

QUAD OPERATIONAL AMPLIFIER

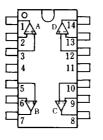
■ GENERAL DESCRIPTION

NJM2112 is low operating voltage (±1.0V min.) and low saturation output voltage (±2.0V_{P-P} at operating voltage ±2.5V) operational amplifier. It is applicable to HANDY TYPE CD, RADIO CASSETTE CD, and PORTABLE DAT, that are digital audio apparatus which require the 5V single supply operation and high output voltage. The NJM2112 is quad operational amplifier. Each amplifier of the NJM2112 has the same electrical characteristic of the NJM2115.

■ PACKAGE OUTLINE

NJM2112D

NJM2112M

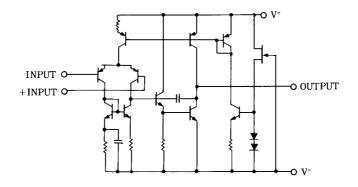

NJM2112V

■ FEATURES

 Operating Voltage (±1.0V~±7.0V) Low Saturation Output Voltage (±2.0V_{P-P} @ V⁺=±2.5V) DIP14,DMP14,SSOP14 Package Outline

Bipolar Technology

■ PIN CONFIGURATION


NJM2112D **NJM2112M NJM2112V**

PIN FUNCTION 1. A OUTPUT 2. A INPUT 3. A +INPUT 4. V 5. B +INPUT 6. B -INPUT 7. B OUTPUT **8.C OUTPUT** 9. C -INPUT 10.C +INPUT 11. V **12.D +INPUT**

13.D -INPUT

14.D OUTPUT

■ EQUIVALENT CIRCUIT (1/4 Shown)

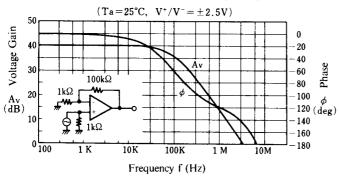
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

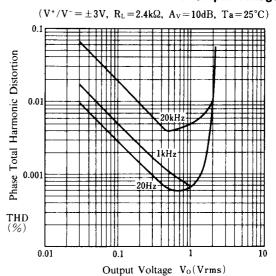
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ /V	± 7.0	V
Differential Input Voltage	V _{ID}	± 14	V
		(DIP14)500	
Power Dissipation	P_D	(DMP14) 300	mW
		(SSOP14)300	
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

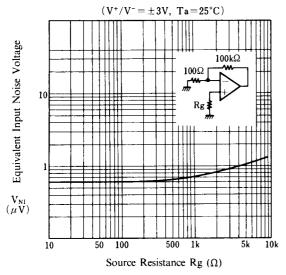
 $(V^{\dagger}N^{-}=\pm 2.5V,Ta=25^{\circ}C)$

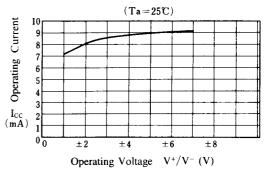

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	R _S ≤10kΩ	-	1	6	mV
Input Bias Current	I_{B}		-	100	300	nA
Large signal Voltage Gain	A_{V}	R _L ≥10kΩ	60	80	-	dB
Maximum Output Voltage Swing	V_{OM}	R _L ≥2.5kΩ	±2	± 2.2	-	V
Input Common Mode Voltage Range	V_{ICM}		± 1.5	-	-	V
Common Mode Rejection Ratio	CMR		60	74	-	dB
Supply Voltage Rejection Ratio	SVR		60	80	-	dB
Operating Current	I_{CC}	V _{IN} =0,R _L =∞	-	8	11	mA
Slew Rate	SR	$A_V=1,V_{IN}=\pm 1V$	-	3.2	-	V/µs
Gain Bandwidth Product	GB	f=10kHz	-	9	-	MHz

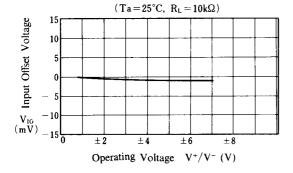
⁽Note1) Applied circuit voltage gain is desired to be operated within the range of 3dB to 30 dB.

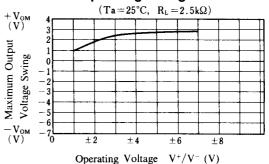

⁽ Note2) Special care being required for input common mode voltage range and the oscillation due to the capacitive load when operating on voltage follower.

■ TYPICAL CHARACTERISTICS

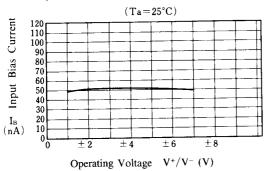

Voltage Gain, Phase vs. Frequency


Total Harmonic Distartion vs. Output Voltage

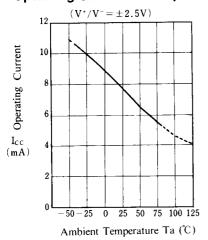

Equivalent Input Noise Voltage vs. Source Resistance


Operating Current vs. Operating Voltage

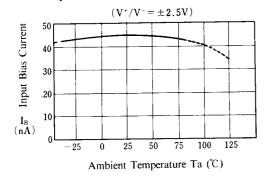
Input Offset Voltage vs. Operating Voltage

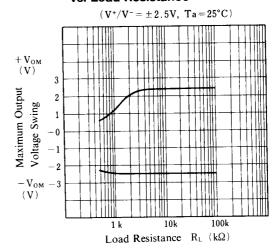


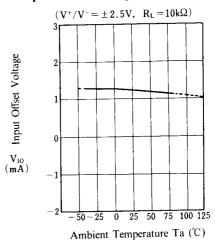
Maximum Output Voltage Swing vs. Operating Voltage

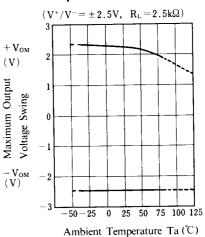


■ TYPICAL CHARACTERISTICS


Input Bias Curent vs. Operating Voltage


Operating Current vs. Temperature


Input Bias Current vs. Temperature


Maximum Output Voltage Swing vs. Load Resistance

Input Offset Voltage vs. Temperature

Maximum Output Voltage Swing vs. Temperature

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Operational Amplifiers - Op Amps category:

Click to view products by NJR manufacturer:

Other Similar products are found below:

OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G

SC2902DTBR2G SC2903DR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB

430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG

SCYA5230DR2G 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G

M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E

NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E