Automotive Grade Start-Stop Non-Synchronous Boost Controller

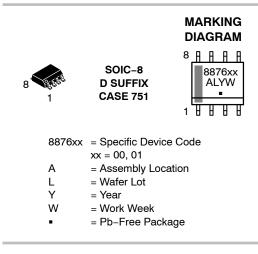
The NCV8876 is a Non-Synchronous Boost controller designed to supply a minimum output voltage during Start-Stop vehicle operation battery voltage sags. The controller drives an external N-channel MOSFET. The device uses peak current mode control with internal slope compensation. The IC incorporates an internal regulator that supplies charge to the gate driver.

Protection features include, cycle-by-cycle current limiting, protection and thermal shutdown.

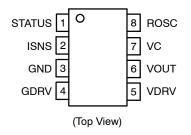
Additional features include low quiescent current sleep mode operation. The NCV8876 is enabled when the supply voltage drops below 7.3 V, with boost operation initiated when the supply voltage is below 6.8 V.

Features

- Automatic Enable Below 7.3 V (Factory Programmable)
- Boost Mode Operation at 6.8 V
- $\pm 2\%$ Output Accuracy Over Temperature Range
- Peak Current Mode Control with Internal Slope Compensation
- Externally Adjustable Frequency Operation
- Wide Input Voltage Range of 2 V to 40 V, 45 V Load Dump
- Low Quiescent Current in Sleep Mode (<11 µA Typical)
- Cycle–by–Cycle Current Limit Protection
- Hiccup-Mode Overcurrent Protection (OCP)
- Thermal Shutdown (TSD)
- This is a Pb–Free Device

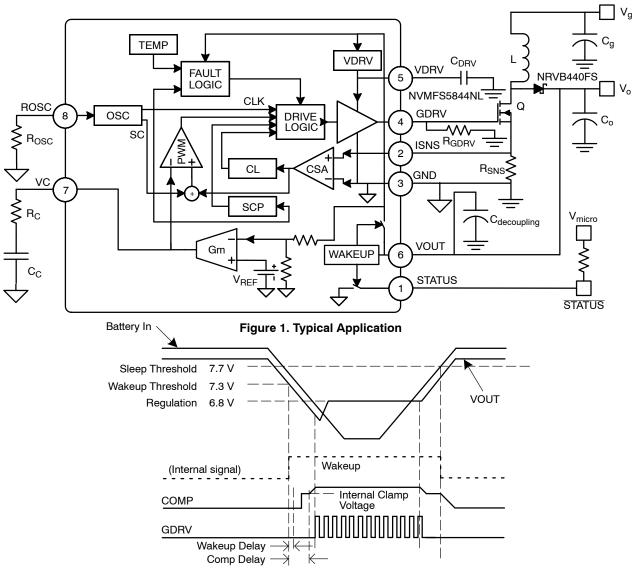

Typical Applications

• Applications Requiring Regulated Voltage through Cranking and Start–Stop Operation



ON Semiconductor®

www.onsemi.com


PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV887600D1R2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV887601D1R2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PACKAGE PIN DESCRIPTIONS

Pin No.	Pin Symbol	Function
1	STATUS	This is an open–drain diagnostic. IC status operation flag indicator. This output is a logic low when IC VOUT is below 7.3 V and device is active. A pull–up resistor of around 80 k Ω should be connected between STATUS and a microcontroller reference. This output is a logic high when the IC is disabled or in UVLO.
2	ISNS	Current sense input. Connect this pin to the source of the external N–MOSFET, through a current–sense res- istor to ground to sense the switching current for regulation and current limiting.
3	GND	Ground reference.
4	GDRV	Gate driver output. Connect to gate of the external N–MOSFET. A series resistance can be added from GDRV to the gate to tailor EMC performance. An R_{GND} = 15 k Ω GDRV–GND resistor is strongly recommended.
5	VDRV	Driving voltage. Internally-regulated supply for driving the external N-MOSFET, sourced from VOUT. Bypass with a 1.0 μ F ceramic capacitor to ground.
6	VOUT	Monitors output voltage and provides IC input voltage.
7	VC	Output of the voltage error transconductance amplifier. An external compensator network from VC to GND is used to stabilize the converter.
8	ROSC	Use a resistor to ground to set the frequency.

ABSOLUTE MAXIMUM RATINGS (Voltages are with respect to GND, unless otherwise indicated)

Rating	Value	Unit
Dc Supply Voltage (VOUT)	–0.3 to 40	V
Peak Transient Voltage (Load Dump on VOUT)	45	V
Dc Supply Voltage (VDRV, GDRV)	12	V
Dc Voltage (VC, ISNS, ROSC)	-0.3 to 3.6	V
Dc Voltage (STATUS)	–0.3 to 6	V
Dc Voltage Stress (VOUT – VDRV)	–0.7 to 40	V
Operating Junction Temperature	-40 to 150	°C
Storage Temperature Range	–65 to 150	°C
Peak Reflow Soldering Temperature: Pb-Free, 60 to 150 seconds at 217°C	265 peak	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

PACKAGE CAPABILITIES

Char	Value	Unit	
ESD Capability (All Pins)	Human Body Model Machine Model	≥2.0 ≥200	kV V
Moisture Sensitivity Level		1	
Package Thermal Resistance	Junction–to–Ambient, $R_{\theta JA}$ (Note 1)	100	°C/W

1. 1 in², 1 oz copper area used for heatsinking.

TYPICAL VALUES

Part No.	D _{max}	f _S	Sa	V _{cl}	I _{src}	I _{sink}	VOUT	SCE
NCV887600	83%	170 kHz	34 mV/μs	400 mV	800 mA	600 mA	6.8 V	Ν
NCV887601	83%	170 kHz	53 mV/μs	200 mV	800 mA	600 mA	6.8 V	Ν

ELECTRICAL CHARACTERISTICS ($-40^{\circ}C < T_J < 150^{\circ}C$, 3.6 V $< V_{OUT} < 40$ V, unless otherwise specified) Min/Max values are guaranteed by test, design or statistical correlation.

	Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
Quiescent Current, No switching $I_{u,off}$ Into V_{QUT} pin, 6.8 V < $V_{QUT} < 7.3$ V, no switching - 2.2 4.0 mA OSCILLATOR Switching Frequency Fsw. Operating Range NCV887600 153 - 501 KHz Switching Fsw. Operating Range NCV887600 153 - 501 KHz Rosc Votage VROSC - 1.0 - V Default Switching Fsw. ROSC = 0.0 kL3 100 1153 170 187 KHz Minimum Duly Cycle Dmax ROSC = 0.0 kL3 901 115 140 ns Stope Compensating Ramp Sa ROSC = 0.0 kL3 NCV887601 36 34 36 mV/us STATUS Wake Up Delay Vgurr < 7.3 V	GENERAL						
No switching Image	Quiescent Current, Sleep Mode	I _{q,sleep}	V _{OUT} = 13.2 V, T _J = 25°C	-	12	14	μΑ
Switching Frequency F _{SW} Operating Range NCV887800 NCV887601 153 153 153 153 153 170 180 200 200 200 200 215 200 200 200 200 200 200 200 200 200 20	Quiescent Current, No switching	I _{q,off}		-	2.2	4.0	mA
Cont For NCV887601 153 - 501 Rogc Voltage VROSC - 1.0 - V Default Switching F_{SW} ROSC - Open (NCV887600) 153 170 187 kHz Default Switching F_{SW} ROSC - 100 kΩ 180 153 170 180 220 187 347 347 Minimum Pulse Width ton.min 90 115 140 ns 348 385 501 Stope Compensating Ramp Sa ROSC = OPEN 81 83 85 $\%$ Stope Compensating Ramp Sa NCV887600 30 34 36 80 mV/ us STATUS Vali-down Capability Sinking 1.0 mA - - 400 mV CURRENT SENSE AMPLIFIER Low-Frequency Gain Acsa Input-to-output gain at dc, ISNS < 1 V	OSCILLATOR			1	1		
Code Theode Notice Notice </td <td>Switching Frequency</td> <td>F_{SW}</td> <td></td> <td></td> <td></td> <td></td> <td>kHz</td>	Switching Frequency	F _{SW}					kHz
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R _{OSC} Voltage	V _{ROSC}		-	1.0	-	V
Maximum Duty Cycle Dmax ROSC = OPEN 81 83 85 % Slope Compensating Ramp (Note 2) S_a NCV887600 30 NCV887601 34 46 53 80 mV/ µs STATUS FLAG S STATUS FLAG - 9.3 14.0 µs STATUS Pul-down Capability Sinking 1.0 mA - 9.3 14.0 µs CURRENT SENSE AMPLIFIER E - 400 mV Low-Frequency Gain A_{csa} Input-to-output gain at dc, ISNS $\leq 1 V$ 0.9 1.0 1.1 V/V Bandwidth BW _{csa} Gain of A _{csa} - 3 dB 2.5 - - MHz ISNS Input Bias Current I _{ans,bias} Out of ISNS pin - 30 50 µA Current Limit, Threshold Voltage V _{cl} Voltage on ISNS pin NCV887601 180 200 220 20 N Current Limit, Response Time (Note 2) t _{cl} CL tripped until GDRV falling edge, V _{ISNS} = V _{cl} (P) + 60 mV - 80 125 ns <td>Default Switching</td> <td>F_{SW}</td> <td>ROSC = 100 kΩ ROSC = 20 kΩ</td> <td>180 283</td> <td>200 315</td> <td>220 347</td> <td>kHz</td>	Default Switching	F _{SW}	ROSC = 100 kΩ ROSC = 20 kΩ	180 283	200 315	220 347	kHz
Image (Note 2)Nmm SaNCV837600 NCV83760130 4634 5338 60mV/ μ s (Note 2)STATUS FLAGSTATUS Vake Up DelayV _{OUT} < 7.3 V	Minimum Pulse Width	t _{on,min}		90	115	140	ns
(Note 2)NCV887601465360STATUS FLAGSTATUS Wake Up Delay $V_{OUT} < 7.3 V$ -9.314.0 μs STATUS Pull-down CapabilitySinking 1.0 mA400mVCURRENT SENSE AMPLIFIERLow-Frequency GainAcaaInput-to-output gain at dc, ISNS $\leq 1 V$ 0.91.01.1V/VBandwidthBW _{csa} Gain of Acsa $\neg 3 dB$ 2.5MHzSINS Input Bias CurrentI_sns,biasOut of ISNS pin-3050 μA Current Limit Threshold VoltageV _{cl} Voltage on ISNS pinNCV887600360400440mVCurrent Limit, Response Timet_clCL tripped until GDRV falling edge, VisNS = V _{cl} (typ) + 60 mV-80125nsOvercurrent Protection, Threshold Voltage v_{ocp} From overcurrent event, Until switching stops, VisNS = V _{ocp} + 40 mV-80125nsOvercurrent Protection, Threshold Voltage $v_{out} = \pm 100 \text{ mV}$ 0.81.21.63mSVEA Output Current, Vc = 2.0 V80100- μA VEA Output current, Vc = 1.5 V80100- μA VEA Output current, Vc = 1.5 V80100- μA VEA Output current, Vc = 1.5 V80100- μA VEA Outp	Maximum Duty Cycle	D _{max}	ROSC = OPEN	81	83	85	%
STATUS Wake Up Delay $V_{OUT} < 7.3 V$ -9.314.0µsSTATUS Pull-down CapabilitySinking 1.0 mA400mVCURRENT SENSE AMPLIFIERLow-Frequency Gain A_{csa} Input-to-output gain at dc, ISNS $\leq 1 V$ 0.91.01.1V/VBandwidthBW _{csa} Gain of $A_{csa} - 3 dB$ 2.5MHzISNS Input Bias Current $I_{sns,bias}$ Out of ISNS pin-3050µACurrent Limit Threshold Voltage V_{cl} Voltage on ISNS pinNCV887600360400440mVCurrent Limit, Response Time t_{cl} CL tripped until GDRV falling edge, $V_{ISNS} = V_{ol}(typ) + 60 mV$ -80125nsOvercurrent Protection, Threshold Voltage k_{ccp} From overcurrent event, Until switching stops, $V_{ISNS} = V_{OCP} + 40 mV$ -80125nsVOLTAGE ERROR OPERATIONAL TRANSCONUCTANCE AMPLIFIERTransconductance $g_{m,vea}$ $V_{OUT} = \pm 100 mV$ 0.81.21.63mSVEA Output Resistance (Note 2) $R_{o,vea}$ VEA output current, $V_c = 2.0 V$ 80100- μA VEA Maximum Output Voltage $V_{c,inax}$ VEA output current, $V_c = 1.5 V$ 80100- μA VEA Sourcing Current $I_{src,vea}$ VEA output current, $V_c = 1.5 V$ 80100- μA VEA Glamp Voltage $V_{c,clamp}$ $V_{OUT} < 7.3 V$ -1.1-VVC Dela	Slope Compensating Ramp (Note 2)	S _a					mV/ μs
STATUS Pull-down CapabilitySinking 1.0 mA400mVCURRENT SENSE AMPLIFIERLow-Frequency Gain A_{csa} Input-to-output gain at dc, ISNS $\leq 1 V$ 0.91.01.1V/VBandwidthBW _{csa} Gain of $A_{csa} - 3 dB$ 2.5MHzISNS Input Bias Current $I_{sn, bias}$ Out of ISNS pin-3050 μA Current Limit Threshold Voltage V_{cl} Voltage on ISNS pinNCV887600 NCV887601360 180400 200440 220mVCurrent Limit, Response Time (Note 2) t_{cl} CL tripped until GDRV falling edge, VisNs = $V_{cl}(y_p) + 60 mV$ -80125nsOvercurrent Protection, Threshold Voltage $\% V_{ocp}$ Percent of V_{cl} 125150175 $\%$ Overcurrent Protection, Threshold Voltage $\psi_{c, op}$ From overcurrent event, Until switching stops, $V_{iSNS} = V_{OCP} + 40 mV$ -80125nsVOLT GE ERROR OPERATIONAL TRANSCONDUCTANCE AMPLIFIERTransconductance $g_{m,vea}$ $V_{OUT} = \pm 100 mV$ 0.81.21.63mSVEA Output Resistance (Note 2) $R_{o,rea}$ VEA output current, $Vc = 2.0 V$ 80100- μA VEA Sourcing Current $I_{snc,vea}$ VEA output current, $Vc = 1.5 V$ 80100- μA VEA Clamp Voltage $V_{c,clamp}$ $V_{OUT} < 7.3 Vvith V_C pin compensationnetwork disconnected-1.1-$	STATUS FLAG	•	•	•			
CURRENT SENSE AMPLIFIERLow-Frequency Gain A_{csa} Input-to-output gain at dc, ISNS ≤ 1 V 0.9 1.0 1.1 V/VBandwidthBW _{csa} Gain of $A_{csa} - 3$ dB 2.5 $ -$ MHzISNS Input Bias Current $I_{sns,blas}$ Out of ISNS pin $ 30$ 50 μA Current Limit Threshold Voltage V_{cl} Voltage on ISNS pinNCV887600 360 400 240 Current Limit, Response Time t_{cl} CL tripped until GDRV falling edge, $V_{ISNS} = V_{cl}(typ) + 60$ mV $ 80$ 125 nsOvercurrent Protection, Threshold Voltage $\psi_{V_{cp}}$ Percent of V_{cl} 125 150 175 $\%$ Overcurrent Protection, Response Time (Note 2) t_{ocp} From overcurrent event, Until switching stops, $V_{ISNS} = V_{oCP} + 40$ mV $ 80$ 125 nsVOLTAGE ERROR OPERATIONAL TRANSCONDUCTANCE AMPLIFIERTransconductance $g_{m,vea}$ $V_{OUT} = \pm 100$ mV 0.8 1.2 1.63 mSVEA Output Resistance (Note 2) $R_{0,vea}$ 2.0 $ V_{Q}$ VEA Sourcing Current $I_{src,vea}$ VEA output current, Vc = 2.0 V 80 100 $ \mu A$ VEA Clamp Voltage $V_{c,clamp}$ $V_{QUT} < 7.3$ V///> $V_{QUT} < 7.3$ V///> $V_{QUT} < 7.3$ M///> $V_{QUT} < 7.3$ M///> $V_{QUT} < 5.5$ 800 $ mA$ Sourcing Current I_{src} $V_{DRV} > 6$ OV, $V_{DRV} < 2 V$ $NCV887600$ <td>STATUS Wake Up Delay</td> <td></td> <td>V_{OUT} < 7.3 V</td> <td>-</td> <td>9.3</td> <td>14.0</td> <td>μs</td>	STATUS Wake Up Delay		V _{OUT} < 7.3 V	-	9.3	14.0	μs
Low-Frequency Gain A_{csa} Input-to-output gain at dc, ISNS ≤ 1 V 0.9 1.0 1.1 V/V BandwidthBW _{csa} Gain of $A_{csa} - 3$ dB 2.5 $ -$ MHzISNS Input Bias Current $I_{gns, bias}$ Out of ISNS pin $ 30$ 50 μA Current Limit Threshold Voltage V_{cl} Voltage on ISNS pinNCV887600 360 NCV887601 400 200 240 240 Current Limit, Response Time (Note 2) t_{cl} CL tripped until GDRV falling edge, $V_{ISNS} = V_{cl}(typ) + 60$ mV $ 80$ 125 nsOvercurrent Protection, Threshold Voltage δ_{vCp} Percent of V_{cl} 125 150 175 $\%$ Overcurrent Protection, Response Time (Note 2) t_{ocp} From overcurrent event, Until switching stops, $V_{ISNS} = V_{oCP} + 40$ mV $ 80$ 125 ns VOLTAGE ERROR OPERATIONAL TRANSCONUCTANCE AMPLIFIER 2.0 $ M\Omega$ Transconductance $g_{m,vea}$ $V_{OUT} = \pm 100$ mV 0.8 1.2 1.63 mSVEA Output Resistance (Note 2) $R_{o,vea}$ 2.0 $ M\Omega$ VEA Sourcing Current $I_{sn,vea}$ VEA output current, Vc = 2.0 V 80 100 $ \mu A$ VEA Sourcing Current $I_{sn,vea}$ VEA output current, Vc = 1.5 V 80 100 $ \mu A$ VEA Clamp Voltage $V_{c,clamp}$ $V_{OUT} < 7.3$ W/th V_c pin compensation network disconnected $-$ <t< td=""><td>STATUS Pull-down Capability</td><td></td><td>Sinking 1.0 mA</td><td>-</td><td>-</td><td>400</td><td>mV</td></t<>	STATUS Pull-down Capability		Sinking 1.0 mA	-	-	400	mV
BandwidthBW _{csa} Gain of A _{csa} - 3 dB2.5MHzISNS Input Bias CurrentI _{sns,bias} Out of ISNS pin-3050 μ ACurrent Limit Threshold VoltageV _{cl} Voltage on ISNS pinNCV887600360400440mVCurrent Limit, Response Time (Note 2)t _{cl} CL tripped until GDRV falling edge, $V_{ISNS} = V_{cl}(typ) + 60 mV$ -80125nsOvercurrent Protection, Threshold Voltage%V _{ocp} Percent of V _{cl} 125150175%Overcurrent Protection, Response Time (Note 2)t _{ocp} From overcurrent event, Until switching stops, V _{ISNS} = V _{OCP} + 40 mV-80125ns VOLTAGE ERROR OPERATIONAL TRANSCONDUCTANCE AMPLIFIER Transconductancegm,veaV _{OUT} = ±100 mV0.81.21.63mSVEA Output Resistance (Note 2)R _{0,vea} VEA output current, Vc = 2.0 V80100- μ AVEA Sourcing CurrentI _{snk,vea} VEA output current, Vc = 1.5 V80100- μ AVEA Clamp VoltageV _{c,clamp} V _{OUT} < 7.3 V	CURRENT SENSE AMPLIFIER	•	•	•			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Low-Frequency Gain	A _{csa}	Input-to-output gain at dc, ISNS \leq 1 V	0.9	1.0	1.1	V/V
Current Limit Threshold Voltage V_{cl} Voltage on ISNS pinNCV887600 NCV887601 360 180 400 200 440 220 mVCurrent Limit, Response Time (Note 2) t_{cl} CL tripped until GDRV falling edge, $V_{ISNS} = V_{cl}(typ) + 60 mV$ - 80 125 nsOvercurrent Protection, Threshold Voltage $\% V_{ocp}$ Percent of V_{cl} 125 150 175 $\%$ Overcurrent Protection, Response Time (Note 2) t_{ocp} From overcurrent event, Until switching stops, $V_{ISNS} = V_{OCP} + 40 mV$ - 80 125 nsVOLTAGE ERROR OPERATIONAL TRANSCONDUCTANCE AMPLIFIERTransconductance $g_{m,vea}$ $V_{OUT} = \pm 100 mV$ 0.8 1.2 1.63 mSVEA Output Resistance (Note 2) $R_{o,vea}$ $V_{C,max}$ 2.0 MQ VEA Sourcing Current $l_{src,vea}$ VEA output current, Vc = $2.0 V$ 80 100 - μA VEA Clamp Voltage $V_{c,clamp}$ $V_{OUT} < 7.3 V$ - 1.1 - V VC Delay $V_{out} < 7.3 V$ with V_{C} pin compensation network disconnected $ 550$ 800 $ mA$ Sourcing Current l_{src} $V_{DRV} \ge 6 V$, $V_{DRV} - V_{OBRV} = 2 V$ $NCV887600$ 550 800 $ mA$ VC Delay $V_{GDRV} \ge 2 V$ $NCV887600$ 550 800 $ mA$ Sourcing Current l_{sink} $V_{QDRV} \ge 2 V$ $NCV887600$ 550 800 $-$ <td< td=""><td>Bandwidth</td><td>BW_{csa}</td><td>Gain of A_{csa} – 3 dB</td><td>2.5</td><td>-</td><td>-</td><td>MHz</td></td<>	Bandwidth	BW _{csa}	Gain of A _{csa} – 3 dB	2.5	-	-	MHz
NCV887601180200220Current Limit, Response Time (Note 2) t_{cl} CL tripped until GDRV falling edge, $V_{ISNS} = V_{cl}(typ) + 60 mV$ -80125nsOvercurrent Protection, Threshold Voltage%V_{ocp}Percent of V_{cl}125150175%Overcurrent Protection, Response Time (Note 2) t_{ocp} From overcurrent event, Until switching stops, $V_{ISNS} = V_{OCP} + 40 mV$ -80125nsVOLTAGE ERROR OPERATIONAL TRANSCOVECTANCE AMPLIFIERTransconductance $g_{m,vea}$ $V_{OUT} = \pm 100 mV$ 0.81.21.63mSVEA Output Resistance (Note 2) $R_{o,vea}$ 2.0MQVEA Maximum Output Voltage $V_{c,max}$ 2.5VVEA Sourcing Current $I_{snk,vea}$ VEA output current, Vc = 2.0 V80100- μA VEA Clamp Voltage $V_{c,clamp}$ VOUT < 7.3 V	ISNS Input Bias Current	I _{sns,bias}	Out of ISNS pin	-	30	50	μΑ
(Note 2)VISNS = V _{cl} (typ) + 60 mV125150175%Overcurrent Protection, Threshold Voltage \aleph_{Ocp} Percent of V _{cl} 125150175%Overcurrent Protection, Response Time (Note 2) t_{ocp} From overcurrent event, Until switching stops, VISNS = V _{OCP} + 40 mV-80125nsVOLTAGE ERROR OPERATIONAL TRANSCONUCTANCE AMPLIFIERTransconductance $g_{m,vea}$ $V_{OUT} = \pm 100 \text{ mV}$ 0.81.21.63mSVEA Output Resistance (Note 2) $R_{o,vea}$ 2.0MQVEA Maximum Output Voltage $V_{c,max}$ 2.5VVEA Sourcing Current $I_{src,vea}$ VEA output current, Vc = 2.0 V80100- μA VEA Clamp Voltage $V_{c,clamp}$ $V_{OUT} < 7.3 V$ -1.1-VVC Delay $V_{OUT} < 7.3 V$ -1.1-VVC Delay I_{src} $V_{DRV} \ge 6 V$, $V_{DRV} \ge 0 R$ NCV887600550800-mASourcing Current I_{srk} $V_{GDRV} \ge 2 V$ NCV887600550800-mA	Current Limit Threshold Voltage	V _{cl}					mV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Current Limit, Response Time (Note 2)	t _{cl}		-	80	125	ns
Response Time (Note 2) $stops, V_{ISNS} = V_{OCP} + 40 \text{ mV}$ $stops, V_{ISN} = V_{ISN} = V_{ISN}$ $stops, V_{ISNS} = V_{OCP} + 40 \text{ mV}$ $stops, V_{ISN} = V_{ISN}$ $stops, V_{ISN} = V$		%V _{ocp}	Percent of V _{cl}	125	150	175	%
Transconductance gm,vea V _{OUT} = ±100 mV 0.8 1.2 1.63 mS VEA Output Resistance (Note 2) R _{o,vea} 2.0 - - MΩ VEA Maximum Output Voltage V _{c,max} 2.5 - - V VEA Sourcing Current I _{src,vea} VEA output current, Vc = 2.0 V 80 100 - μA VEA Sinking Current I _{snk,vea} VEA output current, Vc = 1.5 V 80 100 - μA VEA Clamp Voltage V _{c,clamp} V _{OUT} < 7.3 V		t _{ocp}		-	80	125	ns
VEA Output Resistance (Note 2) $R_{o,vea}$ 2.0 $M\Omega$ VEA Maximum Output Voltage $V_{c,max}$ 2.5VVEA Sourcing Current $I_{src,vea}$ VEA output current, Vc = 2.0 V80100- μA VEA Sinking Current $I_{snk,vea}$ VEA output current, Vc = 1.5 V80100- μA VEA Clamp Voltage $V_{c,clamp}$ $V_{OUT} < 7.3 V$ -1.1-VVC Delay $V_{0UT} < 7.3 V$ with V_C pin compensation network disconnected-5360 μs GATE DRIVER (Note 3)Sourcing Current I_{src} $V_{DRV} \ge 6 V$, $V_{DRV} - V_{GDRV} = 2 V$ NCV887600 NCV887601550 	VOLTAGE ERROR OPERATIONAL	L TRANSCON	DUCTANCE AMPLIFIER				
VEA Maximum Output Voltage $V_{c,max}$ 2.5VVEA Sourcing Current $I_{src,vea}$ VEA output current, Vc = 2.0 V80100- μA VEA Sinking Current $I_{snk,vea}$ VEA output current, Vc = 1.5 V80100- μA VEA Clamp Voltage $V_{c,clamp}$ $V_{OUT} < 7.3 V$ -1.1-VVC Delay $V_{0,clamp}$ $V_{0,clamp}$ $V_{0,clamp} < 7.3 V$ -5360 μs GATE DRIVER (Note 3)Sourcing Current I_{src} $V_{DRV} \ge 6 V$, $V_{ODRV} = 2 V$ $NCV887600$ $NCV887601$ 550 550 800 800 -mASinking Current I_{sink} $V_{GDRV} \ge 2 V$ $NCV887600$ $S500$ 500 600 -mA	Transconductance	g _{m,vea}	$V_{OUT} = \pm 100 \text{ mV}$	0.8	1.2	1.63	mS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	VEA Output Resistance (Note 2)	R _{o,vea}		2.0	-	-	MΩ
VEA Sinking CurrentIIIIVEA Sinking CurrentIIIIIIVEA Clamp VoltageVVVOUT < 7.3 V	VEA Maximum Output Voltage	V _{c,max}		2.5	-	-	V
$\begin{array}{c c c c c c c } VEA Clamp Voltage & V_{c,clamp} & V_{OUT} < 7.3 V & - & 1.1 & - & V \\ VC Delay & V_{OUT} < 7.3 V with V_{C} pin compensation & - & 53 & 60 & \mu s \\ \hline & V_{OUT} < 7.3 V with V_{C} pin compensation & - & 53 & 60 & \mu s \\ \hline & GATE DRIVER (Note 3) & & & & & & & & & & & & & & & & & & $	VEA Sourcing Current	I _{src,vea}	VEA output current, Vc = 2.0 V	80	100	-	μΑ
VC Delay $V_{OUT} < 7.3$ With V_C pin compensation network disconnected-5360 μs GATE DRIVER (Note 3)Sourcing Current I_{src} $V_{DRV} \ge 6$ V, $V_{DRV} - V_{GDRV} = 2$ VNCV887600 NCV887601550 550800 800-mASinking Current I_{sink} $V_{GDRV} \ge 2$ VNCV887600 NCV887600500600-mA	VEA Sinking Current	I _{snk,vea}	VEA output current, Vc = 1.5 V	80	100	-	μΑ
Image: Sourcing Current Image: Image: Sourcing Current Image: Image: Image: Image: Sourcing Current Image: Image: Image: Image: Image: Sourcing Current Image: Imag	VEA Clamp Voltage	V _{c,clamp}	V _{OUT} < 7.3 V	-	1.1	-	V
Sourcing Current I_{src} $V_{DRV} \ge 6 V$, $V_{DRV} - V_{GDRV} = 2 V$ NCV887600 NCV887601 550 550 800 800 - mA Sinking Current I_{sink} $V_{GDRV} \ge 2 V$ NCV887600 500 600 - mA	VC Delay			-	53	60	μs
Sinking Current I V V NCV887601 550 800 - Sinking Current I V V NCV887600 500 600 - mA	GATE DRIVER (Note 3)	-	-		-		-
	Sourcing Current	I _{src}					mA
	Sinking Current	I _{sink}					mA

0.6

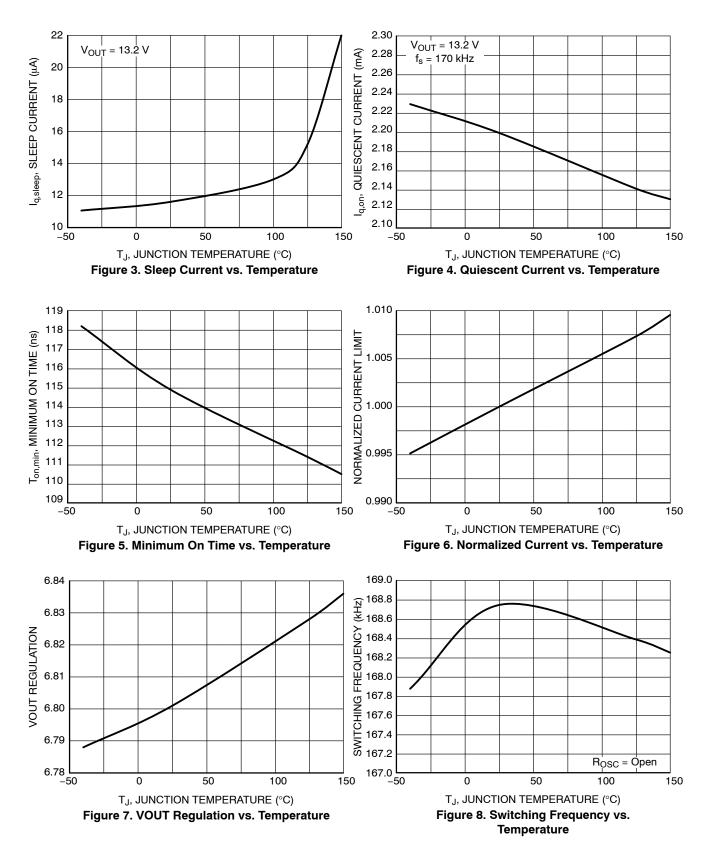
0.3

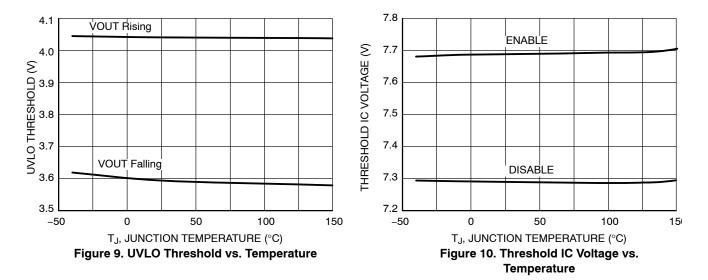
_

V

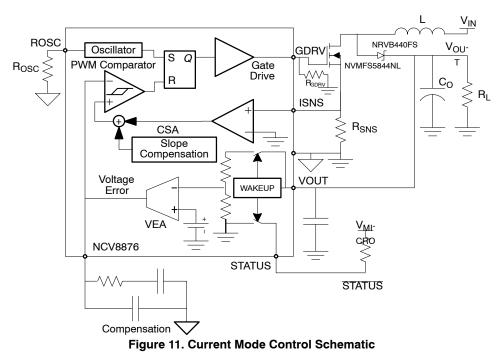
 $V_{OUT} - V_{DRV}$, $Iv_{DRV} = 25 \text{ mA}$

Driving Voltage Dropout (Note 2)


V_{drv,do}


ELECTRICAL CHARACTERISTICS (-40°C < T_J < 150°C, 3.6 V < V_{OUT} < 40 V, unless otherwise specified) Min/Max values are guaranteed by test, design or statistical correlation.

Characteristic	Symbol	Conditions		Min	Тур	Max	Unit
GATE DRIVER (Note 3)	•						
Driving Voltage Source Current	l _{drv}	V _{OUT} – V _{DRV} = 1 V		35	45	-	mA
Backdrive Diode Voltage Drop	V _{d,bd}	$V_{DRV} - V_{OUT}$, $I_{d,bd} = 5 \text{ mA}$		-	-	0.7	V
Driving Voltage	V _{DRV}	I _{VDRV} = 0.1 – 25 mA	NCV887600 NCV887601	5.8 5.8	6.0 6.0	6.2 6.2	V
UVLO							
Undervoltage Lock-out, Threshold Voltage	V _{uvlo,fall}	VOUT falling		3.4	3.59	3.8	V
Undervoltage Lock-out	V _{uvlo,rise}	VOUT rising		3.90	4.05	4.20	V
THERMAL SHUTDOWN							
Thermal Shutdown Threshold (Note 2)	T _{sd}	T _J rising		160	170	180	°C
Thermal Shutdown Hysteresis (Note 2)	T _{sd,hys}	T _J falling		10	15	20	°C
Thermal Shutdown Delay (Note 2)	t _{sd,dly}	From $T_J > T_{sd}$ to stop switching	9	-	-	100	ns
VOLTAGE REGULATION							
Voltage Regulation	VOUT _{,reg}		NCV887600 NCV887601	6.66 6.66	6.8 6.8	6.94 6.94	V
Threshold IC Enable		VOUT descending	NCV887600 NCV887601	7.1 7.1	7.3 7.3	7.5 7.5	V
Threshold IC Disable		VOUT ascending	NCV887600 NCV887601	7.5 7.5	7.7 7.7	7.9 7.9	V
Threshold IC Enable – Voltage Regulation			NCV887600 NCV887601	0.32 0.32	0.5 0.5		V
Threshold IC Disable – Threshold IC Enable			NCV887600 NCV887601	-	0.4 0.4		V


Not tested in production. Limits are guaranteed by design.
 An R_{GND} = 15 kΩ GDRV-GND resistor is strongly recommended.

TYPICAL CHARACTERISTICS

THEORY OF OPERATION

Regulation

The NCV8876 is a non-synchronous boost controller designed to supply a minimum output voltage during Start-Stop vehicle operation battery voltage sags. The NCV8876 is in low quiescent current sleep mode under normal battery operation (12 V) and is enabled when the supply voltage drops below the descending threshold (7.3 V for the NCV887600). Boost operation is initiated when the supply voltage is below the regulation set point (6.8 V for the NCV887600). Once the supply voltage sag condition ends and begins to increase, the NCV8876 boost operation will cease when the supply voltage increases beyond the regulation set point. The NCV8876 low quiescent current sleep mode resumes once the supply voltage increases beyond the ascending voltage threshold (7.7 V for the NCV887600).

The NCV8876 VOUT pin serves the dual purpose: (1) powering the NCV8876 and (2) providing the regulation feedback signal. The feedback network is imbedded within the IC to eliminate the constant current battery drain that would exist with the use of external voltage feedback resistors.

There is no soft-start operating mode. The NCV8876 will instantly respond to a voltage sag so as to maintain normal operation of downstream loads. Once the NCV8876 is enabled, the voltage error operational transconductance amplifier supplies current to set VC to 1.1 V to minimize the feedback loop response time when the battery voltage sag goes below the regulation set point.

Current Mode Control

The NCV8876 incorporates a current mode control scheme, in which the PWM ramp signal is derived from the power switch current. This ramp signal is compared to the output of the error amplifier to control the on-time of the power switch. The oscillator is used as a fixed-frequency clock to ensure a constant operational frequency. The resulting control scheme features several advantages over conventional voltage mode control. First, derived directly from the inductor, the ramp signal responds immediately to line voltage changes. This eliminates the delay caused by the output filter and the error amplifier, which is commonly found in voltage mode controllers. The second benefit comes from inherent pulse-by-pulse current limiting by merely clamping the peak switching current. Finally, since current mode commands an output current rather than voltage, the filter offers only a single pole to the feedback loop. This allows for a simpler compensation.

The NCV8876 also includes a slope compensation scheme in which a fixed ramp generated by the oscillator is added to the current ramp. A proper slope rate is provided to improve circuit stability without sacrificing the advantages of current mode control.

Current Limit

The NCV8876 features two current limit protections, peak current mode and over current latch off. When the current sense amplifier detects a voltage above the peak current limit between ISNS and GND after the current limit leading edge blanking time, the peak current limit causes the power switch to turn off for the remainder of the cycle. Set the current limit with a resistor from ISNS to GND, with R = V_{CL} / I_{limit} .

If the voltage across the current sense resistor exceeds the over current threshold voltage the device enters over current hiccup mode. The device will remain off for the hiccup time of duration $1024/f_{osc}$.

UVLO

Input Undervoltage Lockout (UVLO) is provided to ensure that unexpected behavior does not occur when VIN is too low to support the internal rails and power the controller. The IC will start up when enabled and VIN surpasses the UVLO threshold plus the UVLO hysteresis and will shut down when VIN drops below the UVLO threshold or the part is disabled.

VDRV

An internal regulator provides the drive voltage for the gate driver. Bypass with a ceramic capacitor to ground to

Design Methodology

This section details an overview of the component selection process for the NCV8876 in continuous conduction mode boost. It is intended to assist with the design process but does not remove all engineering design work. Many of the equations make heavy use of the small ripple approximation. This process entails the following steps:

- 1. Define Operational Parameters
- 2. Select Operating Frequency
- 3. Select Current Sense Resistor
- 4. Select Output Inductor
- 5. Select Output Capacitors
- 6. Select Input Capacitors
- 7. Select Compensator Components
- 8. Select MOSFET(s)
- 9. Select Diode
- 10. Design Notes
- 11. Determine Feedback Loop Compensation Network

1. Define Operational Parameters

Before beginning the design, define the operating parameters of the application. These include:

V_{IN(min)}: minimum input voltage [V]

V_{IN(max):} maximum input voltage [V]

V_{OUT}: output voltage [V]

I_{OUT(max)}: maximum output current [A]

I_{CL}: desired typical cycle-by-cycle current limit [A]

From this the ideal minimum and maximum duty cycles can be calculated as follows:

$$D_{min} = 1 - \frac{V_{IN(max)}}{V_{OUT}}$$
$$D_{max} = 1 - \frac{V_{IN(min)}}{V_{OUT}}$$

Both duty cycles will actually be higher due to power loss in the conversion. The exact duty cycles will depend on conduction and switching losses. If the maximum input voltage is higher than the output voltage, the minimum duty cycle will be negative. This is because a boost converter cannot have an output lower than the input. In situations where the input is higher than the output, the output will

ensure fast turn on times. The capacitor should be between 0.1 µF and 1 µF, depending on switching speed and charge requirements of the external MOSFET.

VDRV uses an internal linear regulator to charge the VDRV bypass capacitor. VOUT must be decoupled at the IC by a capacitor that is equal or larger in value than the VDRV decoupling capacitor.

GDRV

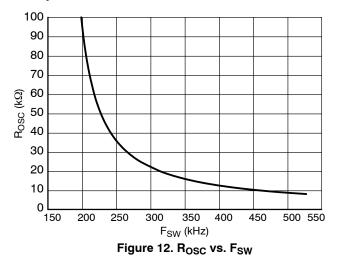
An $R_{GND} = 15 \text{ k}\Omega$ GDRV-GND resistor is strongly recommended.

APPLICATION INFORMATION

follow the input, minus the diode drop of the output diode and the converter will not attempt to switch.

If the calculated D_{max} is higher the D_{max} of the NCV8876, the conversion will not be possible. It is important for a boost converter to have a restricted D_{max}, because while the ideal conversion ration of a boost converter goes up to infinity as D approaches 1, a real converter's conversion ratio starts to decrease as losses overtake the increased power transfer. If the converter is in this range it will not be able to regulate properly.

If the following equation is not satisfied, the device will skip pulses at high V_{IN}:


$$\frac{\mathsf{D}_{\min}}{f_{\mathsf{S}}} \geq \mathsf{t}_{\mathsf{on}(\min)}$$

Where: f_s: switching frequency [Hz] ton(min): minimum on time [s]

2. Select Operating Frequency

The default setting is an open ROSC pin, allowing the oscillator to operate at the default frequency F_s. Adding a resistor to GND increases the switching frequency.

The graph in Figure 12, below, shows the required resistance to program the frequency. From 200 kHz to 500 kHz, the following formula is accurate to within 3% of the expected.

$$R_{OSC} = \frac{2859}{(F_{sw} - 170)}$$

Where: f_{sw}: switching frequency [kHz] R_{OSC}: resistor from ROSC pin to GND [k]

Note: The R_{OSC} resistor ground return to the NCV8876 pin 3 must be independent of power grounds.

3. Select Current Sense Resistor

Current sensing for peak current mode control and current limit relies on the MOSFET current signal, which is measured with a ground referenced amplifier. The easiest method of generating this signal is to use a current sense resistor from the source of the MOSFET to device ground. The sense resistor should be selected as follows:

$$\mathsf{R}_\mathsf{S} = \frac{\mathsf{V}_\mathsf{CL}}{\mathsf{I}_\mathsf{CL}}$$

Where: R_S : sense resistor [Ω] V_{CL} : current limit threshold voltage [V] I_{CL} : desire current limit [A]

4. Select Output Inductor

The output inductor controls the current ripple that occurs over a switching period. A high current ripple will result in excessive power loss and ripple current requirements. A low current ripple will result in a poor control signal and a slow current slew rate in case of load steps. A good starting point for peak to peak ripple is around 20–40% of the inductor current at the maximum load at the worst case V_{IN}, but operation should be verified empirically. The worst case V_{IN} is half of V_{OUT}, or whatever V_{IN} is closest to half of V_{OUT}. After choosing a peak current ripple value, calculate the inductor value as follows:

$$\mathsf{L} = \frac{\mathsf{V}_{\mathsf{IN}(\mathsf{WC})} \, \mathsf{D}_{\mathsf{WC}}}{\Delta \mathsf{I}_{\mathsf{L},\mathsf{max}} \, f_{\mathsf{s}}}$$

Where: V_{IN(WC)}: V_{IN} value as close as possible to half of V_{OUT} [V]

D_{WC}: duty cycle at V_{IN(WC)}

$$\Delta I_{L,max}$$
: maximum peak to peak ripple [A]

The maximum average inductor current can be calculated as follows:

$$I_{L,AVG} = \frac{V_{OUT}I_{OUT(max)}}{V_{IN(min)}\eta}$$

The Peak Inductor current can be calculated as follows:

$$I_{L,peak} = I_{L,avg} + \frac{\Delta I_{L,max}}{2}$$

Where: I_{L,peak}: Peak inductor current value [A]

5. Select Output Capacitors

The output capacitors smooth the output voltage and reduce the overshoot and undershoot associated with line transients. The steady state output ripple associated with the output capacitors can be calculated as follows: V_{OUT(ripple)} =

$$\frac{\mathsf{DI}_{\mathsf{OUT}(\mathsf{max})}}{f\mathsf{C}_{\mathsf{OUT}}} + \left(\frac{\mathsf{I}_{\mathsf{OUT}(\mathsf{max})}}{1-\mathsf{D}} + \frac{\mathsf{V}_{\mathsf{IN}(\mathsf{min})}\mathsf{D}}{2f\mathsf{L}}\right) \mathsf{R}_{\mathsf{ESR}}$$

The capacitors need to survive an RMS ripple current as follows:

$$I_{\text{Cout}(\text{RMS})} = I_{\text{OUT}} \sqrt{\frac{D_{\text{WC}}}{D'_{\text{WC}}} + \frac{D_{\text{WC}}}{12} \left(\frac{D'_{\text{WC}}}{\frac{L}{R_{\text{OUT}} \times T_{\text{SW}}}}\right)^2}$$

The use of parallel ceramic bypass capacitors is strongly encouraged to help with the transient response.

6. Select Input Capacitors

The input capacitor reduces voltage ripple on the input to the module associated with the ac component of the input current.

$$I_{Cin(RMS)} = \frac{V_{IN(WC)}^{2} D_{WC}}{L f_{s} V_{OUT}^{2} \sqrt{3}}$$

7. Select Compensator Components

Current Mode control method employed by the NCV8876 allows the use of a simple, Type II compensation to optimize the dynamic response according to system requirements.

8. Select MOSFET(s)

In order to ensure the gate drive voltage does not drop out the MOSFET(s) chosen must not violate the following inequality:

$$Q_{g(total)} \le \frac{I_{drv}}{f_s}$$

Where: Q_{g(total)}: Total Gate Charge of MOSFET(s) [C] I_{drv}: Drive voltage current [A]

f_s: Switching Frequency [Hz]

The maximum RMS Current can be calculated as follows:

$$I_{Q(max)} = I_{out} \frac{\sqrt{D}}{D'}$$

The maximum voltage across the MOSFET will be the maximum output voltage, which is the higher of the maximum input voltage and the regulated output voltaged:

$$V_{Q(max)} = V_{OUT(max)}$$

NVMFS5844NL 12 m Ω , 60 V SO-8FL package MOSFET is a recommended device.

9. Select Diode

The output diode rectifies the output current. The average current through diode will be equal to the output current:

$$I_{D(avg)} = I_{OUT(max)}$$

Additionally, the diode must block voltage equal to the higher of the output voltage and the maximum input voltage:

$$V_{D(max)} = V_{OUT(max)}$$

The maximum power dissipation in the diode can be calculated as follows:

$P_D = V_{f(max)} I_{OUT(max)}$

Where: P_d: Power dissipation in the diode [W]

 $V_{f(max)}$: Maximum forward voltage of the diode [V] The 4 amp, 40 V NRVB440MFS SO-8FL package Schottky diode is a recommended device.

10. Design Notes

- VOUT serves a dual purpose (feedback and IC power). The VDRV circuit has a current pulse power draw resulting in current flow from the output sense location to the IC. Trace ESL will cause voltage ripple to develop at IC pin VOUT which could affect performance.
 - Use a 1 µF IC VOUT pin decoupling capacitor close to IC in addition to the VDRV decoupling capacitor.
- Classic feedback loop measurements are not possible (VOUT pin serves a dual purpose as a feedback path and IC power). Feedback loop computer modeling recommended.
 - A step load test for stability verification is recommended.
- Compensation ground must be dedicated and connected directly to IC ground.
 - Do not use vias. Use a dedicated ground trace.
- ROSC programming resistor ground must be dedicated and connected directly to IC ground
 - Do not use vias. Use a dedicated ground trace.
- IC ground & current sense resistor ground sense point must be located on the same side of PCB.
 - Vias introduce sufficient ESR/ESL voltage drop which can degrade the accuracy of the current feedback signal amplitude (signal bounce) and should be avoided.
- Star ground should be located at IC ground pad.

- This is the location for connecting the compensation and current sense grounds.
- The IC architecture has a leading edge ISNS blanking circuit. In some instances, current pulse leading edge current spike RC filter may be required.
 - If required, $120 \text{ pF} + 750 \Omega$ are a recommended evaluation starting point.

11. Determine Feedback Loop Compensation Network

The purpose of a compensation network is to stabilize the dynamic response of the converter. By optimizing the compensation network, stable regulation response is achieved for input line and load transients.

Compensator design involves the placement of poles and zeros in the closed loop transfer function. Losses from the boost inductor, MOSFET, current sensing and boost diode losses also influence the gain and compensation expressions. The OTA has an ESD protection structure $(R_{ESD} \approx 502 \Omega)$, data not provided in the datasheet) located on the die between the OTA output and the IC package compensation pin (VC). The information from the OTA PWM feedback control signal (V_{CTRL}) may differ from the IC–VC signal if R_2 is of similar order of magnitude as R_{ESD} . The compensation and gain expressions which follow take influence from the OTA output impedance elements into account.

Type–I compensation is not possible due to the presence of R_{ESD} . The Figure 13 compensation network corresponds to a Type–II network in series with R_{ESD} . The resulting control–output transfer function is an accurate mathematical model of the IC in a boost converter topology. The model does have limitations and a more accurate SPICE model should be considered for a more detailed analysis:

- The attenuating effect of large value ceramic capacitors in parallel with output electrolytic capacitor ESR is not considered in the equations.
- The efficiency term η should be a reasonable operating condition estimate.

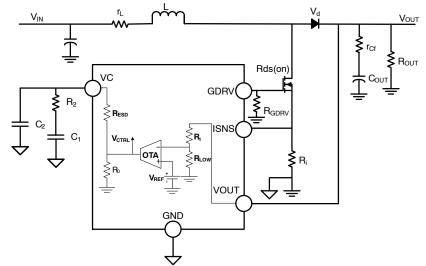


Figure 13. NCV8876 OTA and Compensation

A worksheet as well as a SPICE model which may be used for selecting compensation components R_2 , C_1 , C_2 is available at the ON Semiconductor web site (http://onsemi.com/PowerSolutions/product.do?id=NCV8 876). The following equations may be used to analyze the Figure 10 boost converter. Required input design parameters for analysis are:

$$\begin{split} V_d &= \text{Boost diode } V_f(V) \\ V_{IN} &= \text{Boost supply input voltage (V)} \\ R_i &= \text{Current sense resistor } (\Omega) \\ R_{DS(on)} &= \text{MOSFET } R_{DS(on)} \left(\Omega\right) \\ C_{OUT} &= \text{Bulk output capacitor value (F)} \\ R_{sw_eq} &= R_{DS(on)} + R_i, \text{ for the boost continuous conduction mode (CCM) expressions} \\ r_{CF} &= \text{Bulk output capacitor ESR } (\Omega) \end{split}$$

$$\begin{split} & \text{R}_{\text{OUT}} = \text{Equivalent resistance of output load} \left(\Omega\right) \\ & \text{P}_{\text{out}} = \text{Output Power}\left(W\right) \\ & \text{L} = \text{Boost inductor value}\left(H\right) \\ & \text{r}_{\text{L}} = \text{Boost inductor ESR}\left(\Omega\right) \\ & \text{T}_{\text{s}} = 1/f_{\text{s}}, \text{ where } f_{\text{s}} = \text{clock frequency}\left(\text{Hz}\right) \\ & \text{V}_{\text{OUT}} = \text{Device specific output voltage} (\text{e.g. } 6.8 \text{ V} \\ & \text{for NCV887601}\right)(V) \\ & \text{V}_{\text{ref}} = \text{OTA internal voltage reference} = 1.2 \text{ V} \\ & \text{R}_{0} = \text{OTA output resistance} = 3 \text{ M}\Omega \\ & \text{S}_{a} = \text{IC slope compensation} (\text{e.g. } 53 \text{ mV/}\mu\text{s for NCV887601}) \\ & \text{g}_{\text{m}} = \text{OTA transconductance} = 1.2 \text{ mS} \\ & \text{D} = \text{Controller duty ratio} \\ & \text{D}' = 1 - \text{D} \end{split}$$

Necessary equations for describing the modulator gain (V_{ctrl} -to- V_{out} gain) H_{ctrl} -output(f) are described in Table 1.

Duty ratio (D)	$\frac{\left[2R_{OUT}V_{d}V_{IN} - \left[R_{sw_{eq}} + R_{OUT}\left(\frac{V_{IN}}{V_{OUT}} - 2\right)\right]V_{OUT}^{2} - V_{OUT}\sqrt{R_{OUT}\left(\frac{R_{OUT}V_{IN}^{2} + 2R_{sw_{eq}}V_{IN}V_{OUT}^{-4V_{d}}R_{sw_{eq}}V_{IN}}{-4R_{sw_{eq}}V_{OUT}^{2} - 4r_{L}V_{d}V_{IN}^{-4r_{L}}V_{OUT}^{2}}\right) + R_{sw_{eq}}^{2}V_{OUT}^{2}}\right]}$ $\frac{2R_{OUT}\left(V_{OUT}^{2} + V_{d}V_{IN}\right)}{2R_{OUT}\left(V_{OUT}^{2} + V_{d}V_{IN}\right)}$					
V _{out} /V _{in} DC Conversion Ratio (M)	$\frac{1}{1-D} \left[1 - \frac{(1-D)V_d}{V_{OUT}} \right] \left[\frac{1}{1 + \frac{1}{(1-D)^2 \left(\frac{r_L + DR_{sw_eq}}{R_{OUT}} \right)}} \right]$					
Average Inductor Current (I _{lave})	^P _{OUT} V _{IN} η					
Inductor On-slope (S _n)	$\frac{V_{IN} - I_{Lave}(r_L + R_{sw_eq})}{L}R_i$					
Compensation Ramp (m _c)	$1 + \frac{S_a}{S_n}$					
C _{out} ESR Zero (ω _{z1})	1 r _{CF} C _{OUT}					
Right-half-plane Zero (ω _{z2})	$\frac{(1-D)^2}{L} \left(R_{OUT} - \frac{r_{CF} R_{OUT}}{r_{CF} + R_{OUT}} \right) - \frac{r_{L}}{L}$					
Low Frequency Modulator Pole (ω_{p1})	$\frac{\frac{2}{R_{OUT}} + \frac{T_{s}}{LM^{3}}m_{c}}{C_{OUT}}$					
Sampling Double Pole (ω_n)	$\frac{\pi}{T_s}$					
Sampling Quality Coefficient (Q_p)	$\frac{1}{\pi(m_c(1 - D) - 0.5)}$					

Table 1. BOOST CCM TRANSFER FUNCTION EXPRESSIONS

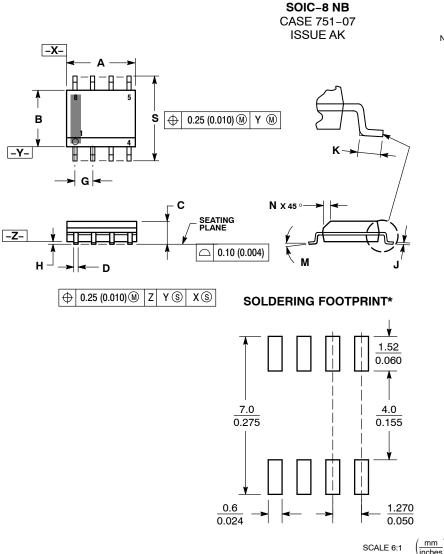
Table 1. BOOST CCM TRANSFER FUNCTION EXPRESSIONS

F _m	$\frac{1}{2M + \frac{{}^{R}OUT^{T}s}{{}_{LM}2}\left(\frac{1}{2} + \frac{s_{a}}{s_{n}}\right)}$			
H _d	$\frac{\eta R_{OUT}}{R_i}$			
Control-output Transfer Function (H _{ctrl_output} (f))	$F_{m}H_{d}\frac{\left(1+j\frac{2\pi f}{\omega_{z1}}\right)}{\left(1+j\frac{2\pi f}{\omega_{p1}}\right)} \ \frac{\left(1-j\frac{2\pi f}{\omega_{z2}}\right)}{\left(1+j\frac{2\pi f}{\omega_{n}Q_{p}}+\left(j\frac{2\pi f}{\omega_{n}}\right)^{2}\right)}$			

Once the desired cross-over frequency (f_c) gain adjustment and necessary phase boost are determined from the $H_{ctrl_output}(f)$ gain and phase plots, the Table 2 equations may be used. It should be noted that minor compensation component value adjustments may become necessary when $R_2 \leq \sim 10 \cdot R_{esd}$ as a result of approximations for determining components R_2 , C_1 , C_2 .

Table 2. OTA COMPENSATION TRANSFER FUNCTION AND COMPENSATION VALUES

Desired OTA Gain at Cross-over	desired G _{tennin de}
Frequency f _c (G)	$\frac{\frac{\text{desired}_G_{\text{lc_pair}_db}}{20}}$
Desired Phase Boost at Cross- over Frequency f _c (boost)	$\left(\theta_{margin} - arg\left(H_{ctrl_output}(fc)\right) \frac{180^{\circ}}{\pi} - 90^{\circ}\right) \frac{\pi}{180^{\circ}}$
Select OTA Compensation Zero to Coincide with Modulator Pole at $f_{\text{p1}}\left(f_{z}\right)$	$\frac{\omega_{p1e}}{2\pi}$
Resulting OTA High Frequency Pole Placement (f _p)	$\frac{f_z f_c + f_c^2 tan(boost)}{f_c - f_z tan(boost)}$
Compensation Resistor (R ₂)	$\frac{f_p G}{f_p - f_z} \frac{V_{OUT}}{1.2 g_m} \frac{\sqrt{1 + \left(\frac{f_c}{f_p}\right)^2}}{\sqrt{1 + \left(\frac{f_z}{f_p}\right)^2}}$
Compensation Capacitor (C ₁)	$\frac{1}{2\pi f_z R_2}$
Compensation Capacitor (C ₂)	$\frac{1}{2\pi f_p G} \frac{1.2 g_m}{V_{OUT}}$
OTA DC Gain (G _{0_OTA})	$\frac{V_{ref}}{V_{OUT}}g_mR_0$
Low Frequency Zero (ω_{z1e})	$\frac{1}{2} \frac{\left(R_{2} + R_{esd}\right)}{R_{2}R_{esd}C_{2}} \left[1 - \sqrt{1 - 4\frac{R_{2}R_{esd}C_{2}}{\left(R_{2} + R_{esd}\right)^{2}C_{1}}}\right]$
High Frequency Zero (ω _{z2e})	$\frac{1}{2} \frac{\left(R_{2} + R_{esd}\right)}{R_{2}R_{esd}C_{2}} \left[1 + \sqrt{1 - 4\frac{R_{2}R_{esd}C_{2}}{\left(R_{2} + R_{esd}\right)^{2}C_{1}}}\right]$


Table 2. OTA COMPENSATION TRANSFER FUNCTION AND COMPENSATION VALUES

Low Frequency Pole (w _{p1e})	$\frac{1}{2} \frac{\left(R_{0} + R_{2} + R_{esd}\right)}{R_{2}\left(R_{0} + R_{esd}\right)C_{2}} \left[1 - \sqrt{1 - 4\frac{R_{2}\left(R_{0} + R_{esd}\right)C_{2}}{\left(R_{0} + R_{2} + R_{esd}\right)^{2}C_{1}}}\right]$
High Frequency Pole (ω _{p2e})	$\frac{1}{2} \frac{\left(R_{0} + R_{2} + R_{esd}\right)}{R_{2}\left(R_{0} + R_{esd}\right)C_{2}} \left[1 + \sqrt{1 - 4\frac{R_{2}\left(R_{0} + R_{esd}\right)C_{2}}{\left(R_{0} + R_{2} + R_{esd}\right)^{2}C_{1}}}\right]$
OTA Transfer Function (G _{OTA} (f))	$-G_{0_OTA} \frac{1 + j\frac{2\pi f}{\omega_{z1e}}}{1 + j\frac{2\pi f}{\omega_{p1e}}} \frac{1 + j\frac{2\pi f}{\omega_{z2e}}}{1 + j\frac{2\pi f}{\omega_{p2e}}}$

The open-loop-response in closed-loop form to verify the gain/phase margins may be obtained from the following expressions.

 $T(f) = G_{OTA}(f)H_{ctrl_output}(f)$

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, specifications by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- 2
- DIMENSION A AND B DO NOT INCLUDE 3
- MOLD PROTRUSION MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 4.
- DIMENSION D DOES NOT INCLUDE DAMBAR 5. PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. 6

OTANDALID IO 131-01.						
	MILLIN	IETERS	INC	HES		
DIM	MIN MAX		MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	7 BSC	0.05	0 BSC		
н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
к	0.40	1.27	0.016	0.050		
м	0 °	8 °	0 °	8 °		
Ν	0.25	0.50	0.010	0.020		
S	5.80	6 20	0.228	0 244		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3 SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G