 \text{ V}; \ T_{j(init)} = 25 \ ^\circ\text{C}; \ unclamped \end{array}$		-	-	129	mJ
E _{DS(AL)R}	repetitive drain-source avalanche energy	see Figure 3	<u>[1][2][3]</u>	-	-	-	J

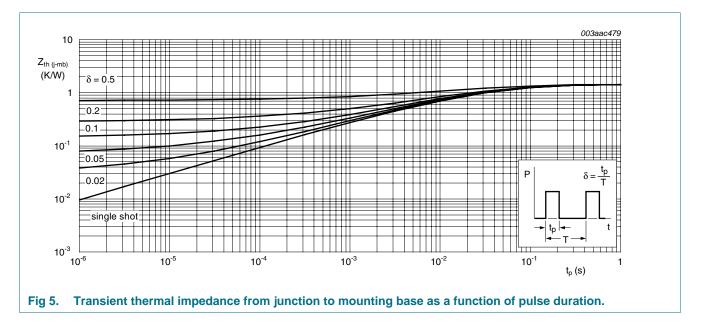
[1] Single-pulse avalanche rating limited by maximum junction temperature of 175 °C.

[2] Repetitive avalanche rating limited by average junction temperature of 170 °C.


[3] Refer to application note AN10273 for further information.

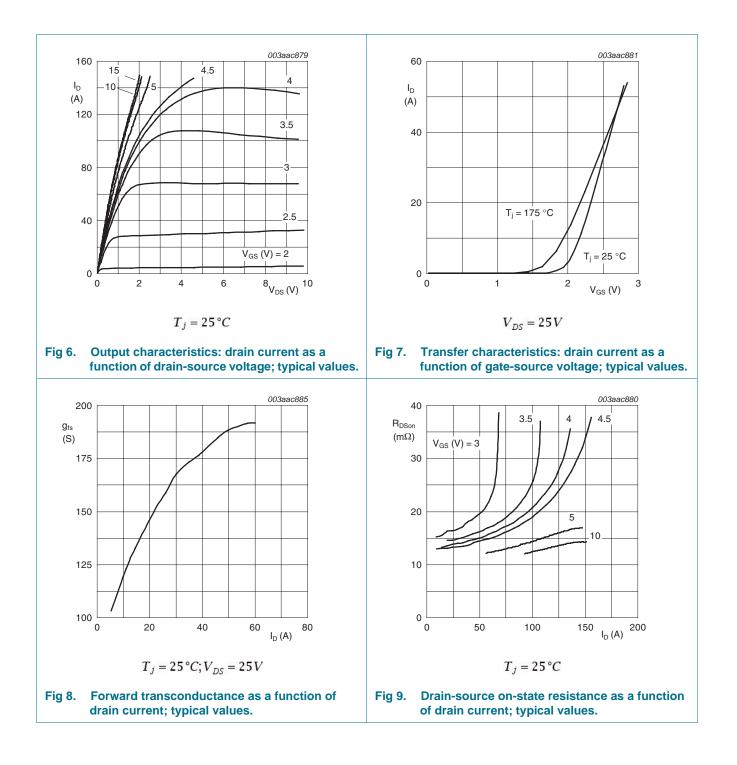
BUK9Y12-55B

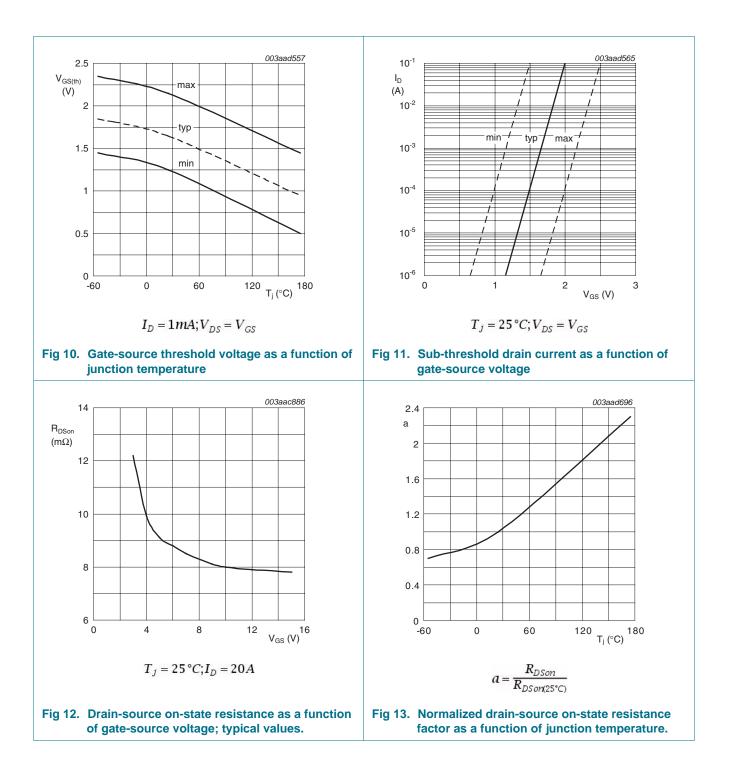
BUK9Y12-55B


N-channel TrenchMOS logic level FET

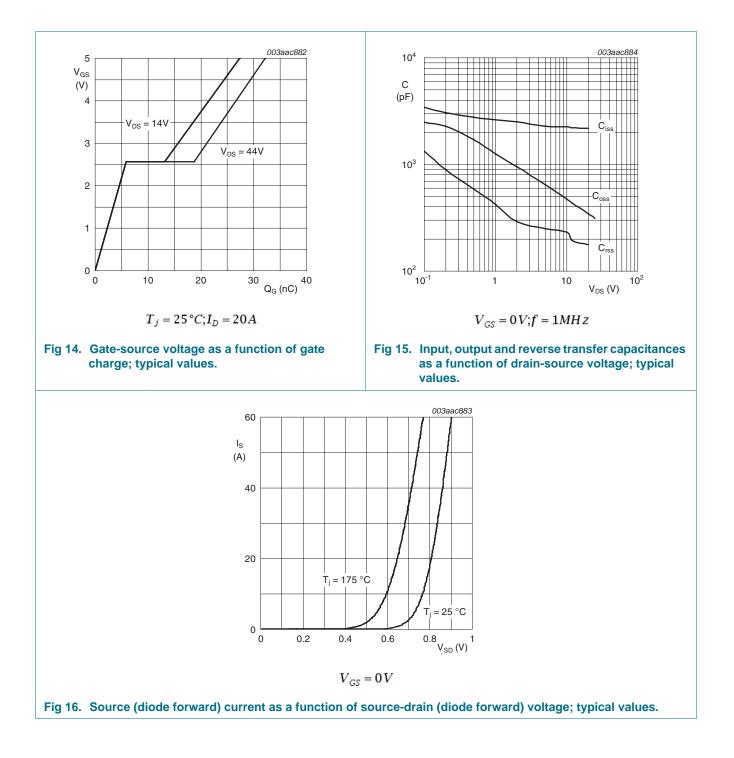
5. Thermal characteristics

Table 5.Thermal characteristics

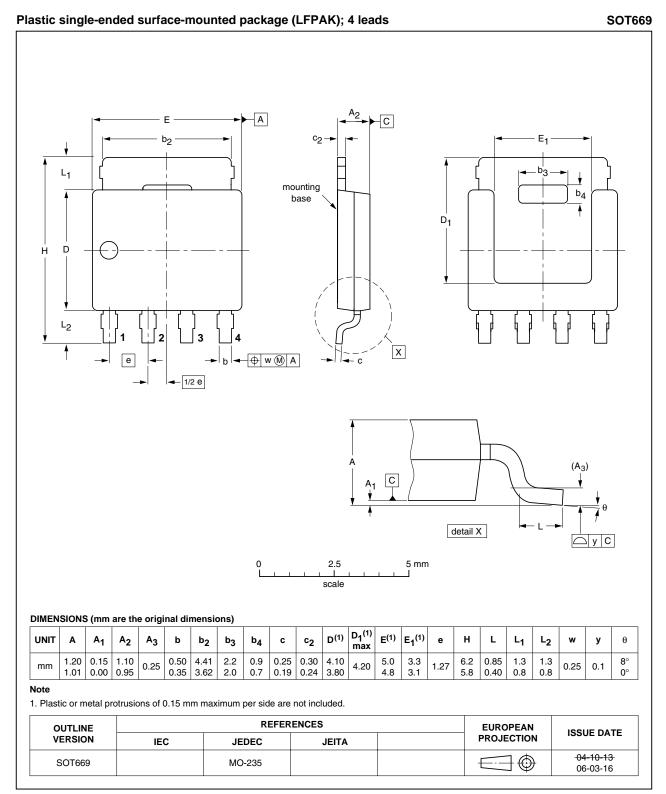

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	see <u>Figure 5</u>	-	-	1.42	K/W


N-channel TrenchMOS logic level FET

6. Characteristics


Table 6.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
V _{(BR)DSS}	drain-source	I_D = 0.25 mA; V_{GS} = 0 V; T_j = 25 °C	55	-	-	V
	breakdown voltage	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 \text{ °C}$	50	-	-	V
V _{GS(th)}	gate-source threshold voltage	I _D = 1 mA; V _{DS} = V _{GS} ; T _j = -55 °C; see <u>Figure 10</u> ; see <u>Figure 11</u>	-	-	2.45	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$ see <u>Figure 10</u> ; see <u>Figure 11</u>	1.25	1.65	2.15	V
		I _D = 1 mA; V _{DS} = V _{GS} ; T _j = 175 °C; see <u>Figure 10</u> ; see <u>Figure 11</u>	0.5	-	-	V
I _{DSS}	drain leakage current	$V_{DS} = 55 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$	-	-	500	μA
		$V_{DS} = 55 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.02	1	μA
I _{GSS}	gate leakage current	$V_{DS} = 0 \text{ V}; V_{GS} = 15 \text{ V}; T_j = 25 \text{ °C}$	-	2	100	nA
		$V_{DS} = 0 \text{ V}; V_{GS} = -15 \text{ V}; T_j = 25 \text{ °C}$	-	2	100	nA
R _{DSon}	drain-source on-state	V_{GS} = 4.5 V; I _D = 20 A; T _j = 25 °C	-	-	13	mΩ
	resistance	V _{GS} = 10 V; I _D = 20 A; T _j = 25 °C	-	8.1	11	mΩ
		V _{GS} = 5 V; I _D = 20 A; T _j = 25 °C; see <u>Figure 12</u> ; see <u>Figure 13</u>	-	9.1	12	mΩ
		V _{GS} = 5 V; I _D = 20 A; T _j = 175 °C; see <u>Figure 13</u>	-	-	27.6	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 20 \text{ A}; V_{DS} = 44 \text{ V}; V_{GS} = 5 \text{ V};$	-	32	-	nC
Q _{GS}	gate-source charge	T _j = 25 °C; see <u>Figure 14</u>	-	6	-	nC
Q _{GD}	gate-drain charge		-	13	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 25 V; f = 1 MHz;$	-	2160	2880	pF
C _{oss}	output capacitance	T _j = 25 °C; see <u>Figure 15</u>	-	315	378	pF
C _{rss}	reverse transfer capacitance		-	175	240	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 30 \text{ V}; \text{ R}_{L} = 1.5 \Omega; V_{GS} = 5 \text{ V}; \label{eq:VDS}$	-	29	-	ns
t _r	rise time	$R_{G(ext)} = 10 \ \Omega; T_j = 25 \ ^{\circ}C$	-	78	-	ns
t _{d(off)}	turn-off delay time		-	100	-	ns
t _f	fall time		-	63	-	ns
Source-d	rain diode					
V _{SD}	source-drain voltage	I _S = 20 A; V _{GS} = 0 V; T _j = 25 °C; see <u>Figure 16</u>	-	0.85	1.2	V
t _{rr}	reverse recovery time	I _S = 20 A; dI _S /dt = -100 A/μs;	-	44	-	ns
Q _r	recovered charge	V_{GS} = -10 V; V_{DS} = 30 V; T_j = 25 °C	-	83	-	nC

BUK9Y12-55B


BUK9Y12-55B

BUK9Y12-55B

N-channel TrenchMOS logic level FET

7. Package outline

Fig 17. Package outline SOT669 (LFPAK)

BUK9Y12-55B Product data sheet

N-channel TrenchMOS logic level FET

8. Revision history

Table 7. Revision h	istory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK9Y12-55B_4	20100407	Product data sheet	-	BUK9Y12-55B_3
Modifications:	 Status char 	nged from objective to pro	oduct.	
BUK9Y12-55B_3	20100216	Objective data sheet	-	BUK9Y12-55B_2

N-channel TrenchMOS logic level FET

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BUK9Y12-55B	

N-channel TrenchMOS logic level FET

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and HD Radio logo — are trademarks of iBiquity Digital Corporation.

13 of 14

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics5
6	Characteristics6
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status12
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks
10	Contact information13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 April 2010 Document identifier: BUK9Y12-55B

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by NXP manufacturer:

Other Similar products are found below :

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3